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Abstract

Gaining awareness of affective states enables leveraging emotional information as additional
context in order to design emotionally sentient systems. Applications of such systems
are manifold. For example, the learning gain can be increased in educational settings
by incorporating targeted interventions that are capable of adjusting to affective states
of students. Another application consists of enabling smartphones to support enriched
interactions that are sensitive to the user’s contexts. To accomplish the prediction of
affective states in different contexts, multimodal data tailored to the domain need to be
collected and adequately modeled. Research on such affective models mainly focused on
expensive and stationary lab devices that are not well suited for everyday use, but recently,
lightweight data collection in mobile settings gained interest. In this thesis, we present
data-driven models for the prediction of affective states. We focus on models relying on
lightweight data collection tailored to mobile settings. We further discuss the protection of
privacy and the usability in real-world environments of the different data modalities.

First, we propose a pipeline for affective state prediction based on front camera recordings
(i.e., action units, eye gaze, eye blinks, and head movement) during math-solving tasks
(active) and emotional stimuli from pictures (passive) shown on a tablet. Using data from a
study with 88 participants, we demonstrate that our setup provides comparable performance
for affective state prediction to recordings taken with an external and more obtrusive GoPro
camera. In addition, we present a neural inpainting pipeline and techniques for image
reconstruction of partially occluded and skewed faces. In combination with our novel
hardware setup consisting of a cheap and unobtrusive mirror construction, the neural
inpainting pipeline improves the visibility of the face in recordings of built-in cameras of
mobile devices.

Second, we present an automated pipeline capable of accurately predicting (AUC up to
0.86) the affective states of users solving tablet-based math tasks using signals from low-
cost mobile biosensors. In addition, we show that we can achieve a similar classification
performance (AUC up to 0.84) by only using handwriting data recorded from a stylus
while users solved the math tasks. Given the emerging digitization of classrooms and
increased reliance on tablets as teaching tools, we demonstrate that stylus data may be a
viable alternative to biosensors for the prediction of affective states in educational settings.

Third, we propose a system that analyzes the user’s text typing behavior on smartphones
using a semi-supervised deep learning pipeline for predicting affective states. Using a
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data collection study in a laboratory setting with 70 participants on text conversations
designed to trigger different affective responses, we developed a variational autoencoder
to learn efficient feature embeddings of two-dimensional heat maps generated from touch
data while participants engaged in these conversations. Using the learned embedding in a
cross-validated analysis, our system predicts affective states with an AUC of up to 0.84.
We demonstrate the feasibility of our approach to accurately predict affective states based
only on touch data collected on smartphones.

Fourth, we present an approach to expand affective state prediction to smartphone usage
in the wild. We developed two-dimensional heat maps generated from keystroke and
smartphone sensor data. Using data collected in the wild from 82 participants over 10
weeks, we demonstrate that by using a convolutional neural network we can achieve an
AUC of up to 0.85 for the prediction of affective states. We also show that using less
privacy-invasive sensor data alone, a similar performance (AUC up to 0.83) can be achieved.
In addition, by personalizing the model to the user, the performance can be increased by up
to 0.07 AUC. We exemplify the usability of our model for the prediction of affective states
in real-world environments based on readily available smartphone data.

Finally, we describe two widgets for a compact and unobtrusive visualization of users’
affective states on mobile devices. We test the widgets on intuitiveness and understandability
based on a user study with 644 participants.

We conclude with a discussion of the advantages and limitations of our methods and
possible future work. As we believe that the knowledge of affective states will become
crucial for a variety of systems and in different domains in the next decade, we hope that
our work provides an important contribution in such a direction.
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Zusammenfassung

Das Erkennen affektiver Zustände ermöglicht es, emotionale Informationen als zusätzlichen
Kontext zu nutzen, um emotional empfindsame Systeme zu entwerfen. Die Anwendungen
solcher Systeme sind vielfältig. Zum Beispiel kann das Lernen in Schulen durch gezielte
Interventionen, die sich an die affektiven Zustände von Schülern anpassen, verbessert wer-
den. Eine andere Anwendung besteht aus Smartphone-Interaktionen, die auf den Kontext
des Benutzers reagieren. Um die Vorhersage von affektiven Zuständen in verschiedenen
Kontexten zu ermöglichen, müssen multimodale Daten, die auf die Domäne zugeschnitten
sind, gesammelt und adäquat modelliert werden. Die Forschung zu solchen affektiven
Modellen hat sich hauptsächlich auf teure und stationäre Laborgeräte konzentriert, die für
den alltäglichen Gebrauch nicht gut geeignet sind. In letzter Zeit hat die leichtgewichtige
Datenerfassung in mobilen Umgebungen an Interesse gewonnen. In dieser Arbeit stel-
len wir datengetriebene Modelle für die Vorhersage von affektiven Zuständen vor. Wir
konzentrieren uns auf Modelle, die auf einer leichtgewichtigen Datenerfassung beruhen
und auf mobile Umgebungen zugeschnitten sind. Außerdem diskutieren wir den Schutz
der Privatsphäre und die Verwendbarkeit der verschiedenen Datenmodalitäten in realen
Umgebungen.

Als erstes schlagen wir eine Pipeline zur Vorhersage des affektiven Zustands vor, die auf
Aufnahmen der Frontkamera (d.h. Bewegungseinheiten, Blick, Augenblinzeln und Kopf-
bewegung) während dem Lösen mathematischer Aufgaben (aktiv) und dem Betrachten
emotionaler Stimuli von Bildern (passiv), die auf einem Tablet gezeigt wurden, basiert.
Anhand von Daten aus einer Studie mit 88 Teilnehmern zeigen wir, dass unser Setup eine
vergleichbare Leistung für die Vorhersage des affektiven Zustands bietet wie Aufnahmen
mit einer externen und sichtbaren GoPro-Kamera. Darüber hinaus stellen wir eine neuronale
Inpainting-Pipeline und Techniken zur Bildrekonstruktion von teilweise verdeckten und
schiefen Gesichtern vor. In Kombination mit unserer neuartigen, günstigen und unauffälli-
gen Spiegelkonstruktion, verbessert die neuronale Inpainting-Pipeline die Sichtbarkeit des
Gesichts in Aufnahmen der eingebauten Kameras von mobilen Geräten.

Zweitens stellen wir eine automatisierte Pipeline vor, die in der Lage ist, die affektiven
Zustände von Nutzern, die Tablet-basierte Matheaufgaben lösen, anhand von Signalen kos-
tengünstiger mobiler Biosensoren genau vorherzusagen (AUC bis zu 0,86). Darüber hinaus
zeigen wir, dass wir eine ähnliche Klassifikationsleistung (AUC bis zu 0,84) erreichen
können, wenn wir nur die Handschriftdaten verwenden, die von einem Stift aufgezeichnet
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wurden, während der Benutzer die Matheaufgaben löste. In Anbetracht der zunehmen-
den Digitalisierung von Klassenzimmern und dem verstärkten Einsatz von Tablets als
Lehrmittel zeigen wir, dass Stiftdaten eine brauchbare Alternative zu Biosensoren für die
Vorhersage von affektiven Zuständen in Schulen sein können.

Drittens schlagen wir ein System vor, welches das Tippverhalten von Text auf Smartpho-
nes mit einer teilüberwachten Deep-Learning-Pipeline zur Vorhersage affektiver Zustände
analysiert. Anhand einer Datenerhebungsstudie in einer Laborumgebung mit 70 Teilneh-
mern basierend auf Textkonversationen, die unterschiedliche affektive Reaktionen auslösen
sollten, entwickelten wir einen Variational Autoencoder, um effiziente Datenrepräsentation
von zweidimensionalen Heat Maps zu lernen, die aus Touchscreen Daten generiert wurden,
während die Teilnehmer Konversationen führten. Unter Verwendung der gelernten Einbet-
tung in einer kreuzvalidierten Analyse sagt unser System affektive Zustände mit einem
AUC von bis zu 0,84 voraus. Wir demonstrieren die Machbarkeit unseres Ansatzes zur
genauen Vorhersage affektiver Zustände, welcher nur auf mit Smartphones gesammelten
Touchscreen Daten basiert.

Viertens präsentieren wir einen Ansatz, um die Vorhersage affektiver Zustände auf die
Smartphone-Nutzung im Alltag auszuweiten. Wir entwickelten zweidimensionale Heat
Maps, welche aus Tastendruck- und Smartphone-Sensordaten generiert werden. Anhand
von Daten, die im Alltag von 82 Teilnehmern über einen Zeitraum von 10 Wochen gesam-
melt wurden, zeigen wir, dass wir mit einem gefalteten neuronalen Netzwerk einen AUC
von bis zu 0,85 für die Vorhersage von affektiven Zuständen erreichen können. Wir zeigen
auch, dass allein durch die Verwendung von weniger datenschutzrelevanten Sensordaten
eine ähnliche Leistung (AUC bis zu 0,83) erzielt werden kann. Darüber hinaus kann durch
benutzerspezifische Personalisierung des Modells die Leistung um bis zu 0,07 AUC gestei-
gert werden. Wir veranschaulichen die Anwendbarkeit unseres Modells für die Vorhersage
von affektiven Zuständen in realen Umgebungen auf der Basis von Smartphone-Daten.

Schließlich beschreiben wir zwei Widgets für eine kompakte und unauffällige Visualisie-
rung der affektiven Zustände von Benutzern auf mobilen Geräten. Wir testen die Widgets
auf Intuitivität und Verständlichkeit anhand einer Nutzerstudie mit 644 Teilnehmern.

Wir schließen mit einer Diskussion über die Vorteile und Grenzen unserer Methoden und
möglichen zukünftigen Arbeiten. Da wir glauben, dass das Wissen über affektive Zustände
im nächsten Jahrzehnt für eine Vielzahl von Systemen und in verschiedenen Domänen
entscheidend sein wird, hoffen wir, dass unsere Arbeit einen wichtigen Beitrag in diese
Richtung leistet.
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C H A P T E R 1
Introduction

In this thesis, we investigate different data modalities for predicting affective states
for the masses. Awareness of the affective state of users can enhance the quality of the
interaction making systems more usable, enjoyable, and effective for the users. Such
affect-aware systems are useful in different domains such as education and health.
For example, a learning environment that can detect and react to the frustration of the
students can increase motivation and learning gain by adapting the environment (e.g.,
the difficulty level) [Sidney et al., 2005]. Recognizing the affective state of a person
can also help with the treatment of mental health problems such as depression (e.g.,
as part of a therapeutic chatbot) [Riva et al., 2015].

The proliferation of smartphone and sensor-based technologies enables systems to
recognize and process human affective states in real-world situations and in real-time
by harnessing the properties of these mobile and sensing technologies. As such, our
data-driven models presented in this thesis are based on novel data representations
and features extracted from different data modalities (i.e., video data, biosensor data,
stylus data, and smartphone data). We then use machine learning techniques to predict
the affective states. Our models enable innovative applications in different fields. Two
of the key challenges of designing such affect-aware models are privacy protection
and real-world usability. Besides properties of the data modalities (e.g., intrusiveness
and motion artifacts), privacy protection also has an implication on the usefulness
of systems in real-world settings. People are usually sensitive when personal data is
captured and depending on the degree of privacy invasion such systems are disliked
and real-world applicability is degraded. Thus, we discuss also implications on the
privacy and usage in the real world of our models and underlying data modalities.
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Introduction

1.1 Affective Computing

The main goal of affective computing is the development of systems that recognize
and respond to affective states of users [Picard et al., 2004]. Affective states comprise
two main types: emotions and moods [Politou et al., 2017]. Emotions are short
in duration (ranging from seconds to minutes), are directed at something, and are
triggered by events (e.g., seeing a bear). In contrast, moods last longer than emotions
(from hours to days), are not directed towards a particular object, and have combined
causes. In this thesis, we focus on emotions as it was shown that emotions have a big
impact on different domains, such as education [Baker et al., 2012; Csikszentmihalyi,
2008; Miserandino, 1996] and health [Breazeal, 2011].

There exist three types of affective computing applications [Picard, 2000]. The
first type comprises systems recognizing the emotions of the users. The second
type is related to systems expressing emotions (e.g., an animated conversational
agent). Finally, the third type comprises systems that calculate (i.e., feel) an emotion.
Based on these three types of applications, an affective component consisting of
emotion recognition, emotion calculation, and emotion expression can be defined (see
Figure 1.1) [Pudane et al., 2019]. Emotion-aware systems vary in type and depending
on the specific application they usually include (a subset of) these components. A
system can still perform well if it has just a few functional blocks. For example,
intelligent tutoring systems (i.e., learning environments supporting individual learning
by adapting the learning process to the user) often adapt to a user’s emotions by
recognizing the emotions and expressing them [Pudāne and Lavendelis, 2017].

Emotion recognition. Emotion recognition is conducted by exploiting an emotional
signal from different data modalities. Such modalities encompass sensors that do not
require physical contact (e.g., video cameras) and sensors requiring physical contact
with the human body (e.g., biosensors). In this thesis, we focus on this emotion
recognition component as it is a crucial part of every emotion-aware system because
such a system can never respond to the affective states of users without recognizing
their affective states. The emotion recognition component is a prerequisite for the
emotion calculation and emotion expression components. It is noteworthy that emo-
tion recognition is a very challenging problem due to the fuzziness and subjectivity
in the expression and experience of emotions [Calvo and D’Mello, 2010].

Emotion expression. The emotion expression component enables the system to
express and visualize emotions. For example, such functionality can be achieved
through affective conversational agents, widgets carrying emotional information,
and changes in music, color, and lighting. Emotions can be expressed based on the
recognized emotion of the user or after being processed by the rational reasoning
component, i.e., taking into account the state of the system. To express the system’s
emotional state, the recognized emotion must first be processed by the emotion
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Emotion 
Recognition

Emotion Expression

Emotion Calculation Rational Reasoning 
ComponentUser

Affective component
Chapters 3 - 6

Chapter 7

Figure 1.1: Outline of an emotion-aware system (adapted from [Pudane et al., 2019]).
The affective processes consist of emotion recognition, emotion expression
(emotion feedback), and emotion calculation. The rational reasoning compo-
nent adapts the state of the system based on the recognized emotion and the
emotional state of the system.

calculation component. In this thesis, we will touch on the visualization of emo-
tions in Chapter 7 by presenting two intuitive widgets for visualizing emotions and
communicating emotions to others.

Emotion calculation. In contrast to pure emotion recognition, emotion calculation
enables the system to have and feel emotions by enriching the system with emotion
mechanisms similar to those of humans. Emotions are generated by evaluating events
in relation to the system’s expectations, needs, and goals. This is consistent with the
appraisal theory of emotions, which relates subjective emotional experience to the
appraisal of stimuli (detailed in Section 1.1.2). For example, emotion calculation is an
important part of social robots to enable the robot to have its own emotions [Pudane
et al., 2019].

Rational reasoning component. This component can receive direct input from the
emotion recognition and emotion calculation component. Its purpose is to adapt the
state of the system (e.g., the user model) based on the recognized emotion of the user
and the emotional state of the system (i.e., the emotion the system feels). The updated
state can then be passed to the emotion expression component for visualization
purposes.
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1.1.1 Applications

The ability to predict affective states has a broad range of applications. In the
following, we detail possible applications in mental health, awareness, and education
that can benefit from affective state predictions.

Mental health. Emotions are closely related to physiological and mental
health [Breazeal, 2011]. Thus, recognizing a person’s emotion can help with the
treatment of health problems by either calling a caretaker or by the intervention of
the system with the user itself [Riva et al., 2015]. For example, Woebot [2021] is one
of many therapeutic chatbots available for Android and iOS devices. Using methods
from cognitive behavioral therapy, Woebot aims to increase the overall mood of users
and has been shown to reduce symptoms of depression and anxiety [Fitzpatrick et al.,
2017]. Woebot uses predefined questions to adequately adapt the conversation to the
mood of the user, inferring the mood directly from the chat messages provided by the
user. The bot can adapt the responses to the users’ changing affective state. Similarly,
tracking the intensity and duration of positive and negative valence in real-time using
a heart rate monitor enables detecting depression at its early stages [Leon et al., 2011].
Other applications could also benefit from affective predictions, such as customer
service applications (e.g., Zendesk [2021]).

Awareness. Knowledge about affective states can be leveraged to increase self-
awareness and to convey awareness of affective states to others. Textual or graphical
elements can be used to make users aware of their affective states. Such feedback can
make users think about their affective state and encourage them to take regulatory ac-
tions (e.g., taking a break), which can have an impact on the user’s well-being [Lane
et al., 2012]. Furthermore, it may allow the user to foster self-regulation, detect
potential stress causes, and adjust daily routines based on the extracted information.
If the user agrees, these affective states can be communicated to others using status
messages that are common on social networks and chat applications. Figure 1.2A
provides an example of our visualization for valence, arousal, and dominance (de-
tailed in Chapter 7). The circle is divided into three equal-sized segments, one for
each dimension. The parts of the segments are filled according to the level of the
corresponding dimension. Figure 1.2B shows how our visualization could be used as
part of the header in a chat application.

Education. Affective states play an important role in the educational context and
can directly influence a student’s motivation, problem-solving ability, and learning
gain [Baker et al., 2012; Csikszentmihalyi, 2008; Miserandino, 1996]. For example,
learning outcomes have been found to decrease if frustration is persistent during
problem-solving, whereas overcoming a state of frustration can have a positive effect
on learning [Baker et al., 2012]. Teachers having access to the visualizations of the
affective states of their students can provide feedback to the students based on the
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A) Visualization B) Chat applicationA) Visualization B) Chat application

Figure 1.2: A possible visualization of affective states. A) One segment for each affective
dimension. The parts of the segments are filled according to the level of the
corresponding dimension. B) Example of how the visualization can be used in
a chat application.

affective information, which can increase the learning experience [Grawemeyer et
al., 2015]. A further application of affective state prediction is as part of intelligent
tutoring systems. Based on the affective states of students, affect-driven feedback
and instructional help messages can be provided. [Cabestrero et al., 2018]. For
example, Santos et al. [2016] developed a learning environment for language learning
which provides personalized feedback (e.g., playing songs) based on the detection of
relaxed and nervous emotional states of students. Finally, prediction of affective states
can also be useful to teach children to recognize and interpret their emotions, e.g.,
during taking photos and recording videos [Leijdekkers et al., 2013] or by engaging
with virtual agents representing real people and their emotions [Bertacchini et al.,
2013]. This can be especially useful for autistic children having difficulty recognizing
emotions in others and sharing emotions with others.

1.1.2 Affect Modelling

In this section, we contextualize our engineering goals within different modeling
approaches of affective states. Typically, emotions, and affects in general, are modeled
using a categorical, dimensional, or appraisal approach [Politou et al., 2017].

Categorical models. Categorical models describe emotions as innate, discrete, and
separately identifiable, and as universal to all humans (i.e., cross-cultural) [Colom-
betti, 2009]. Based on Tomkins model [Tomkins, 1962] stating that emotions are
primarily facial behavior and body response is secondary, Ekman et al. [1987] pro-
posed six basic universal emotions (i.e., sadness, happiness, anger, fear, disgust,
and surprise). According to the Facial Action Coding System (FACS) [Ekman and
Rosenberg, 1997], each basic emotion is associated with a unique facial expression.
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For example, happiness is identified through the raising of the mouth corners and
tightening of the eyelids, and anger is identified through eyebrows lowering, lips
pressing and eyes bulging. The basic emotions can also be blended to form complex
emotions [Shoumy et al., 2020]. For example, a feeling of happiness and sadness
will result in melancholy.

Dimensional models. Dimensional models conceptualize emotions as a combi-
nation of several psychological dimensions. The circumplex model proposed by
Russell [1980] is a two-dimensional model representing affective states in terms of
two orthogonal and bipolar dimensions, i.e., valence and arousal. According to this
model, each affective state is a linear combination of valence and arousal in different
degrees. Valence measures the pleasantness of an affective state. For example, anger
and fear are unpleasant emotions (negative valence), but happiness is a pleasant
emotion (positive valence). Arousal refers to the perceived intensity of an event.
For example, anger is typically an intense feeling (high arousal), whereas boredom
has a low arousal value. This two-dimensional model was further extended by an
additional dominance dimension [Mehrabian, 1996]. Dominance represents how
controlling and dominant one feels about a situation. For example, anger is typically
a moderately dominant emotion, whereas boredom is a non-dominant emotion.

Appraisal models. According to the appraisal theory, emotions are generated by the
evaluation of the internal state of a person and the state of the outside world [Gunes
and Pantic, 2010]. Stated differently, emotions are primarily caused by cognitive
processes, specifically by appraisals of objects as relevant to one’s well-being. In
contrast to the categorical and dimensional models, the same situation or event can
cause different emotions for different people. In particular, the emotions depend on
how the people are appraising the situation taking into account their history, goals,
needs, and expectations.

In this thesis, we use categorical models (i.e., basic emotions) and dimensional
models (i.e., valence, arousal, and dominance) to represent and measure the emotional
state of a person. Appraisal models have shown to be too complex for real-world
applications [Calvo and D’Mello, 2010] and were, therefore, excluded in this thesis.

1.1.3 Data Modalities

The human body responds to emotions through various physical and physiological
signals [Kanjo et al., 2015]. Physical signals encompass, for example, facial expres-
sions, gestures, and movements. Physiological signals include, among others, skin
conductance and pulse rate. Such signals can serve as input to machine learning
models enabling the prediction of emotions. Two important factors affecting the value
of each data modality as a viable affect detection channel are the reliability of the
signals in real-world environments (e.g., in classrooms and at home) and the degree
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of privacy protection of the signal [Calvo and D’Mello, 2010]. Models applicable
in real-world environments are more useful for the users as they can support them
in their daily routine, though such models and signals are often accompanied by a
privacy trade-off. People are usually sensitive when personal data is used or personal
information is revealed from signals or the combination of signals [Politou et al.,
2017]. Moreover, not only the users themselves can be affected by privacy issues but
also other people in the vicinity of the users (e.g., a camera recording other people in
the field of view).

Privacy. Although an invasion of privacy can be desired and beneficial for the users
(e.g., user-tailored services and personalization features), the collected data may
also be used to identify users and to extract sensitive information (e.g., users habits
and relations) which is not disclosed to the users [Christin et al., 2011]. Due to
the lack of a common understanding of privacy [Newell, 1995], we introduce our
definition of privacy tailored to our context. We link privacy to personal identifiable
information (PII) which is information that can be used on its own or combined with
other information to identify or trace an individual (e.g., name, social security number,
biometric records, date, and place of birth, etc.) [McCallister et al., 2010]. PII exists
also in the legislation of many countries (e.g., in the United States, the National
Institute of Standards and Technology’s guide to protecting the confidentiality of
personally identifiable information [McCallister et al., 2010] and in the European
Union, the General Data Protection Regulation [Voigt and Von dem Bussche, 2017]).
Unauthorized access, use, or disclosure of PII can harm individuals in terms of
identity theft, blackmail, and embarrassment. Based on the definition of PII, we
establish the following three requirements which a data source must fulfill to protect
privacy:

• R1. A user cannot be identified or traced from the data alone or in combina-
tion with other information [McCallister et al., 2010].

• R2. Other people cannot be identified or traced based on the collected data
from the user [Christin et al., 2011; Politou et al., 2017]. This includes
people in the vicinity of the user (e.g., sitting next to the user) but also people
in contact with the user in another way (e.g., calling or messaging the user).

• R3. The user can trick the system to disguise the identity (e.g., changing the
handwriting and typing differently) [Calvo et al., 2015]. This requirement
only applies if R1 or R2 applies.

Another part of privacy is the requirement that a system should support users with
usable and understandable mechanisms to provide the ability to control the release
and the degree of granularity of data [Christin et al., 2011]. Potential privacy and
ethical issues can also be related to the predicted emotions such as manipulating or
influencing people’s emotions [Kanjo et al., 2015; Politou et al., 2017].
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Real-world usability. Data collection in laboratory environments is typically easier
and provides less noisy signals than in real-world environments. On the other hand,
to support users during their daily routines, a model for predicting affective states
should be applicable in real-world scenarios. As such, we state three requirements
for data sources to be applicable in real-world environments:

• R4. The data should be collected unobtrusively and energy-efficient (i.e.,
low power drain) so that the user is not disturbed in the daily routines and the
device can be carried for long periods [Kanjo et al., 2015; Lane et al., 2010;
Larradet et al., 2020; Macias et al., 2013]. Ideally, no additional hardware is
needed to collect the data.

• R5. The signal of the data source should be robust under conditions observed
in real-world environments (e.g., movement of users) to reduce corrupted
and erroneous data being produced [Kanjo et al., 2015].

• R6. The costs of the data recording and hardware should be as low as
possible [Politou et al., 2017]. Ideally, no additional costs arise (i.e., no
additional hardware needed).

In this thesis, we investigate several data modalities to predict affective states. Similar
to McCallister et al. [2010], we assign each requirement a score of 1 (requirement
not fulfilled), 2 (requirement partially fulfilled), or 3 (requirement fulfilled). For each
data source, we then sum up the scores of all requirements to obtain one score for
privacy protection (a high score means high privacy protection) and one for usability
in real-world environments (a high score means very usable). Table 1.1 lists the scores
for all data modalities and all requirements as well as the total scores for privacy
protection (R1–R3) and real-world usability (R4–R6). Figure 1.3 shows an overview
of the data modalities in relation to their applicability in real-world environments
and their degrees of privacy protection according to the total scores derived from the
requirements. In the following, we detail the different data modalities and discuss
each requirement.

Video data. Inspired by the fact that facial expressions are directly linked to basic
emotions, we employ video data (i.e., facial expressions, eye gaze, eye blinks, body
movement, and head movement) in Chapter 3 to predict affective states. Video
data can be used to identify the user (R1 = 1) and also people in the vicinity
(R2 = 1) [Christin et al., 2011]. Tricking the system to disguise the identity is only
possible to a certain extent when wearing masks (R3 = 1). Still, the people in the
vicinity can be identified when only the user is wearing a mask. Video data can be
collected unobtrusively using built-in webcams of tablets and smartphones. On the
other hand, external cameras (e.g., GoPros) are visible to the user and thus more
obtrusive (R4 = 2). Video recordings are also draining the battery of smartphones
and for external cameras, battery capacity is typically limited to a few hours. Video
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Table 1.1: The scores of the requirements for the protection of privacy (R1–R3) and
usability in real-world environments (R4–R6) for each data modality. A higher
score indicates higher privacy protection and higher usability in real-world
environments.

Video Biosensors Stylus Smartphone Touch Smartphone Sensors
R1 (PII) 1 2 1 1 2
R2 (PII in vicinity) 1 3 3 1 3
R3 (Disguise) 1 2 2 2 3
R4 (Unobtrusiveness) 2 1 3 3 3
R5 (Robustness) 2 1 3 3 3
R6 (Costs) 2 2 2 3 3

Total R1–R3 3 7 6 4 8
Total R4–R6 6 4 8 9 9
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Figure 1.3: Data Modalities in relation to privacy protection and usability in real-world
environments. High scores indicate high usability in real-world environments
and high privacy protection. Capturing video data does not protect the privacy
and is more applicable in controlled environments whereas recording smart-
phone sensor data protects privacy more and is more applicable in real-world
environments.
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recordings also depend on lighting conditions and view angle (R5 = 2). For example,
often the face and body are not at all or only partially visible. In addition, facial
expressions can be different from true facial expressions because people adjust their
facial expressions due to social norms [Fridlund and Duchaine, 1996]. There is no
additional cost for video recordings from smartphones or tablets but significant costs
for external cameras (R6 = 2). Overall, this leads to a total score of 3 for privacy
protection and a total score of 6 for usability in real-world environments. This is
in line with Politou et al. [2017] who proposed low privacy protection for videos
recorded from cameras.

Biosensor and stylus data. Based on the increase in the number and wearability
of biosensor devices (e.g., integrated biosensors in watches) [Arroyo et al., 2009]
and the fact that tablets bundled with a stylus are becoming increasingly available in
households and classrooms and are inherently non-intrusive and mobile, we explore
biosensors (i.e., heart rate, skin conductance, and skin temperature) and handwriting
data recorded from a stylus for affective state prediction in Chapter 4. Users can be
identified based on their handwriting and the handwriting of a person can potentially
also be used to counterfeit documents, letters, and signatures (R1 = 1) [McCallister
et al., 2010]. From the biosensor data, adversaries may identify health issues or
diseases (R1 = 2) [Christin et al., 2011]. Neither from handwriting (e.g., solving
math tasks using a stylus) nor from biosensor data other people in the vicinity of
a user can be identified (R2 = 3). For handwriting, the system can be tricked by
changing the style of writing although this can make it difficult to read the resulting
text (R3 = 2). On the other hand, some biosensor signals can be consciously
controlled by the user (e.g., heart rate [Pokrovskii and Polischuk, 2012] and skin
temperature [Kozhevnikov et al., 2013]) while other biosensor signals cannot be
controlled (e.g., skin conductance [Critchley, 2002]) (R3 = 2). While handwriting
data can be collected unobtrusively during stylus usage (R4 = 3), biosensor data is
typically collected using wrist bands, chest straps, and electrodes which can make
longer-lasting recordings uncomfortable (R4 = 1). Further, handwriting recorded
from a stylus provides usually a robust signal (R5 = 3) but biosensor signals can be
degraded by motion artifacts and skin properties (R5 = 1) [Calvo and D’Mello, 2010].
Finally, tablets are often bundled with a stylus, otherwise, a stylus can be bought as a
supplement to a smartphone or tablet (R6 = 2). Similarly, some smartwatches have
already biosensor integrated but biosensor devices can also be bought in different
price ranges (R6 = 2). In summary, the total score for privacy protection is 7 for
biosensor devices and 6 for handwriting recorded from a stylus. According to our
requirements, handwriting data is more usable in real-world environments (total score
of 8) than biosensor data (total score of 4).

Smartphone touch and sensor data. Recent work has also suggested that being
aware of one’s current affective state can be particularly useful in the context of
mobile devices as individuals become more dependent on smartphones for social
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purposes [LiKamWa et al., 2013]. Smartphones are ubiquitous, unobtrusive, and
provide a rich stream of continuous data. In this thesis, we exploit touch data and
sensor data (i.e., gyroscope and accelerometer) recorded from smartphone devices
(see Chapter 5 and 6). From touch data, a user can be uniquely identified by the
touch characteristics of the typed text (R1 = 1) [Mahfouz et al., 2017]. Similarly,
other people can potentially be identified by the typed text of the user, e.g., in
a chat conversation (R2 = 1). Tricking the system is possible to some degree
by changing the typing behavior or the typed text (R3 = 2). Information about
the gait extracted from smartphone sensor data [Christin et al., 2011] and sensor
fingerprinting [Hupperich et al., 2016] can be possible indicators of a user’s identity
(R1 = 2). Further, the vicinity of the user cannot be inferred from sensor data alone
(R2 = 3). In addition, tricking the system is possible by rotating the smartphone,
using the smartphone on a table, and trembling during usage (R3 = 3). Finally, both
smartphone touch and sensor data can be collected unobtrusively with low battery
drain in the background (R4 = 3), the signals are robust against noise (R5 = 3), and
no additional costs are imposed due to the built-in sensors (R6 = 3). In summary,
both touch and smartphone sensor data are usable in real-world environments (total
score of 9) but collecting sensor data protects privacy more (total score of 8) than
collecting touch data (total score of 4). This is in line with Politou et al. [2017]
who declared high privacy protection for data recorded from accelerometers and
gyroscopes.

1.2 Principal Contributions

In the following, we list the main technical contributions of the work presented in
this thesis:

• Camera setup and neural inpainting pipeline. Most existing approaches
for predicting affective states from camera recordings use external cameras
(e.g., GoPro) or webcams, which are expensive, more difficult to handle,
and are exposed to time synchronization problems. Therefore, we propose a
cheap and unobtrusive camera setup for tablet computers and a deep learning-
based image processing pipeline to reconstruct high-quality facial recordings.
The setup requires a small mirror to be attached to the camera to improve
the visibility of the face. Then, the image is reconstructed using a neural
inpainting approach. We show that the mirror construction improves the
visibility of the face in situations where external cameras struggle. With a
qualitative and quantitative evaluation, we demonstrate that we can achieve
results comparable to a GoPro camera. In particular, neural inpainting
improves confidence in facial landmark detection by up to 88%.
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• Video-based features and affective state classification pipeline. We
present a vision-based model for predicting affective states. In our model, we
fuse different existing approaches with novel features extracted from video
recordings (i.e., head and body movement, eyes, and face). We evaluate our
affective prediction model on data from a laboratory experiment with 88
participants. Participants were solving math tasks (active) and were exposed
to emotional stimuli from pictures (passive). We show that our model accu-
rately predicts two levels (low and high) of valence (up to 0.80 AUC) and
arousal (up to 0.73 AUC) using data from the front camera.

• Affective state classification pipeline based on biosensor and stylus data.
One of the main challenges of affective state prediction are privacy concerns
related to the input modalities and the applicability in real-world settings.
Therefore, we propose a system to detect affective states based on biosensor
and handwriting data recorded from a stylus that is cheap and easy to operate,
can be used outside a lab setting, is non-intrusive, and minimizes potential
issues related to privacy. We evaluate our method by applying it to a math
problem-solving scenario in which 88 participants provided answers in
unstructured handwriting on a tablet device. We show that we can reach
good classification accuracy (0.88 AUC) when using data from biosensors
and handwriting in combination. We reach a comparable performance using
only the data acquired by the stylus (0.84 AUC). These results suggest that a
simple tablet with a stylus can be sufficient to reliably predict affective states,
which leads to less intrusive and cheaper setups.

• Generalized affective state prediction model. We explore whether the
affective state prediction model based on biosensor and handwriting data can
be generalized over domains. For this purpose, we apply the model trained
on math task solving to a passive setting with picture stimuli leading to a
performance of 0.68 AUC.

• Semi-supervised affective state classification pipeline based on smart-
phone touch heat maps. We propose a non-invasive solution that can
accurately predict affective states based on touch data from a mobile de-
vice. We generate two-dimensional heat maps of typing characteristics by
considering only touch input (i.e., pressure and speed of typing) from the
smartphone’s on-screen keyboard. By using heat maps in contrast to raw
data, we are also taking into account the spatial distribution of the data. To
make use of the large amount of unlabeled data, we train a semi-supervised
deep learning architecture on these heat maps to learn a low-dimensional
feature embedding. We demonstrate the effectiveness of predicting the affec-
tive states in a data collection study with 70 participants engaged with a chat
application. We show that our pipeline can accurately predict three classes
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(low, medium, high) of valence (up to 0.84 AUC), arousal (up to 0.82 AUC),
and dominance (up to 0.82 AUC). We also present results for the prediction
of two levels (present vs. not present) of anger (0.84 AUC), happiness (0.88
AUC), sadness (0.87 AUC), surprise (0.76 AUC), and stress (0.80 AUC).

• Affective state classification pipeline based on smartphone usage in the
wild. Based on the touch heat maps encoding pressure and speed of typing,
we refine the heat maps by encoding key positions and using three channels
to simultaneously leveraging multiple typing metrics. Our heat maps serve
not only as input to our affective state prediction model but can also be used
for visualization purposes to investigate typing behavior on smartphones.
We evaluate our convolutional neural network model on data collected from
82 participants over 10 weeks in the wild. We show that we can accurately
predict two levels (present vs. absent) of the basic emotions and stress (up to
0.86 AUC) and three levels (low, medium, high) of valence (up to 0.83 AUC),
arousal (up to 0.85 AUC), and dominance (up to 0.84 AUC). In addition, we
show that using two-dimensional heat maps created from smartphone sensor
data (i.e., gyroscope and accelerometer), we can achieve similar performance
for valence (up to 0.79 AUC), arousal (up to 0.83 AUC), and dominance
(up to 0.81 AUC). Such a model leveraging smartphone sensor data only is
less privacy-invasive, and thus has potential higher acceptance by users in
real-world scenarios.

• Emoji-based questionnaire for measuring affective states. Existing ques-
tionnaires for measuring affective states typically have an old-fashioned
layout and are not suitable for fast assessments of affective states on mo-
bile devices (i.e., with space constraints). For example, the self-assessment
manikin [Bradley and Lang, 1994] is a pictorial assessment used to quantify
levels of valence, arousal, and dominance on a 9-point scale. Thus, we
propose a simplified mobile-friendly version of the self-assessment manikin
measuring valence, arousal, and dominance on five levels using an emoji-
style pictorial assessment. Nowadays, emojis are common on smartphones
for expressing emotions (e.g., in chat applications), thus an emoji-based
encoding simplifies understanding for users and makes the assessment more
motivating.

• Widgets for visualizing affective states. We present two application-
dependent graphical user interface widgets that provide affective feedback
for valence, arousal, and dominance. The widgets are designed to be com-
pact and transparent such that they interfere as little as possible with other
activities on the user’s screen. The first widget focuses on an intuitive and
fast assessment of the current affective state. The second widget concentrates
on an exact, clear, and time-dependent visualization. We test the widgets on
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intuitiveness and understandability and evaluate them in a user study with
644 participants.

1.3 Outline

This thesis is organized as follows.

• Chapter 2 gives an overview of related work on input modalities, models
and systems, and visualization of affective states.

• Chapter 3 describes a pipeline for predicting affective states based on video
data using a novel camera setup and a neural inpainting pipeline to improve
the visibility of the face for front camera recordings. We evaluate our setting
and pipeline using data from a study with 88 participants.

• Chapter 4 presents an automated pipeline for predicting the affective states
of participants solving tablet-based math tasks using signals from low-cost
mobile biosensors and handwriting data recorded from a stylus. In contrast to
video data, these data sources are less privacy-invasive and more applicable
in real-world environments.

• Chapter 5 describes a system that analyzes the user’s text typing behavior on
smartphones using a semi-supervised deep learning pipeline for predicting
affective states. We evaluate the system using a data collection study with
70 participants on text conversations designed to trigger different affective
responses.

• Chapter 6 expands on the work in Chapter 5 by improving the modeling
qualitatively and expanding the model by smartphone sensor data making
our model less privacy-invasive. We evaluate our model using data collected
in the wild from 82 participants over 10 weeks.

• Chapter 7 describes two graphical user interface widgets that visualize the
user’s affective state, ensuring a compact and unobtrusive visualization. We
evaluate the widgets in relation to a baseline widget and test the widgets on
intuitiveness and understandability based on data from a user study with 644
participants.

• Chapter 8 concludes this thesis with a discussion of the contributions,
limitations, and an outlook to potential future work.
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1.4 Publications

In the context of this thesis, the following peer-reviewed publications have been
accepted:

R. WAMPFLER, S. KLINGLER, B. SOLENTHALER, V. SCHINAZI and
M. GROSS (2019). Affective State Prediction in a Mobile Setting using
Wearable Biometric Sensors and Stylus. Proceedings of the International
Conference on Educational Data Mining (Montréal, Canada, July 2-5, 2019),
pp. 224-233.

R. WAMPFLER, S. KLINGLER, B. SOLENTHALER, V. SCHINAZI and
M. GROSS (2020). Affective State Prediction Based on Semi-Supervised
Learning from Smartphone Touch Data. Proceedings of the Conference on
Human Factors in Computing Systems (Virtual conference, April 25-30, 2020),
pp. 1-13.

N. KOVAČEVIĆ, R. WAMPFLER, B. SOLENTHALER, M. GROSS and
T. GÜNTHER (2020). Glyph-Based Visualization of Affective States. Euro-
graphics/IEEE VGTC Symposium on Visualization (Virtual conference, May
25-29, 2020), pp. 121-125.

R. WAMPFLER, A. EMCH, B. SOLENTHALER and M. GROSS (2020).
Image Reconstruction of Tablet Front Camera Recordings in Educational
Settings. Proceedings of the International Conference on Educational Data
Mining (Virtual conference, July 10-13, 2020), pp. 245-256.

This thesis is also based on the following planned publication:

R. WAMPFLER, S. KLINGLER, B. SOLENTHALER, V. SCHINAZI,
C. HOLZ, and M. GROSS. Affective State Prediction from Smartphone
Keystroke and Sensor Data in the Wild. Under review at the time of sub-
mission of this thesis.

This thesis includes the contents of all the above papers as well as additional imple-
mentation and evaluation details not present in the papers.
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C H A P T E R 2
Related Work

This chapter provides an overview of previous research in the field of affective
state prediction. Different data modalities were the major focus in research on
affective state prediction models. Therefore, in Section 2.1 we review related work
on different models and data modalities (i.e., video data, biosensor data, stylus data,
and smartphone data) for predicting affective states. Then, in Section 2.2 recent work
in the related field of stress prediction is discussed. Besides the prediction of affective
states, the visualization of affective states is another important part of an affect-aware
system. Thus, in Section 2.3 we cover related work on affective state visualization.
More specific related work and background to methods presented in this thesis are
discussed in the corresponding chapters.

2.1 Affective State Prediction

Different data modalities were used to predict affective states in different domains.
In an educational setup, acoustic features from student voices during interaction
with tutors were used to predict three levels of valence [Litman and Forbes-Riley,
2006]. Another line of research tried to predict affective states based on logged user
interactions only, such as input and error behavior, timing, and help calls. Frustration,
boredom, engaged concentration, and confusion were successfully predicted using
interaction data for math tutoring systems [Kostyuk et al., 2018; Grawemeyer et
al., 2016]. On the other hand, valence and arousal were predicted using mouse
and keyboard interaction data from writing compositions in free text [Salmeron-
Majadas et al., 2018]. Although large and powerful interaction data sets can be easily
collected especially in online environments, the features are typically dependent
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on the learning domain and the specific learning system. Generalized models were
proposed, such as an engagement model for two different learning domains and tutors
(spelling and math) [Käser et al., 2013], but these generalized methods typically
have a lower accuracy as domain-specific features. Multimodal approaches fusing
different data modalities were also introduced for the prediction of affective states. We
refer to D’Mello et al. [2018] for a concise overview of such multimodal methods in
educational settings. In addition, Kanjo et al. [2015] provides an overview of a variety
of data sources that can be used for predicting affective states (e.g., physiological
signals, facial expressions, speech, phone usage, social networks, and mobile network
data). In the following, we will give an overview of existing work on video data,
biosensor data, stylus data, and smartphone touch and sensor data. We will focus on
applications in an educational context and on mobile devices such as smartphones.

2.1.1 Video Data

Prediction of affective states from video recordings is one of the most popular
approaches nowadays as it allows different features to be exploited, such as body
language and posture, head movement, eye gaze, and facial expressions [Zeng et al.,
2008]. Bosch et al. [2015] calculated statistics (i.e., maximum, median, and standard
deviation) of the frame-level likelihood values of 19 different action units (i.e., facial
muscle movements identifying independent motions of the face), the head position,
and gross body movement from webcam video recordings of students playing an
educational physics game. They predicted two levels (present vs. absent) of boredom
(0.61 AUC), confusion (0.65 AUC), delight (0.87 AUC), engagement (0.68 AUC)
and frustration (0.63 AUC). Based on this work, Kai et al. [2015] found that an
interaction-based model using timing and counting-based features performs worse
than the video-based model. Similarly, using a math tutor, Arroyo et al. [2009] found
facial expressions to be more predictive for confidence, frustration, excitement, and
interest than conductance bracelets, pressure mice, and a posture analysis seat.

Also for other tasks, facial expressions were found to be a good predictor for affective
states. In text comprehension tasks, two levels of confusion (0.64 AUC), engagement
(0.55 AUC), and frustration (0.61 AUC) were successfully predicted using 20 different
action units [Chen et al., 2015]. On the other hand, Grafsgaard et al. [2013] found
upper face movements predictive for engagement, frustration, and learning in a setup
consisting of a programming tutor and a webcam. Finally, based on eye gaze features
(e.g., fixation and view angle) extracted from a specialized eye capturing device,
boredom (69%) and curiosity (73%) were successfully predicted on two levels during
interaction with an intelligent tutoring system [Jaques et al., 2014].

In contrast to facial expressions, body movement and posture are ordinarily uncon-
scious and unintentional, and thus not susceptible to social editing (i.e., adapting
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expressions due to social norms) [Calvo and D’Mello, 2010]. Moreover, gross body
motions can be differentiated over long distances, whereas for facial expression anal-
ysis typically short distance and high-resolution recordings are necessary [Walk and
Walters, 1988]. Thus, Sanghvi et al. [2011] employed posture and movement features
to predict two levels of engagement of children playing chess with a robot with an
accuracy of 82%. Posture and body movement can also encode other emotions such
as anger (leg stepping back, elbows bent, and head bent forward, etc.), boredom (head
bent backward and collapsed upper body, etc.), and fear (slow movement, knees
bent apart, forearms raised, and head bent backward, etc.) [Shoumy et al., 2020]. A
survey of different video-based approaches for predicting affective states is provided
by Zeng et al. [2008].

In summary, a majority of the existing vision-based approaches use external devices,
such as webcams, and rely on posed facial expressions to predict basic emotions.
Therefore, we present in Chapter 3 a novel setup for reliably recording the face and
body of users based on the front camera of tablet computers, and hence without the
need for expensive devices or synchronization between the devices. We demonstrate
the usefulness of our setup by predicting affective states in terms of valence and
arousal using data from an experiment containing spontaneous (non-posed) facial ex-
pressions. Finally, for our vision-based model, we fuse different existing approaches
with novel features.

2.1.2 Biometric Sensors

Biometric sensors provide an objective measure of the physiological reactivity of
users engaging with a learning environment while minimizing interference with the
actual task [Blanchard et al., 2014; Jraidi et al., 2014; Kim et al., 2004; Salmeron-
Majadas et al., 2015]. Indeed, education research investigated the effectiveness
of a variety of physiological signals used to infer affective states. Electrodermal
activity (measuring electrical conductivity as a function of the activity of sweat
glands on the skin surface), skin temperature, and heart rate were generally found
to be good predictors of emotions [Jraidi et al., 2014; Kim et al., 2004; Salmeron-
Majadas et al., 2015] and mind wandering [Blanchard et al., 2014] across different
tasks including math learning [Jraidi et al., 2014; Salmeron-Majadas et al., 2015],
scientific text reading [Blanchard et al., 2014], and audio, visual and cognitive
stimuli in general [Kim et al., 2004]. Other used physiological signals consist
of electroencephalogram (measuring brain activity), electromyography (measuring
muscle activity), and breath rate [Santos, 2016].

Kim et al. [2004] used a complex setup consisting of audio, visual, and cognitive
stimuli to elicit different emotions. Using data from 50 subjects, they predicted sad-
ness, anger, stress, and surprise with an accuracy of up to 61.8% using a combination
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of electrodermal activity, skin temperature, and heart rate measures. In contrast,
Blanchard et al. [2014] were capable of predicting self-reported mind wandering on
two levels (present vs. absent) with 60% accuracy using electrodermal activity and
skin temperature while students answered questions of varying difficulty and point
value after reading a scientific text. In the context of math learning, Jraidi et al. [2014]
used Bayesian networks to analyze stress, confusion, boredom, and frustration from
changes in skin conductance, heart rate, and electroencephalogram activity while
participants solved math tasks. They reported an accuracy ranging from 81% to
90% for a three-level assessment of the emotions. Dzedzickis et al. [2020] provide a
review of work leveraging physiological signals for predicting affective states also
outside the educational domain.

These previous works mainly focused on expensive, high-quality sensors to provide
medical-grade accuracy for the measurement of physiological signals. In contrast, in
Chapter 4, we gather such data in a non-intrusive and easy-to-use way.

2.1.3 Stylus

Predicting affective states based on stylus data is still a relatively new research topic.
Likforman-Sulem et al. [2017] used ductus (i.e., number of strokes) and timing
features extracted from figure drawings and writing given words to predict anxiety
(60%), depression (73%), and stress (60%) on two levels (present vs. absent) for
129 participants using a Support Vector Machine and a Random Forest classifier.
A feature importance analysis revealed that both in-air and on-paper features were
relevant for predicting emotional states. For the prediction of depression, figure
drawings were most predictive, whereas for the prediction of anxiety and stress both
figure drawings and writing were predictive. Fairhurst et al. [2015] conducted an
experiment for predicting stress and happiness by letting participants writing down a
given list of words and describing a visual scene in their own words. They extracted
features related to velocity, acceleration, and pressure of writing and reported an
accuracy on two classes of up to 70% for stress prediction and 80% for predicting
happiness using a Support Vector Machine classifier. On the other hand, Zhou et
al. [2014] used digital pen data (on digital paper) in a collaborative math solving
setting (16 math problems with 4 difficulty levels) to predict the students’ expertise
(expert vs. non-expert) as well as identifying the dominant domain expert among the
students with an accuracy of up to 83%. From the stylus data, they extracted features
related to stroke distance, stroke duration, writing speed, and pressure.

The ground truth for all three presented works was gathered using a single question-
naire for each participant. Instead, probing the affective state of subjects in regular
intervals, as done in this thesis, provides a more fine-grained view into the emotional
regulation of people. Recently, handwriting was also considered for predicting per-
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sonality traits (e.g., openness, conscientiousness, extraversion, agreeableness, and
neuroticism) by extracting characteristics related to word slant, pressure of writing,
and the space between lines, and the size of lines, words, and characters [Remaida et
al., 2020].

2.1.4 Smartphone Data

We focus in this section on methods that base the prediction on typing characteristics
on computer keyboards and the various data sources available on smartphones (e.g.,
touchscreen, gyroscope, and accelerometer). Typing characteristics on computer
keyboards are related to smartphone touchscreen data in so far that typing patterns
can resemble the typing patterns on smartphone keyboards.

Most available affect-aware smartphone systems are complex in terms of the amount
and nature of the data modalities involved. Systems were built from smartphone
sensor data (e.g., accelerometer, Bluetooth, microphone, and GPS) to grasp user
movements and conversational cues [Rachuri et al., 2010]. Other systems included
the context of the user data (e.g., location and weather) [Bogomolov et al., 2013; Lee
et al., 2012], communication data (e.g., call and SMS logs) [Bogomolov et al., 2013;
LiKamWa et al., 2013; Pielot et al., 2015], and interaction data (e.g., web browsing
and application usage) [LiKamWa et al., 2013; Pielot et al., 2015]. Such systems
provided decent performance with accuracies up to 71% for predicting various
emotions (i.e., happy, sad, fear, anger, and neutral) [Rachuri et al., 2010] and 80% for
predicting three levels of happiness (i.e., happy, neutral, and unhappy) [Bogomolov
et al., 2013]. Nevertheless, such complex systems are often privacy-invasive and
computationally demanding.

Other more lightweight approaches for predicting affective states exploited touch and
typing behavior. Gao et al. [2012] predicted four states (i.e., excited, relaxed, bored,
and frustrated), each with two levels, with an accuracy between 69% and 77% as well
as two levels of arousal and valence with an accuracy of 89%. These researchers used
touch pressure and speed of touch features recorded while users were playing a game.
Previous work also employed touch data from chat conversations. Lee et al. [2012]
predicted Ekman’s six basic emotions and a neutral state with 67% accuracy using
a Bayesian network classifier based on behavior data (i.e., typing speed and touch
count) and context data (i.e., location and weather) collected while users used the
Twitter application. Interestingly, they found that the speed of typing was the most
predictive factor. On the other hand, Ghosh et al. [2017] predicted four states (i.e.,
happy, sad, stressed, and relaxed) with a performance of 0.84 AUC using touch
statistics (inter-tap durations, number of special characters, and number of deletes).
These researchers jointly modeled the typing characteristics and the persistence of
emotions by adapting the reported emotions based on a Markov chain.
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Other researchers [Huang et al., 2018] predicted depression and mania on a regression
scale using a personalized deep learning model for bipolar subjects by leveraging
temporal dynamics and fusing accelerometer and keyboard metadata (duration of a
keypress, time since the last keypress, and distance to the last keypress). Interest-
ingly, Leow et al. [2019] found a positive correlation between higher accelerometer
displacements and depression as well as mania.

Keystroke dynamic features such as pressure, latency, and duration were also used
on computer keyboards [Lv et al., 2008]. Using these features, Epp et al. [2011]
predicted 15 emotional states on two levels (present vs. absent) with an accuracy
between 77% and 88%. Kołakowska [2013] provides an overview of other work on
predicting affective states based on computer keyboards.

In contrast to touchscreen data and sensor data such as GPS and Bluetooth, accelerom-
eter and gyroscope sensors provide a less privacy-invasive way of predicting affective
states. In addition and in comparison to GPS and Bluetooth, recording accelerometer
and gyroscope data also drain the battery less [Kołakowska et al., 2020]. Olsen and
Torresen [2016] predicted valence and arousal on three levels using data from the
accelerometer during walking segments by designing sophisticated step features.
Using data from a study with 10 participants they reported an accuracy of 50.9% for
valence (multilayer perceptron) and 75% for arousal (Support Vector Machine). On
the other hand, Garcia-Ceja et al. [2015] predicted three levels of stress in a working
environment using data from the accelerometer. By building the model based on data
from similar behaving users, they achieved an accuracy of 60%. By personalizing the
model per user, the accuracy increased to 71%. Most other works used accelerometer
and gyroscope measurement only together with touchscreen, GPS, or Bluetooth
recordings. A detailed overview of other related work on predicting affective states
based on smartphone sensors is provided by Kołakowska et al. [2020].

In Chapter 5, we are using a lightweight approach by considering pressure and
speed characteristics of touch data and employing a semi-supervised pipeline on
heat maps extracted from this data. Moreover, we are using a pressure-sensitive
display instead of the contact area [Gao et al., 2012] to approximate pressure, and
we are also considering dominance, which we believe might be necessary for finer-
grained distinctions between affective states. In Chapter 6, we are then comparing the
predictive power of models based on touchscreen data and sensor data (i.e., gyroscope
and acceleration) collected in the wild.
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2.2 Stress Prediction

Stress arises from the transition from a calm to an excited state (negative or posi-
tive) [Shoumy et al., 2020]. Nowadays stress is omnipresent in our society and has a
negative influence on mental health, physical health, productivity, decision-making
capabilities, and situational awareness [Politou et al., 2017]. The ubiquity of mo-
bile devices led to a surge in research focusing on the prediction of stress based on
smartphone usage [Zautra, 2006]. Researchers used different data modalities for
predicting stress based on smartphone data. These include behavioral metrics such as
call and text logs and location data stemming from GPS [Bauer and Lukowicz, 2012;
Bogomolov et al., 2014], application usage patterns [Ferdous et al., 2015], voice
recordings [Lu et al., 2012], and video recordings [Carneiro et al., 2012].

Apart from being invasive (e.g., sharing of text logs), relying on these data modalities
for the prediction of affective states has also the disadvantage of draining the smart-
phone battery (e.g., the high power consumption of GPS sensors). As such, other
work focused on using sensor-based smartphone data, including touchscreen data
and accelerometer data [Carneiro et al., 2012; Garcia-Ceja et al., 2015]. Carneiro et
al. [2012] used patterns, accuracy, intensity, and duration of touch events as well as
hand gestures to predict stress in real-time while users played a mentally challenging
mobile game. In addition, Hernandez et al. [2014] showed that typing pressure and
the size of the contact area with the mouse tend to increase during stressful situa-
tions (i.e., expressive writing, text transcription, and mouse clicking). To measure
pressure and contact area, this work relied on pressure-sensitive computer keyboards
and capacitive mouses, respectively. Recently, Exposito et al. [2018] conducted a
similar study on the smartphone and showed that typing pressure increases during
stressful situations (i.e., expressive writing). In addition, Sarsenbayeva et al. [2019]
showed that stress increases tapping frequency but decreases tapping accuracy. These
researchers also found that text difficulty had a larger effect on typing performance
(measured as the ratio between the number of errors and the number of entered
characters) than the stress level. Finally, other researchers proposed a multimodal
approach jointly measuring accelerometer data, microphone data, and social activity
data from calls and text messages [Maxhuni et al., 2016].

Most existing approaches for stress prediction used two [Bogomolov et al., 2014;
Lu et al., 2012; Bauer and Lukowicz, 2012] or three classes [Maxhuni et al., 2016],
and the stress measurement tool of choice were self-reports [Hernandez et al., 2014;
Maxhuni et al., 2016; Ferdous et al., 2015]. Achieved performance ranged from 83%
to 100% for two classes (stressed vs. non stressed) [Hernandez et al., 2014] and 71%
for three classes (low, medium, high) [Maxhuni et al., 2016].
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weak emotion strong emotion

Figure 2.1: Example visualization of valence (top) and arousal (bottom) based on work by
Cernea et al. [2013]. Saturation and color of each bar denote the level of the
corresponding dimension.

2.3 Visualization of Affective States

To measure valence, arousal, and dominance, the Self-Assessment Manikin [Bradley
and Lang, 1994] was proposed, which uses glyph-based visualizations [Borgo et al.,
2013]. Each dimension is assessed on a 9-point scale where the different levels of
each dimension are denoted by glyphs. This makes the approach widely applicable
because it relies on a universal and language-independent representation.

Cernea et al. [2013] developed a visualization of valence and arousal for user interface
components such as buttons. The affective states are visualized by displaying a color
bar per dimension conveying different affective information by adjusting the color and
saturation of the bar. Valence is displayed using a divergent color map, and arousal
is displayed using a sequential color map (see Figure 2.1). The bars allow multiple
states to be displayed at the same time. The bar is divided vertically into multiple
parts, each of which corresponds to an affective state at a certain time, i.e., time is
mapped to the horizontal axis. This visualization allows a comparison among user
interface components because each component has multiple affective states assigned
to it. However, it impedes an exact evaluation of the current level because levels are
mapped to color saturation. Furthermore, the valence bar uses red and green, which
is problematic for color vision deficiencies.

In a later work, Cernea et al. [2015] combined the visualizations of valence and
arousal. They placed a closed curve around the user interface component under
consideration. The outline exhibits waves or spikes depending on how high or
low valence is. The higher the arousal, the higher the pulsation frequency of the
curve. While this visualization impedes a visualization of affective states over time,
it allows for a more intuitive and compact reading of the affective state. However, the
visualization of valence may not be suitable if the visualization is too small, because
differences between spikes and curves become hard to see.
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C H A P T E R 3
Affective State Prediction Using Video
Data

Tablet computers have found quick application in education [Ditzler et al., 2016]
as the technology offers new opportunities to students and teachers. It has been
shown that tablets can influence learning pathways [Falloon, 2013] and improve
digital skills [Reid and Ostashewski, 2011]. Moreover, tablets typically have built-in
cameras, which can be used to unobtrusively record the student during the learning.
Such data offers valuable clues to experts about the student’s learning behavior and
attention. Student observation has been implemented in studies with external camera
setups [Zaletelj and Košir, 2017]. Such frontal-view camera data can also be used for
predictions of the affective states of a student based on facial feature extraction [Pham
and Wang, 2018], which works robustly even with low-resolution recordings [Nguyen
et al., 2017].

Using external cameras for frontal view recordings of students provides an optimal
viewing angle for robust facial feature extraction and affective state prediction. How-
ever, such setups require externally positioned cameras, which can be obtrusive and
further depend on timestamp synchronization with the digital learning environment.
Using tablet computers for learning circumvents these problems, as the built-in cam-
era can be leveraged and timestamps are inherently in sync. Built-in cameras have,
however, a sub-optimal viewing angle, leading to partially occluded and skewed faces
in the recordings that makes it difficult to robustly extract facial features for affective
state prediction.

In this chapter, we therefore propose a camera setup for tablet computers and a deep
learning-based image processing pipeline to reconstruct high-quality facial recordings
of students. The setup requires a small mirror to be attached to the camera to improve

25



Affective State Prediction Using Video Data

the visibility of the face. Then, the image is reconstructed using a neural inpainting
approach. We demonstrate the advantage of this setup and our reconstruction by an
application for predicting affective states. The high quality of the reconstructed image
enables facial feature extraction, such as head pose, eye gaze, and facial landmarks.
We compare our method with an external camera setup (GoPro camera) and show
that we can achieve a similar performance for predicting two levels (high and low)
of valence and arousal for students performing active tasks, i.e., solving math tasks
(up to 0.73 AUC) and students performing passive tasks, i.e., exposure to emotional
stimuli from pictures (up to 0.80 AUC).

3.1 Background

Image inpainting is an image processing method to reconstruct missing or cor-
rupted regions of an image. Common application areas include image restoration
(e.g., removing scratches and text) [Liu et al., 2018], photo-editing (e.g., object
removal) [Sarpate and Guru, 2014], and image coding and transmission (e.g., recov-
ering the missing blocks) [Wang et al., 2006]. In Section 3.2, we focus on the specific
task of face completion. Popular non-learning-based approaches applied to faces
consist of patch-based methods, where image patches are copied to missing areas.
Similar patches can be identified by using a face image dataset [Zhuang et al., 2009].
We refer to Guillemot and Le Meur [Guillemot and Le Meur, 2013] for a complete
overview of non-learning-based models.

While non-learning-based methods can have difficulties ensuring consistent image
structures [Iizuka et al., 2017; Pathak et al., 2016; Yeh et al., 2017], learning-based
approaches typically generate smoother results. A popular line of learning-based
methods uses generative adversarial networks (GAN) to inpaint missing regions
of an image. GANs consist of a generative network to create a new image and a
discriminator network to distinguish the new image from actual ground truth images.
Using such a GAN approach, Malesevic et al. [2019] reported a peak signal-to-noise
ratio (PSNR) of up to 20.57 for inpainting missing regions in faces. A similar
performance of up to 20.2 PSNR and 0.84 structural similarity (SSIM) was achieved
by Li et al. [2017] using an encoder-decoder network as the generator, a local and
global loss function, and a semantic regularization term. On the other hand, Liao et
al. [2018] used a collaborative model by training a GAN simultaneously on multiple
tasks (i.e., face completion, landmark detection, and semantic segmentation). Using
this knowledge-sharing approach, they reported a PSNR of up to 31.5 and an SSIM
of 0.97 on face inpainting.

Convolutional neural networks (CNN) have been used for image inpainting as well.
The encoder compresses the image with convolutional operations into a latent space,
and the decoder reconstructs the image from the compressed representation. Guo et
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al. [2019] proposed an encoder-decoder network using full-resolution residual blocks.
For face inpainting, they reported a PSNR of 29 and an SSIM of 0.95. On the other
hand, Liu et al. [2019] achieved a PSNR of 34.69 and an SSIM of 0.99 by adding a
coherent semantic attention layer to the encoder. One disadvantage of this method is
its long runtime of 0.82 seconds per image of size 256 × 256 rendering this method
inapplicable for real-time video processing with more than one frame per second.
Another problem with existing CNN-based methods is that the convolution operations
are applied both to the valid and missing pixels at the same time, which can lead
to visual artifacts (e.g., color discrepancy and blurriness). To overcome this issue,
Liu et al. [2018] proposed partial convolutions, where the convolution operations
are only applied to valid pixels by masking regions that need to be inpainted. The
mask is updated during training of the network, including newly inpainted values.
The authors demonstrated that the approach could produce semantically meaningful
predictions also for inpainting regions with different shapes and sizes, achieving a
PSNR of up to 34.34 and an SSIM of up to 0.95. We use this partial convolution
approach to inpaint missing regions in images from front camera recordings. The
dataset used for training the network is tailored to our use case.

3.2 Camera Setup

In this section, we present a low-cost hardware setup for recordings from the inte-
grated front camera of a tablet computer, maximizing the visibility of the face of the
users. Videos and images captured by the front camera are preprocessed, and missing
parts are inpainted using a deep learning model to reconstruct the face of the users.
Our approach is image-based and processes captured videos frame by frame.

3.2.1 Hardware Setup

While working on a tablet (e.g., writing with a stylus) it is convenient to have the
device lying on the table (see Figure 3.1A). Due to the field of view of the front
camera, only part of a users’ face is visible. To adjust the field of view of the front
camera, we attached a circular mirror (3 cm radius) to the tablet using a hinge (see
Figure 3.1B). The hinge was fixed with glue so that the mirror would remain in a
stable position. The mirror was mounted with an angle of 75 degrees relative to
the tablet. This angle was chosen so that the visibility of the face was maximized.
Due to the mirror setup, the upper part of the recordings is mirror-inverted (see
Figure 3.1C). Depending on the conditions of the illumination of the recording
environment, the exposure time of the camera of the recording device (e.g., tablet)
needs to be adapted accordingly so that the camera focuses on the face instead of

27



Affective State Prediction Using Video Data

A) Overall Setup B) Camera Setup C) Front Camera RecordingA) Experimental setup B) Camera setup C) Front camera recordings

Figure 3.1: The hardware setup. A user is working on the tablet (A). A mirror is attached
to the tablet using a hinge (B). Due to the mirror reflections, the field of view
of the front camera is changed so that the face of the participant is visible (C).

the background. This adjustment of the exposure time can lead to an overexposed
background (see Figure 3.1C).

3.2.2 Image Processing Pipeline

A raw image captured by the front camera is split by the mirror into two parts with the
upper part of the image being mirror-inverted (see Figure 3.2A). To reconstruct the
image, we propose a series of processing steps applied to the image (i.e., flattening
the splitting boundary, face composition, image rotation, and extracting the face area).
Image rotation and extraction of the face area are conducted as a preprocessing step
for inpainting. Further, to train our inpainting model at a later stage, we assume that
we have access to a dataset Ψ of square-shaped face images.

Splitting boundary. We apply a transformation to flatten the splitting boundary
of the image (green line in Figure 3.2A), which simplifies image processing in the
later stages and improves the final results qualitatively. We divide the image into 16
rectangles with equal width. An example of such a rectangle is shown in purple in
Figure 3.2A. For each such rectangle, we transform the region defined by the vertices
p1, p2, p3, and p4 into the region defined by the vertices p1, p2, p5, and p6 using a
perspective transformation with linear interpolation. The location of these points can
be calculated beforehand (or read from the image) because the mirror remains in a
fixed position. The result of the transformation is shown in Figure 3.2B, where the
splitting boundary (green) is a straight line.

Face composition. We rearrange the image by moving the part below the splitting
boundary to the top and the flipped upper part to the bottom (see Figure 3.2C). The
cut line defined by the mirror is shown in black. In addition, we adapt the height
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Figure 3.2: The main inpainting steps. The splitting boundary of front camera recordings
(A) is flattened using a perspective transformation (B). The face is recon-
structed from the upper and lower parts (C) and warped so that the upper
and lower part match (D). Finally, after horizontally aligning the eyes (E), the
missing regions (black) are inpainted (F).

of this cut line because depending on the distance of the face, the missing part is
increasing (increasing distance) or decreasing (decreasing distance). As a next step,
we push the bottom corner of the upper face towards the middle by applying a second
perspective transformation to the image so that the upper and lower part of the face
are matching (see Figure 3.2D).

Image rotation. We then rotate the front camera image so that the eyes are horizon-
tally aligned (see Figure 3.2E). Using dlib [King, 2009], we extract the coordinates
of the facial landmarks belonging to the left and right eye. From these landmarks,
we calculate the position of the center of each eye and rotate the image around the
midpoint between the eye centers so that the line connecting the center of the eyes is
horizontally aligned.
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Face area. We extract the face area by computing a square bounding box encom-
passing the face (see the orange box in Figure 3.2E). This bounding box is defined by
the vertices p7 = (x7, y7) and p8 = (x8, y8) and is given by

x7 = cx,I −
wIΨ

2
∗
δI

δIΨ
(3.1)

x8 = cx,I +
wIΨ

2
∗
δI

δIΨ
(3.2)

y7 = cy,I −
cy,IΨ

hIΨ
∗ (x8 − x7) (3.3)

y8 = cy,I +
hI − cy,IΨ

hIΨ
∗ (x8 − x7), (3.4)

where I and IΨ denote an image of the front camera and an image in the dataset Ψ ,
respectively. The width and height in pixels of an image are given by w and h. The x-
and y-coordinate of the midpoint between the left and right eye are denoted by cx
and cy, respectively, and δ is the distance between the eyes. Here, we assume that the
origin is located at the top left of the image.

The part of the front camera image I outlined by the orange bounding box is then
resized to the resolution wIΨ × hIΨ using bilinear interpolation. If the head of the user
is close to the mirror, the face covers the full height of the image, and the bounding
box might go over the upper and/or lower image borders. In such a case, we fill
the parts overlapping the image with black pixels to get consistently sized bounding
boxes (note that for visualization purposes only, the orange box in Figure 3.2E does
not reflect this but instead is cut at the image border). We use the face detector of
dlib [King, 2009] to test if a face and hence the landmarks of the eyes are identified
in the image. In cases where the face cannot be detected, we use the landmarks of the
eyes of the last image where the face could be identified (assuming that we have a
video recording available, i.e., a series of images).

Inpainting missing area. As the last step in our image preprocessing pipeline, we
inpaint the missing parts in the bounding box of the image (black region of the orange
box in Figure 3.2E) with the neural inpainting approach of Liu et al. [2018] described
in Section 3.2.3. We apply the neural inpainting only to the bounding box because it
contains the important parts of the face (i.e., eyebrows, eyes, and mouth). We inpaint
other parts of the image outside the bounding box using a simple Navier-Stokes based
inpainting method provided by OpenCV [Bradski, 2000] which is based on a circular
neighborhood of three pixels for each inpainted pixel. Finally, we rotate the image
back to its original orientation. This then leads to the final reconstructed image shown
in Figure 3.2F.
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Figure 3.3: Two example masks applied to images of the CelebA-HQ dataset [Karras et
al., 2018].

3.2.3 Neural Inpainting

For the neural inpainting approach, we use the dataset Ψ of square-shaped face
images with customized missing regions tailored to our application of tablet front
camera recordings and then train the network on this dataset.

Training dataset. The model is trained on a large corpus of images from the dataset
Ψ together with a mask for each image indicating the missing parts (a mask is a
matrix with the same size as the image having a ′1′ entry for missing pixels and a
′0′ entry otherwise). We create the corresponding mask randomly and similar in
shape (rectangle) to the expected mask in our front camera recordings (see Figure 3.3
for an example of two such masks applied to two images from the CelebA-HQ
dataset [Karras et al., 2018]). Note that the mask (missing image region) is not
necessarily horizontal but rotates if a user is rotating the tablet or the head (vertical in
the extreme).

Inpainting method. Liu et al. [2018] use a neural network that consists of an encoder
E and a decoder D. The encoder network transforms the input image I∈RM×N into a
low-dimensional (latent) space z = E(I). The decoder then reconstructs the original
image based on this low-dimensional representation Î = D(z). The encoder and
decoder networks consist of n = 8 partial convolutional layers denoted as E1, . . . , En
and D1, . . . , Dn for the encoder and decoder networks, respectively. Before each
convolution operation, the image is constrained by the mask to condition the operation
on only valid pixels. The mask is updated for the next layer removing masking for
pixels where the convolutional operation operated on unmasked values. In addition,
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each layer in the encoder network Ei is connected to the corresponding layer in
the decoder network Di,∀i ∈ {1 . . . , n} using skip links. These skip links allow for
copying unmasked pixels directly from the encoder to the decoder without passing the
bottleneck (latent space). To direct the training of the network towards semantically
meaningful inpaintings, a combination of four loss functions is used (i.e., per-pixel
loss, perceptual loss, style loss, and total variation loss). Using these loss functions
smooth transitions of the predicted masked values into their neighboring pixels are
also taken into account. As activation functions Rectified Linear Unit (encoder) and
a leaky version of a Rectified Linear Unit (decoder) are used.

3.3 Affective State Prediction

Our classification pipeline can be generally applied to any recordings captured with a
tablet front camera or an external camera (such as a GoPro). Our method assumes
that we have access to reports of affective states of users based on the circumplex
model of affect [Russell, 1980]. The circumplex model defines affective states in
a two-dimensional space spanned by valence and arousal (see Chapter 1.1.2). The
classification task then amounts to preprocessing the camera recordings to adjust the
brightness and the frame rate and predicting valence and arousal based on features
extracted from the adjusted camera recordings. Affectiva [McDuff et al., 2016]
provides out-of-the-box predictions of the basic emotions and valence based on
images and video recordings. However, initial tests revealed that these predictions
are not of sufficient quality when applied to our use case. Thus, we developed our
own set of features incorporating some additional features not taken into account by
Affectiva, such as movement and fidgeting. Moreover, by using our own extracted
features, we can predict arousal in addition to valence.

3.3.1 Preprocessing

First, we resample the camera recordings using FFmpeg [Tomar, 2006] to a constant
frame rate close to the mean frame rate. Depending on the recording device, the
frame rate can vary (e.g., the frame rate can drop due to the higher load of the device).
A constant frame rate facilitates the extraction of the features and the processing of
the recordings in later stages. In addition, we adjust the brightness of the recordings
based on the brightness estimation of Affectiva [McDuff et al., 2016] to improve the
lighting of the face for the analysis. Depending on the conditions of illumination at
recording time the face can be underexposed (too dark) or overexposed (too bright,
e.g., when the camera is directed towards a lamp). This can hinder the accurate
detection and extraction of facial features such as landmarks.
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3.3.2 Feature Extraction

From the camera recordings, we extract several different feature types. We design
all features such that they are independent of the frame rate (e.g., using percentages
instead of absolute positions) to support cameras with different frame rates. To extract
facial landmarks, eye gaze, and head position from the camera recordings, we rely on
OpenFace [Baltrusaitis et al., 2018] using static extraction (i.e., per frame without
calibrating to a person). OpenFace also provides a confidence value c(i) ∈ [0, 1]
for each frame i indicating the confidence in the landmark detection estimate. If
c(i) < 0.82, we discard the frames i − 5, . . . , i + 5 (i.e., 11 frames). The number of
frames to discard (11) and the threshold (0.82) were heuristically determined. All
features are computed over a window containing N frames. If, after considering the
confidence value, less than 80% of the frames are remaining, we discard the window
and the corresponding data point. Again, this threshold was determined heuristically.
Where appropriate, we calculate for the different feature types basic statistics over
the window (i.e., maximum, minimum, relative position of minimum and maximum,
mean, standard deviation, and the slope of a fitted linear regression line), providing
282 features in total. In addition, to correct for differences between individuals related
to facial expressions and posture, we normalize each feature according to a baseline
by subtracting the feature calculated over a baseline period (e.g., watching a nature
video putting the individuals in a relaxed state).

Action units. Facial action units (AUs) are based on the Facial Action Coding
System (FACS) and identify independent motions of the face [Ekman and Friesen,
1978]. We extract basic statistics of the intensity (from 0 to 5) of 17 AUs covering
motions in the eye, cheek, nose, mouth, and chin region. In addition, for each AU,
we calculate the percentage of the presence (absent versus present) in the window.
Moreover, the AUs can be directly mapped to the six basic emotions identified by
Ekman [1999]. Thus, for each basic emotion, we also calculate the basic statistics of
the corresponding added-up AUs.

Eye blinks. Researchers found a correlation between eye blink frequency and
stressful situations in a car driving simulation [Haak et al., 2009]. Similarly, a
correlation between eye blinks and affective states in learning environments was
found [McDaniel et al., 2007]. Here, we base the eye blink detection on the signal
from the AU that represents eye closure as a continuous signal (from 0 to 5) with
peaks indicating potential eye blinks. We detect peaks belonging to an eye blink by
thresholding the signal according to the ratio between the prominence (how much a
peak stands out measured as the vertical distance between the peak and its lowest
contour line) and the width of a peak. Heuristically, we found a threshold of 0.026
to provide the best results. We found that taking into account the width of the
peaks is necessary to accurately detect peaks belonging to eye blinks because the
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a) Eye gaze directions b) Mouth aspect ratio
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Figure 3.4: Eye gaze regions and mouth aspect ratio (MAR). The gaze angle is discretized
into nine different gaze regions, including the center (gazing towards the
camera lens) (A). MAR is calculated based on the height and width of the
mouth (B).

prominence of the peaks differs among users and head pose. We extract the number
of blinks and the basic statistics of the duration between blinks, the prominence, and
the width of each blink. In addition, inspired by interbeat intervals (time intervals
between individual heartbeats) and the calculation of heartbeats thereof, we linearly
interpolate the duration between two consecutive peaks surviving the threshold (i.e.,
eye blinks) to infer a continuous signal. We then calculate the number of eye blinks
for every frame by taking the inverse of this interpolated signal. Subsequently, we
again calculate the basic statistics over the number of eye blinks.

Eye gaze. The intention behind features related to eye gaze is that individuals might
look away when thinking while solving math tasks or when looking at emotionally
disturbing pictures. Thus, we compute the basic statistics on the angle in the x-
direction (looking left-right) and y-direction (looking up-down) of the eye gaze
averaged for both eyes and measured in radians in world coordinates. In addition, we
discretize the eye gaze angle by defining nine different gaze regions (see Figure 3.4A).
The center corresponds to a line of gaze directed towards the camera lens. For
each of the nine regions, we count the number of occurrences and normalize it over
s ∗ fps, where s is the window size and fps is the frame rate per second (so that it is
independent of the used camera, i.e., the frame rate).

Mouth aspect ratio. Previously, the mouth aspect ratio (MAR) was used to detect
driver drowsiness [Singh et al., 2018]. It is defined by the ratio between the height and
the width of the mouth, which is increased when opening the mouth (see Figure 3.4B):

MAR =
‖p2 − p8‖+ ‖p3 − p7‖+ ‖p4 − p6‖

3 ∗ ‖p5 − p1‖
. (3.5)

Each point pi,∀i ∈ {1, . . . , 8}, is defined as the average of the inner and outer mouth
landmarks. From the MAR, we calculate the basic statistics.
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A) Original B) FidgetingA) Original B) Fidgeting

Figure 3.5: Fidgeting of a user. From the original image (A), the fidgeting image (B) is
calculated by pixel-wise thresholding the difference of the current (A) to the
past grayscale images.

Head movement. From the longest head moving sequence of an individual in the
window, we extract the position of the first frame of the sequence in relation to the
beginning of the window, the duration of the movement, and the total distance of
the movement. The position of the first frame and the duration are normalized by
s ∗ fps. We also sum up the total distance moved over the entire window to capture
individuals continually moving back and forth. In addition, we calculate the basic
statistics of the velocity and acceleration of the head movements in the window. All
these features are extracted for the x-axis, y-axis, and z-axis separately. Finally,
we also extract the basic statistics of the distance of the head to the camera in the
three-dimensional space.

Fidgeting. Navarathna et al. [2014] introduced a fidgeting index for predicting
movie ratings from audience behavior by calculating the total energy individuals
are using for the movement. In contrast to features related to the head movement,
fidgeting captures all the movement in the video (i.e., also body and face). First, we
define the grayscale adaptive background bgray, which is a weighted average of past
frames. To calculate the energy E for a new frame fgray (converted into grayscale), we
subtract the adaptive background bgray from fgray, binarize the image by thresholding
it, and then calculating the percentage of surviving pixels with respect to the camera
resolution (see Figure 3.5B). We have chosen the threshold such that noise from the
background is minimized, and the visibility of movements is maximized. Finally, the
adaptive background is updated using

bgray = (1 − a) ∗ bgray + a ∗ fgray, (3.6)

where a is a weight term (we found a = 0.2 to provide the qualitatively best results).
From the energy E of each frame in the window, we calculate basic statistics, sum
up the energies over all frames and use the position of the frame with minimum and
maximum energy normalized by s ∗ fps.
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3.3.3 Classification

We build the ground truth for our classifiers by splitting valence and arousal into
two levels (high and low). We then use classifiers to predict these levels based on
the features extracted from the camera recordings. In addition, we remove features
having a correlation greater than a threshold, select features based on the ANOVA
F-value between the class labels and the features, and standardize the features to
have zero mean and unit variance. We use four different classifiers (i.e., Random
Forest, Support Vector Machine, k-Nearest Neighbors, and Gaussian Naive Bayes)
because these classifiers have been most promising in initial tests and they have
shown to provide good results for predicting affective states from video data in other
works [Bosch et al., 2015; Calvo and D’Mello, 2010; Jaques et al., 2014]. We use
leave-one-user-out cross-validation to evaluate our models, which ensures that data
of a participant is not used for training and testing at the same time. Finally, we
optimize the hyperparameters (i.e., number of selected features, the threshold for
removing correlated features, and parameters of the model) using random search with
nested cross-validation.

3.4 Experiment

We conducted a controlled lab experiment with 88 participants to test our pipeline.
The experiment was approved by the ethics board of ETH Zurich. In the experiment,
participants solved approximately 40 math tasks chosen to trigger different affective
states. The math tasks were chosen because they are an integral part of the educational
curriculum. However, instead of relying on a math-based intelligent tutoring system,
we designed specific math tasks to increase the probability of evoking a wider range
of affective states.

3.4.1 Experimental Setup

Participants. We recruited 88 participants (45 female) between ages of 18 and 29
(mean = 22.1 years, standard deviation SD = 2.0 years) from ten different engi-
neering and natural science departments of the second and third year of the Bachelor
program of ETH Zurich. We excluded participants suffering from cardiovascular
pathologies, smokers, and participants suffering from evident mental pathologies
(score > 4 in the Patient Health Questionnaire [Kroenke et al., 2001]). In order
to control for external factors, we kept the humidity and room temperature at an
average of 21.7 ◦C (SD = 0.59 ◦C) and 32.6% (SD = 5.3%), respectively. Figure 3.6
presents the experimental setup.
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Figure 3.6: A participant completing the math tasks. A) Participant were recorded by
(1) the tablet front camera and (2) a GoPro HERO3. All interactions with
the tablet were conducted with a stylus (3). B) The task interface allows
participants to write solution paths directly onto the screen (the stylus pressure
is color-coded for visualization purposes only).
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Devices. During the experiment, participants interacted with a Huawei MediaPad
M2 10.0 running Android 5.1 to solve the different math tasks. All interactions
with the tablet were conducted with a Wacom Bamboo Ink stylus. Participants were
recorded by the front camera (resolution of 1280 × 720 pixels) using our proposed
mirror construction setup and a GoPro HERO3 camera (frame rate per second fps of
59.94 and a resolution of 1920 × 1080 pixels) (see the setup in Figure 3.6A). Due
to the varying load of the tablet during the experiment, the frame rate per second
was variable (mean = 20.2 fps, SD = 1.92 fps). We resampled the recordings from
the tablet and the GoPro to a frame rate per second of 25 and 60, respectively. To
synchronize the timestamps between the GoPro and the tablet, a beep signal was
played on the tablet before the start of each session. In addition, we also recorded
signals from biosensor devices which we used for our model presented in Chapter 4.

3.4.2 Experimental Procedure

We used the self-assessment manikin (SAM) [Bradley and Lang, 1994] to measure
valence and arousal on a scale from one (most negative, lowest arousal) to nine (most
positive, highest arousal). For triggering the affective states we used math tasks and
pictures from the International Affective Picture System (IAPS) [Lang et al., 2008].
The IAPS is a database of 1182 pictures typically used in emotion research and has
been standardized in terms of valence and arousal based on SAM ratings. The set of
IAPS pictures presented to the participants was sampled to cover similar affective
responses as those expected to be evoked by the different math tasks.

An overview of the study procedure is presented in Figure 3.7A. The experiment lasted
an average of 90 minutes for each participant. Upon arriving at the lab, participants
completed a demographics questionnaire and were given an oral overview of the
procedure. This included an explanation of the SAM questionnaire based on four
example pictures from the IAPS presented on paper. Next, participants started
working independently on the tablet by first watching a 7 minutes nature video
(biosensor baseline), followed by the stylus baseline that consisted of writing an
English sentence with the stylus (the biosensor and stylus baseline are used in
Chapter 4). Participants were then presented with 40 pictures from the IAPS in
random order. Each picture was shown for 10 seconds and was directly followed
by the SAM rating (valence and arousal) and a 10 seconds fixation cross. In total,
we collected 3400 ratings from all participants. After rating the IAPS pictures,
participants were asked to watch the nature video one more time before completing
the math tasks. Before finishing the experiment, participants completed a paper
questionnaire about their overall mood, comfort level while wearing the sensors,
nervousness, and sweating level.
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Figure 3.7: Overview over the different parts of the study. A) Overall experimental pro-
cedure. B) Changes in valence and arousal for one participant in relation to
task type and answer.

3.4.3 Experimental Tasks

To trigger different affective states, we created three different math task conditions
by varying the difficulty level, available time for completion, and monetary reward
of the task. These types of manipulations were shown to be effective at eliciting
different affective states in reading comprehension [Blanchard et al., 2014] and math
tasks [Saneiro et al., 2014].

Task design. The math tasks were taken from an ACT data set [ACT, 2017] that
provided difficulty ratings from 0.12 (most difficult) to 0.96 (simplest). We conducted
a pilot study (same conditions, 11 participants) to get an indication of the time needed
to solve the different tasks. Based on this timing information and the tasks from the
ACT data set we generated the following three conditions.

1) Repetitive condition. For the repetitive condition we created random variants (by
substituting the numerical values in the task) of two easy tasks from the ACT data set
(difficulty of 0.76 and 0.83). The time available to solve each task was set between 60
and 75 seconds at random. This provided participants with more than sufficient time
to come up with a solution for each task. Correctly solving a task in the repetitive
condition granted only a minor monetary reward (+CHF 0.2) and a minor penalty
(−CHF 0.2) for incorrect solutions. The repetitive condition was designed to trigger
emotions such as boredom and fatigue.

2) Challenge condition. For the challenge condition we selected math tasks from
the ACT data set with medium difficulty (difficulty ∈ [0.58, 0.69]) and provided
participants with a larger monetary reward (+CHF 2) for correct solutions and the
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same small penalty as the repetitive condition (−CHF 0.2) for incorrect solutions.
Participants were provided with sufficient time to solve the tasks based on data from
the pilot study min = 53 s, max = 93 s). The challenge condition was designed to
provide diversified tasks for a more engaging and interesting experience, while the
larger monetary reward provided a bigger incentive (higher-stakes) for participants to
perform well with a relatively small penalty in case of mistakes.

3) Overchallenge condition. For the overchallenge condition, we selected the math
tasks with high difficulty in the ACT data set (difficulty ∈ [0.25, 0.53]). Participants
received small monetary rewards for correct solutions (+CHF 0.2) and a large penalty
(−CHF 2) for incorrect solutions. The time to solve each task was set to be insufficient
for most participants based on data from the pilot study (min = 25 s, max = 51 s).
The overchallenge condition was designed to provide a frustrating and annoying
experience to participants.

The math tasks were presented in six blocks (two in each condition) each containing
a different number of tasks (repetitive condition 13 tasks, challenge condition 5 tasks,
overchallenge condition 6 tasks). A similar block design for math tasks was already
applied in previous work [Saneiro et al., 2014]. Moreover, we believe that a sequence
of tasks is necessary to trigger an affective state. The first three blocks presented
were randomly sampled. However, the succeeding three blocks were fixed to the
same order as the first three blocks (but contained different tasks). In addition, the
maximum time for each block was limited to 5 minutes to ensure that the math part
of the experiment does not go over 30 minutes. After each block, a fixation cross was
shown for 30 seconds to reduce potential carry-over effects of affective states. At
the end of each math task, participants were asked to fill in the 9-point SAM scale
to report their current valence and arousal level (in total, we collected 3026 ratings
from the participants). Figure 3.7B depicts the changes in the valence and arousal
ratings for one participant in relation to the block type and task answer (correct vs.
incorrect). We see that for the repetitive tasks, valence and arousal are decreasing over
time leading to a shift towards boredom. Additionally, for incorrectly solved tasks,
valence drops and arousal tends to increase. After the repetitive blocks, we see a
decrease in valence and an immediate steep increase in arousal that may be attributed
to the increase in difficulty from the repetitive block to the overchallenge block. On
average participants finished with CHF 44.3 (min = CHF 22.2, max = CHF 62.8).
At the end of the experiment, each participant was compensated with a minimum of
CHF 40.

Math task interface. Participants were asked to provide a solution path for every
task anywhere on the screen and then to select their answers from five multiple-choice
alternatives (see Figure 3.6B). Participants received immediate feedback on whether
their answer was correct. A timer located on the top right corner of the interface
informed participants about the time left to respond and started to blink when less
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than 10 seconds remained. When the time was up and the participant did not submit a
solution, the answer was considered wrong. The cumulative amount of money earned
was displayed on the top left of the interface.

3.5 Results

We conducted a qualitative and quantitative evaluation of our mirror setup and image
processing pipeline with neural inpainting and investigated the applicability of our
setup to predict affective states during math-solving tasks (active) and exposure to
emotional stimuli from images (passive). For training the neural inpainting model,
we used the celebA-HQ dataset [Karras et al., 2018] consisting of 30000 face-
aligned colored images from celebrities with a resolution of 1024 × 1024 pixels (we
downsampled the images to 512 × 512 pixels). We split the dataset into a training set
of 25000 images, a test set of 2500 images, and a validation set of 2500 images. We
set the parameters for the network in the same way as proposed by Liu et al. [2018].
The results of the affective state prediction are based on a Random Forest classifier
since this was the best performing model. Hyperparameters were optimized using
random search with 50 iterations. Finally, for measuring the performance of our
model, we used the area under curve (AUC) of the receiver operating characteristic
curve and accuracy (chance level is 0.5).

3.5.1 Study Validation

Our study was designed to trigger affective states across the entire valence-arousal
space. As a first step, we investigate if our study design worked by examining
if the different parameters acted as intended. In our task design, we varied task
difficulty, monetary reward, and the available time for task completion. We performed
a per-task Kendall’s tau correlation analysis between these three parameters and
the arousal and valence ratings of the participants. For the task difficulty and the
percentage of remaining time, we found high correlations for both valence (−0.2; p <
10−59 and 0.22; p < 10−80) and arousal (0.27; p < 10−102 and −0.27; p < 10−117).
Participants shifted towards frustration (decreasing valence and increasing arousal)
with increasing task difficulty or with a reduction in the time remaining to complete
the task. Interestingly, the effect size on valence and arousal is almost identical. In
contrast, monetary reward appears to have a much larger effect on valence (0.47; p <
10−295) than on arousal (−0.06; p < 10−4). Accounting for potential superficial
correlations (e.g., task duration) is an important part of our study design. We found a
significant Kendall’s tau correlation between the task duration and the user ratings of
0.17 (p < 10−48) and −0.11 (p < 10−22) for arousal and valence, respectively.
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Table 3.1: Means of framewise confidence in landmark detection for different camera
sources, tasks (math and IAPS) and the full recordings. Confidence values
range from 0 (not confident) to 1 (fully confident). Standard deviations are
given in brackets.

Source IAPS Math Complete

Front (no inpainting) 0.79 (0.36) 0.48 (0.45) 0.68 (0.42)
Front (inpainting) 0.94 (0.14) 0.90 (0.22) 0.93 (0.18)
GoPro 0.97 (0.08) 0.93 (0.17) 0.95 (0.12)

The participants had the most remaining time available for the tasks in the boredom
block (mean = 42 s, SD = 6 s), followed by the engagement block (mean = 23 s,
SD = 8 s) and the frustration block (mean = 5 s, SD = 2 s). The tasks in the
boredom block were solved correctly by most participants (mean = 97%, SD = 4%),
whereas the participants performed poorer for the tasks in the engagement block
(mean = 70%, SD = 2%) and frustration block (mean = 41%, SD = 2%).
Altogether, it appears that our tasks worked as intended.

3.5.2 Face Recognition

We provide qualitative and quantitative results of our setup using neural inpainting.
In particular, we compare our results to recordings taken by the GoPro camera.

Qualitative evaluation. Figure 3.8 shows the facial landmarks detected by Open-
Face for three participants from the front camera without inpainting, using neural
inpainting, and from the GoPro. The positions of the detected landmarks without
inpainting are inferior compared to neural inpainting. For participant 3, the landmarks
at the upper face (eyebrows, eyes, and nose) are misaligned without inpainting. Often
no facial landmarks could be detected (see Figure 3.8 participants 1A and 2A). With
our neural inpainting approach, we achieved a qualitatively good recovered image
independent of the position of the missing region (e.g., eyes and mouth). It is note-
worthy that the inpainting and facial landmark detection also worked for participants
wearing glasses. The detected landmarks after neural inpainting are similar to the
landmarks detected from the GoPro recordings (see Figure 3.8C). Depending on the
position of the head, the landmarks of the eyes and the mouth can become locally
condensed in the GoPro recordings, and it might be hard to distinguish slight facial
movements. On the other hand, from the front camera, the recordings are frontal, and
the variations of facial parts (e.g., eye and mouth) are better visible.

Quantitative evaluation. Table 3.1 presents the average confidence in landmark
detection of OpenFace over all frames for the IAPS and math-solving tasks and
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Figure 3.8: Recordings of three participants. The facial landmarks were detected from
the front camera recordings without inpainting (A) and with neural inpainting
(B) and from the external GoPro camera (C). If no landmarks are visible, no
landmarks were detected by OpenFace.

the full recordings (including also parts not belonging to the IAPS and math tasks).
Reported confidence values by OpenFace are between 0 (not confident) and 1 (fully
confident). Without inpainting, the confidence values are low, and standard deviations
are high due to the imperfect recognition of landmarks. Without inpainting, landmarks
were often only detected correctly when the missing regions were situated above
the eyebrows (i.e., no landmarks were affected). After applying neural inpainting,
the confidence values increased by 19% and 88% during IAPS and math sequences,
respectively. When considering the full video recordings, the increase amounts to
37%. In addition, the standard deviation decreased substantially. This increase of
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Table 3.2: Performance of Random Forest on the math and IAPS data from two levels (low
and high) of valence and arousal based on the front camera recordings with
neural inpainting and the GoPro recordings. The chance level for accuracy and
AUC is 0.5.

Source Data AUC Accuracy

Front camera Math (valence) 0.73 68%
Math (arousal) 0.54 57%
IAPS (valence) 0.80 73%
IAPS (arousal) 0.70 66%

GoPro Math (valence) 0.76 72%
Math (arousal) 0.58 62%
IAPS (valence) 0.78 72%
IAPS (arousal) 0.73 67%

confidence leads to an increase in the number of samples (if a window used during
feature extraction contained less than 80% frames with a confidence value above
0.82 we discarded the corresponding data point). For IAPS, this leads to 348 and
383 additional samples for valence and arousal, respectively. For the math tasks, this
amounted to 1233 and 1179 additional samples for valence and arousal, respectively.
Finally, the confidence in landmark detection of the GoPro recordings is comparable
to the front camera recordings with neural inpainting. In general, for recordings
taken during exposure to a stimulus set of images the mean confidence is higher than
during math tasks. This can be attributed to the fact that while solving math tasks,
participants were moving more, which leads more often to suboptimal head positions
for landmark detection. This finding is also reflected in the higher standard deviations
of the confidence values for math tasks.

3.5.3 Classification Performance

Before predicting the affective states, the reconstructed front camera recordings and
the GoPro recordings were preprocessed (see Section 3.3.1). Features were extracted
using a 10 seconds window encompassing the on-screen time of each picture and the
last 10 seconds of each math task because each picture was presented for 10 seconds
and the minimum task duration was 10 seconds. Table 3.2 presents the performance
of our model for predicting two levels (low and high) of valence and arousal. Based
on the findings that the confidence in landmark detection increased up to 88% with
neural inpainting, we used only the front camera recordings with neural inpainting.
Using these recordings, our model achieved a performance of 0.73 AUC and 0.80
AUC for predicting valence on math tasks and IAPS, respectively. For predicting
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Table 3.3: Number of occurrences of each feature type in the ten most predictive features.
The numbers are provided for each of the four models (MV = math valence,
MA = math arousal, IV = IAPS valence, IA = IAPS arousal).

Feature Type MV MA IV IA

Action units 0 2 2 3
Eye blinks 1 4 0 1
Eye gaze 1 2 2 0
Mouth aspect ratio 0 0 0 0
Head Movement 5 2 5 6
Fidgeting 3 0 1 0

arousal, the performance drops and is only at random level for math tasks (0.54
AUC), while for IAPS it is above random (0.70 AUC). A similar pattern is visible
for the GoPro recordings. While for predicting arousal based on the math tasks, the
performance is close to random (0.58 AUC), all other predictions are above random.
In summary, the predictions using the front camera are comparable to using the GoPro
recordings with a maximum difference of 0.04 AUC. For predicting valence based
on IAPS, the performance from the front camera recordings (0.80 AUC) exceeds the
performance achieved by using the GoPro (0.78 AUC).

Feature importance. Table 3.3 presents the number of occurrences of each feature
type in the 10 most important features for each of the 4 models. We analyzed
the feature importance using the Gini importance measure provided by the Random
Forest classifier. Features related to head movement contributed the most to predicting
valence based on math tasks (five features) and valence and arousal based on IAPS
(five and six features). For predicting arousal based on math tasks, eye blinks provided
4 out of the 10 most important features. There were no MAR features among the top
10 features for any model. However, all feature types appeared in the top 30 ranked
features of each model. For the model based on the math tasks, the maximum moved
distance in the x-direction and the number of eye blinks were the highest scoring
features for predicting valence and arousal, respectively. For the model based on
IAPS, the mean acceleration in the x-direction and mean velocity in the x-direction
were most important for predicting valence and arousal, respectively. Interestingly,
head movement along the x-axis (left and right) was more informative than along the
z-axis (forward and backward).

3.5.4 Runtime

We conducted a runtime analysis of the different parts of our inpainting pipeline
and affective state prediction model. Our computing environment consisted of an
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Intel® Core™ CPU i9-9900K @ 3.60GHz and an NVIDIA GeForce® RTX 2080 Ti.
Processing one frame consisted of flattening the splitting boundary, face composition,
image rotation and extracting the face area (mean = 17.07 ms, SD = 4.74 ms),
detecting the position of the eyes using dlib (mean = 74.66 ms, SD = 6.43 ms),
using the deep learning model to inpaint missing regions in the face (mean =
76.25 ms, SD = 13.81 ms) and inpainting the background of the image (mean =
47.01 ms, SD = 11.87 ms). Summing up these values leads to a processing time for
one frame of 214.99 milliseconds. Prediction of a new data point consisted of feature
extraction (mean = 16.37 ms, SD = 2.18 ms) and using the Random Forest classifier
for predicting valence and arousal (mean = 6.43 ms, SD = 10.52 ms), leading to a
total prediction time of 22.8 milliseconds.

3.6 Discussion

Our findings show that it is possible to use our tablet-based front camera setup and
processing pipeline to accurately capture users for extracting features such as facial
landmarks and movement of the head and body. Our neural inpainting pipeline
provides a qualitatively accurate restoration of missing regions caused by our mirror
construction setup and increases the confidence in landmark detection by up to 88%.
Compared to recordings from a GoPro camera, our setup provides better results in
terms of face visibility (frontal view). Thus, it potentially facilitates the recognition of
minor facial movements (e.g., mouth and eyes). In particular, for solving math tasks
we found the recording conditions of the GoPro more challenging due to the viewing
angle (participants were bending over the tablet). This resulted in lower confidence
in landmark detection (0.93 for math tasks versus 0.97 for IAPS). Similarly, the front
camera recordings with neural inpainting showed higher confidence in landmark
detection during exposure to pictures from the IAPS (0.94) compared to solving math
tasks (0.90). During the exposure to a stimulus set of images from the IAPS dataset,
participants were sitting straight, implicating that the splitting boundary was located
at the forehead, which made inpainting easier. In contrast, during solving math tasks,
the splitting boundary was often located in the middle (eye) or lower part of the face
(mouth), creating a more challenging situation for our neural inpainting model.

We showed the applicability of our setup for predicting affective states during active
(math-solving) and passive (exposure to pictures) tasks based on the recordings from
the front camera. Our model achieved better performance on IAPS (up to 0.80
AUC) than on the math tasks (up to 0.73 AUC). Due to the active involvement of
the participants while solving math tasks, participants were moving more, which
made accurate tracking of facial landmarks, AUs, and eye gaze more demanding.
In addition, our model performed better for predicting valence (0.73 AUC and 0.80
AUC) than arousal (0.54 AUC and 0.70 AUC). Although affective states are universal,
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they also have components that are individual to a person [Elfenbein and Ambady,
2003]. This makes it harder to predict an affective state of a person without having
training data available of that person. Comparing the performance of our affective
prediction pipeline to other research is difficult because most existing work [Calvo
and D’Mello, 2010; Zeng et al., 2008] predicted basic emotions and used other
settings.

Our analysis of the feature importance showed that head movement is a predictive
feature in contrast to MAR. Some AUs capture movements of the mouth. Thus,
we analyzed the correlation between MAR and AUs specific to the mouth region.
The correlations between the MAR feature and the AUs specifying lip corner puller
(−0.15, p = 0.15), opening the mouth (0.25, p = 0.13) and jaw drop (0.045,
p = 0.26) have all been low and not significant.

In comparison to recordings from the GoPro, our model based on front camera
recordings performed equally well and even better for predicting valence on IAPS
(0.80 AUC versus 0.78 AUC). This renders our setup a viable alternative to more
expensive equipment such as a GoPro. Our setup comes at low costs (CHF 5), is
unobtrusive, can easily be mounted, is flexible in the application (e.g., in classrooms
or at home), and eliminates the need for synchronizing different devices. In contrast
to external cameras, the camera (i.e., the lens) in our setup is small and unobtrusive.
Some participants reported after the experiment that they got slightly distracted by the
GoPro but not by our mirror setup. Similarly, in the video recordings, we recognized
that participants were sometimes glancing at the GoPro. Finally, with a processing
time of 214.99 milliseconds per frame, our pipeline can handle four frames per
second. Our affective prediction pipeline is capable of making 43 new predictions
every second.

We acknowledge potential limitations to our approach presented in this chapter. Our
setup is constrained by the lighting conditions, head pose, and occlusions from hand
movement. We believe that other camera setups suffer from the same constraints.
Further, our mirror construction is a prototype and not yet ready for production.
Although during the experiment the construction proved to be stable, it can be
improved in terms of stability and flexibility. Neural inpainting provided qualitatively
satisfactory results for most facial parts. However, if the splitting boundary is covering
the eyes (i.e., both eyes are occluded), it is hard for the inpainting model to reconstruct
the eyes at a qualitatively high level. Consequently, the landmark detection cannot
recover eye gaze and eye blinks, but still detects other facial features. In addition,
although the CelebA-HQ dataset consists of facial images from celebrities with
diverse ethnicity, age, and facial characteristics (e.g., glasses and facial hair), our
inpainting method might be less appropriate for users who are underrepresented in
the CelebA-HQ dataset. We further acknowledge that our experiment is restricted
to math tasks and exposure to emotional stimuli from pictures in a lab environment
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with bachelor students. We are optimistic that our approach generalizes to a broader
population and to other tasks given that we used active (math-solving) and passive
(exposure to pictures) tasks and assuming a proper baseline normalization of the
features. In addition, participants reported that the setup was comfortable and
that they could act in a natural way. Finally, we predicted valence and arousal
on two levels omitting data points in the medium range (4 to 6). We mainly built
our affective prediction model for investigating the applicability of video-based
features. In the next chapter, we will consider affective regions in the valence-arousal
space. In addition, by taking into account other data modalities (i.e., biosensors and
handwriting) we will try to overcome limitations inherent to the approach presented
in this chapter (e.g., deteriorated performance due to camera occlusions, lighting
conditions, and head pose).

3.7 Conclusion

In this chapter, we presented a hardware setup consisting of a cheap and unobtrusive
mirror construction to improve the visibility of the face in tablet-based front camera
recordings. Recordings were processed using an inpainting pipeline consisting of
a neural network for reconstructing missing data in the recordings. We showed
that the mirror construction improved the visibility of the face in situations where
external cameras (e.g., GoPro) struggle. With a qualitative and quantitative evaluation,
we demonstrated that we could achieve results comparable to a GoPro camera. In
particular, neural inpainting improved confidence in facial landmark detection by
up to 88%. We showed the applicability of our setup and processing pipeline on
affective state prediction based on front camera recordings. Our model consisted of
features capturing information from movement, eyes, and face. We evaluated our
affective prediction model on data from a lab experiment with 88 participants using
leave-one-user-out cross-validation. Participants were solving math tasks (active)
and were exposed to emotional stimuli from pictures (passive). Our model accurately
predicted two levels (low and high) of valence (up to 0.80 AUC) and arousal (up
to 0.73 AUC) using data from the front camera. These results were comparable to
results obtained using recordings from a GoPro camera (up to 0.78 AUC for valence
and up to 0.73 AUC for arousal). Our setup is cheap (CHF 5), easy to mount, and can
be used in classrooms or at home. Besides affective state prediction, it can be used
to monitor students or analyzing attention. Most existing approaches use external
cameras such as GoPros or webcams, which are more expensive, more difficult to
handle, and are exposed to time synchronization problems. In our setup, the camera
data is recorded on the same device as the task is conducted, and thus we circumvent
such time synchronization issues in an elegant way.
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C H A P T E R 4
Affective State Prediction Using
Biometric Sensors and Stylus

Previously, a wide range of data sources has been used to predict affective states
including audio [Saneiro et al., 2014] and interaction data [Grawemeyer et al., 2016;
Kostyuk et al., 2018]. Data from biosensors (e.g., measuring muscle activity [Conati
and Maclaren, 2009] and heart rate [Blanchard et al., 2014]) have also been used
to predict emotions. However, most of these devices are typically restricted to lab
settings, expensive and difficult to operate, and somewhat intrusive. Recently, a
variety of portable and low-cost biosensor devices became available (e.g., Shimmer
GSR+, Polar H10, and Empatica E4). These devices have the potential to transform
affective research because they can be used to monitor a user’s physiological state at
home or in a classroom.

In this chapter, we explore a low-cost mobile setup to detect the affective state based
on biosensor and handwriting data. Our goal is a system to detect affective states that
is cheap and easy to operate, can be used outside a lab setting, is non-intrusive, and
minimizes potential issues related to privacy. We consider biosensor data from skin
conductance, heart measures, and skin temperature. In addition, we also evaluate
handwriting data recorded by a stylus to predict the affective state. Here, we use
the fact that tablets bundled with a stylus are becoming increasingly available in
households and classrooms and are inherently non-intrusive and mobile.

We propose a generic pipeline in which we process the data from the biosensors and
stylus to extract a set of features for each of the sensors. We then use a classification
model to predict the current affective region in the valence-arousal space of emotions.
Our method allows researchers to define arbitrary areas of interest in the valence-
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Figure 4.1: The classification pipeline. Stylus and biosensor data are gathered during task
solving processes. After preprocessing the signals, features are extracted and
used to classify the affective regions of interest.

arousal space and can be applied to a wide range of applications and questions of
interest.

We evaluate our method by applying it to the math problem-solving scenario presented
in Chapter 3 in which participants provided answers in unstructured handwriting on a
tablet device. Best performance is reached when data from all sensors is used for the
prediction (0.88 AUC). Interestingly, we reach a comparable performance using only
the data acquired by the stylus (0.84 AUC). These results suggest that a simple tablet
with a stylus can be sufficient to reliably predict a student’s affective state. Finally,
we also explore whether the affective state model could be generalized over domains.
For this purpose, we apply the trained model to a passive setting with picture stimuli
leading to a performance of 0.68 AUC.

4.1 Method

We present a classification pipeline that automatically predicts affective states based
on low-cost and mobile biosensor devices and stylus pens. Our pipeline assumes that
we have access to reports on affective states of users based on the circumplex model
of affect [Russell, 1980]. The classification task then amounts to classifying regions
within this space using a combination of signals from biosensor and stylus devices.
For this purpose, we build a generic affective predictor (see Figure 4.1). Recorded
stylus and biosensor data are preprocessed and the relevant features are extracted to
train a classification model for the specific affective regions.

4.1.1 Input Signals

During the task solving process biosensor and stylus data are recorded. Physiological
responses are modulated by the autonomic nervous system (ANS) which, in turn,
reacts to affective states [Andreassi, 2010]. The ANS controls the function of our
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organs and glands. The ANS consists of the sympathetic (mobilize the body’s fight-
or-flight response) and parasympathetic (controls the body’s rest-and-digest response)
branches.

Electrodermal activity (EDA). EDA is an indicator of the emotional state of a
person reflected by the variation in the electrical characteristics of the skin as a result
of sweating [Benedek and Kaernbach, 2010]. EDA is affected by the sympathetic
nervous system and is quantified by measuring the amount of current flowing between
electrodes attached to the skin. Changes in affective states can lead to subtle variations
in the level of sweat that can be detected as the changes in the current. Typically, the
EDA signal is decomposed into tonic (low frequency) and phasic (high frequency)
components. The tonic signal varies in terms of tens of seconds while the phasic
signal reacts within seconds after an external stimuli [Fritz et al., 2014].

Interbeat intervals (IBIs). IBIs are the time intervals between consecutive heart-
beats in normal heart function. This natural variation is also known as heart rate
variability (HRV). HRV reacts within a few seconds to changes in sympathetic and
parasympathetic activation [Malik et al., 1996]. The heart rate (HR) can be computed
as the inverse of the IBI averaged over a certain time window.

Skin temperature (ST). Skin temperature measures the thermal response of human
skin. Vasoconstriction (e.g., provoked by an affective state) can increase blood flow,
and consequently, skin temperature [Kim et al., 2004]. Skin temperature is modulated
by both the sympathetic and parasympathetic nervous system [Calvo et al., 2015].

Stylus. Tablet devices often come equipped with stylus pens as accessories that
can provide precise and pressure-sensitive input. Stylus data consists of the applied
pressure during writing and the pixel positions of the written text. From these mea-
surements, handwriting characteristics related to time and ductus can be calculated.
Handwriting characteristics can be affected by cognitive processes and are indirectly
connected to the ANS [Smith and Smith, 1991]. For example, increased muscle
contraction due to an increase in the sympathetic nervous system can lead to increased
pressure applied to the stylus.

4.1.2 Preprocessing of Signals

During preprocessing, the raw input signals are filtered to detect artifacts from
movement and muscle contraction. The signals are also corrected for differences
between individuals using baseline recordings for each individual.

Artifact detection. We follow the procedure outlined by Greco et al. [2016] to de-
compose the EDA into tonic, phasic, and an additive white Gaussian noise component
with a convex optimization approach that accounts for signal filtering and detrending.
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For IBIs, detrending is not necessary for the preprocessing [Yoo and Yi, 2004], and
we use the criterion beat difference for artifact detection [Hovsepian et al., 2015].

Baseline correction. Similar to previous work [Jraidi et al., 2014; Salmeron-Majadas
et al., 2015], we collect baseline data for all sensors to account for individual differ-
ences in stylus and biosensor signals related to writing habit, ambient temperature,
and dryness of the skin. Baseline data is collected while individuals remain in a
relaxed state (e.g., watching a nature video). We search for the minimum value of
each biosensor signal during the relaxation phase over a 10 seconds window using a
sliding window approach to be robust against outliers. Due to possible signal lags,
we search the minimum for each signal separately. We then normalize the biosensor
data by subtracting the feature values calculated over the corresponding 10 seconds
interval of the baseline from the actual feature values computed during task solving.
Stylus data is normalized by subtracting a baseline for all features computed over the
handwriting of an English sentence.

4.1.3 Feature Extraction

In the proposed pipeline, we extract several different feature types from the stylus and
biosensor signals. Where appropriate, we compute basic statistics for these features
types including the mean, standard deviation (SD), minimum and maximum, and
the linear trend (slope of a fitted linear regression line). A summary of all extracted
features is presented in Table 4.1. Because we extracted the stylus features over the
whole task, we excluded all features having a significant Spearman correlation to the
task duration (features greyed out in Table 4.1).

Electrodermal activity. For EDA, we decompose the signal into phasic and tonic
components and calculate standard statistics (i.e., mean, SD, min, max, slope). For
the phasic component, we also calculate the area under the curve (AUC) [Betella et
al., 2014] and the number of peaks using zero-crossings of the smoothed gradients
of the signal [Kim et al., 2004]. Based on the extracted peaks, we further compute
amplitude statistics (i.e., mean, min, max) [Züger and Fritz, 2015].

Interbeat intervals. From the IBI recordings, we extract temporal and frequency
features. In the temporal domain, we calculate the percentage of successive IBIs that
differ by more than 50 milliseconds (pNN50) and 20 milliseconds (pNN20) as well
as the standard deviation and root mean square of successive differences between
adjacent IBIs (SDSD and RMSSD) [Malik et al., 1996; Shaffer and Ginsberg, 2017].
For the frequency domain, it is well known that the distribution of spectral power
gives an indication of physiological activation [Betella et al., 2014]. Therefore, we
extract a feature related to the high frequency (HF) band of 0.15 Hz–0.40 Hz by a
Fast Fourier transform of the cubic spline interpolated signal [Malik et al., 1996;
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Table 4.1: Extracted biosensor and stylus features. For each signal, the features are
sorted according to their importance (based on our experiments). The 10 most
predictive features are highlighted in bold. SD refers to the standard deviation.

Signals Features

EDA Phasic AUC, Phasic Mean, Tonic SD, Tonic Max, Tonic Mean, Tonic Min,
Phasic SD, # Phasic Peaks, Tonic Slope, Max Phasic Peak Amplitude, Min Phasic
Peak Amplitude, Phasic Slope, Mean Phasic Peak Amplitude

Heart IBI SDSD, IBI RMSSD, IBI SD, IBI pNN20, HR Mean, IBI High Frequency,
IBI pNN50, IBI Mean, HR Min, HR Max, HR SD, HR Slope

Temperature Max, Mean, Min, Slope, SD

Stylus #Strokes/Mean Speed, Mean Distance between Strokes, Max Distance be-
tween Strokes, SD Distance between Strokes, Mean Pressure, Max Pressure,
Mean Stroke Acceleration, Max Stroke Acceleration, Max Stroke Speed, Max
Speed between Strokes, Mean Speed between Strokes, SD Speed between Strokes,
SD Stroke Speed, SD Stroke Acceleration
Excluded1: %Writing, {SD, Slope, Skewness} Pressure, {Mean, Min, Slope}
Stroke Speed, {Min, Slope} Stroke Acceleration, Min Speed between Strokes,
Min Distance between Strokes, #Strokes/Minute

1 Excluded due to our experimental setup (features having a significant Spearman correlation to
the task duration)

Shaffer and Ginsberg, 2017]. Based on the IBIs, we compute the heart rate for which
we extract several standard statistics (i.e., mean, SD, min, max, slope).

Skin temperature. We extract several statistics (i.e., mean, SD, min, max, slope)
from the temperature signal [Shi et al., 2010; Züger and Fritz, 2015].

Stylus. From the stylus data, we derive features related to the pressure applied by the
pen as well as timing and location information. Previous research has successfully
employed these features to predict affective states [Fairhurst et al., 2015; Likforman-
Sulem et al., 2017]. From the pressure data, we compute standard statistics (mean,
SD, max, min) per stroke and average these over an entire task. Additionally, over
each task, we compute the slope of a linear regression fit to the pressure values and the
statistical skewness of the pressure distribution. We also compute standard statistics
(i.e., mean, SD, max, min, slope) of the speed and acceleration of the strokes. For
the handwriting data, we discriminate between the actual writing process and the
think time while completing the task [Likforman-Sulem et al., 2017]. During writing,
there are always small time gaps between strokes that cannot be attributed to thinking
but belong to the writing process itself. Because writing patterns are different for
every user, we infer an individual threshold for each user to distinguish if the time
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between two strokes belongs to thinking or to the actual writing process. We chose
this threshold as the 80% cut-off value of the distribution of the time between the
strokes over the stylus baseline (cropping the right tail of the distribution). Based
on this threshold, we derive a feature measuring the percentage of writing (i.e., the
time spent in the writing process). Additionally, we compute the statistics (i.e., mean,
SD, max, min) on the speed between consecutive strokes having time differences
below the threshold (writing process) and on the distance between strokes having
time differences above the threshold (thinking).

4.1.4 Classification

To train our classification algorithms ground truth is built by defining arbitrary
non-overlapping regions of interest in the two-dimensional valence and arousal
space based on the affective labels which can be gathered, for example, through
self-reports or expert labelers. We then use a classification model to predict the
affective region an individual is likely to be in during task solving based on the
recorded biosensor and stylus data. Before applying the classification algorithm, we
standardize all features to have zero mean and unit variance. We propose the usage
of four different classifiers (i.e., Random Forest, Support Vector Machine, k-Nearest
Neighbors, and Gaussian Naive Bayes). We select these classifiers because they are
among the most widely used in machine learning and have shown to provide good
results on biosensor and stylus data [Fritz et al., 2014; Likforman-Sulem et al., 2017;
Zhou et al., 2014]. All models are evaluated using leave-one-user-out cross-validation
which ensures that data from the same user is not in the testing and training set at the
same time. Hyperparameter optimization is performed using nested cross-validation
and randomized search.

4.2 Results

We compared different versions of our classification pipeline using only a subset
of the sensors with a focus on the difference between stylus and biosensors. All
results are based on Random Forest (using 500 trees, balanced class weights, and
hyperparameter optimization using randomized search with 100 iterations) given
that this was the best performing classifier. To measure the performance of our
classifiers, we used accuracy (chance level = 1/# classes) and micro-averaged area
under curve (AUC) of the receiver operating characteristic (ROC) curve (chance level
= 0.5), which aggregates the contributions of all classes to compute the average
metric. Because both metrics are affected by class imbalance, we also considered the
macro-averaged AUC (chance level = 0.5) which is the average of the class-wise
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Figure 4.2: Experimental setup. During each session data is recorded from different
devices. (1) An Empatica E4 recording skin temperature on the dominant hand.
(2) A Shimmer GSR+ measuring skin conductance and wrist acceleration on
the non-dominant hand. All interactions with the tablet were conducted with
a stylus (3). Participants also wore a Polar H10 chest belt (not visible in the
image) for recording heart activity.

AUCs giving each class the same weight. To derive the standard deviation for each
metric, we employed an additional 10-fold cross-validation.

4.2.1 Experiment

We reused the dataset that we collected in a laboratory experiment described in
Chapter 3.4). Figure 4.2 shows again the experimental setup. All interactions with
the tablet were conducted with a Wacom Bamboo Ink stylus at an average sampling
rate of 250 Hz (SD = 25 Hz) and with 2048 levels of pressure sensitivity. We
measured skin conductance and wrist acceleration of the participants using a Shimmer
GSR+ device. To test the accuracy of the device, we compared its measurements
with a state-of-the-art ADInstruments PowerLab 8/35 device (connected through the
ADInstruments FE116 GSRAmp signal amplifier) over a 23 minutes recording of
a user watching a nature video and picture stimuli. Results revealed a strong and
significant cross-correlation value of 0.96 (p < 10−100) between the two signals.
These results suggest that the smaller, mobile and more affordable Shimmer GSR+

device may be sufficient to detect changes in affective states. During the experiment,
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the Shimmer GSR+ device was worn on the non-dominant hand with the electrodes
placed at the proximal phalanx of the index and middle finger [Calvo et al., 2015].
Data was recorded at a sampling rate of 100 Hz. As part of the Shimmer GSR+

setup, we also attached an optical pulse sensor providing a photoplethysmogram
signal on the ring finger. However, photoplethysmogram data was of poor quality and
consequently discarded from the analysis. Prior to electrode attachment, we asked
participants to wash their hands with lukewarm water [Boucsein et al., 2012].

We measured heart activity of the participants using a Polar H10 chest belt. The Polar
H10 belt provides IBIs and post-processed heart rate data by monitoring electrical
changes on the surface of the skin. A predecessor of this device (Polar H7) was
shown to provide accurate data when compared to an expensive lab device (Cosmed
Quark T12x system) [Plews et al., 2017].

We recorded the skin temperature using the infrared thermopile sensor of the Empatica
E4 device (sampling rate = 4 Hz; resolution = 0.02 ◦C). Since the sensor was
attached to the dominant hand (used for writing during the tasks), other signals that
the wristband can provide (EDA and blood volume pulse) were affected by motion
artifacts and discarded from the analyses.

According to a questionnaire we asked the participants to fill out at the end of the
experiment, the Empatica E4 was the most comfortable device (78% very, 17%
medium, 5% little), followed by the Polar H10 chest belt (55%, 43%, 2%) and the
Shimmer GSR+ finger electrodes (28%, 49%, 23%). The signals from the biosensor
devices were streamed to the tablet using the Bluetooth Low Energy protocol.

4.2.2 Data Analysis

Input signals. Given that we detected a very low amount of artifacts across partici-
pants (EDA = 0.015% and IBI = 0.71%), we refrained from removing them from
the analysis. Visual inspection of the skin temperature recordings revealed a slow
linear increase of the temperature over the course of a participant’s session. This
change in temperature may be due to the skin warming up under the wristband and
independent of the affective state of the participants. We removed this linear trend
from all measurements by subtracting the result of a linear least-squares fit to the
signal. We did not observe any other artifacts for skin temperature. The biosensor
features listed in Table 4.1 were computed using a window of 10 seconds since the
minimum task duration was 10 seconds. For the stylus features, we used an implicit
window over the entire task. In addition, we excluded all data points having at least
one missing value.

Clustering of ratings. Figure 4.3 presents the distribution of the participants’ ratings
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Figure 4.3: Heat maps showing the distribution of the participants’ ratings on the math
tasks. The red rectangles represent the different regions. A) five regions
automatically chosen using k-means clustering. B) Three regions manually
selected. C) Six regions manually selected.

in the valence-arousal space (dark and light blue refers to a high and a low number
of data points, respectively). A v-shape is visible with most ratings being made at
a valence and arousal level of seven and five, corresponding to a positive medium
intense state (e.g., interest). Several ratings were made at the extremes (top left
and top right) of the valence-arousal space corresponding to states of distress and
excitement that are associated with very good and very poor performance. To
uncover the underlying clusters in the data, we applied k-means clustering in this
two-dimensional valence and arousal space. Using the Bayesian information criterion,
we found an optimal number of five clusters. We defined region boundaries (shown
by the red rectangles in Figure 4.3A) as the arithmetically rounded value of the
centroid of each cluster plus and minus the standard deviation of the participants’
ratings in the corresponding cluster. We observed that the regions are all of equal
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Table 4.2: Performance of Random Forest on the math data for different signals and regions.
AUCmicro and AUCmacro represent micro-averaged and macro-averaged AUC,
respectively. The chance level for accuracy is 1/# regions and for AUC it is 0.5.
The standard deviations are given in brackets.

Regions Signals AUCmicro AUCmacro Accuracy

k-means EDA 0.80 (0.02) 0.75 (0.03) 50% (4%)
(5 Regions) Heart 0.81 (0.01) 0.73 (0.01) 52% (2%)

Temperature 0.69 (0.03) 0.59 (0.03) 37% (4%)
Stylus 0.84 (0.01) 0.76 (0.02) 59% (2%)
Biosensors 0.86 (0.01) 0.81 (0.02) 60% (2%)
Biosensors & Stylus 0.88 (0.01) 0.83 (0.02) 64% (2%)

Manual EDA 0.81 (0.02) 0.69 (0.04) 66% (2%)
(3 Regions) Heart 0.79 (0.02) 0.66 (0.03) 62% (3%)

Temperature 0.76 (0.01) 0.60 (0.04) 60% (3%)
Stylus 0.83 (0.02) 0.72 (0.02) 67% (3%)
Biosensors 0.84 (0.01) 0.76 (0.03) 67% (1%)
Bisensors & Stylus 0.87 (0.01) 0.80 (0.02) 67% (2%)

Manual EDA 0.80 (0.02) 0.72 (0.03) 46% (3%)
(6 Regions) Heart 0.78 (0.01) 0.72 (0.02) 44% (2%)

Temperature 0.70 (0.02) 0.61 (0.02) 35% (3%)
Stylus 0.81 (0.01) 0.75 (0.02) 48% (2%)
Biosensors 0.85 (0.02) 0.80 (0.02) 57% (4%)
Bio-sensors & Stylus 0.87 (0.02) 0.83 (0.03) 61% (3%)

size and cover the area of the v-shape. Based on the categorization of Russell [1980]
and Scherer [2005] we identify the following regions, their sizes and corresponding
affective states: Region R1 (213 data points; frustrated, annoyed), region R2 (284;
bored, taken aback), region R3 (965; attentive, serious), region R4 (861; expectant,
confident), region R5 (295; excited, triumphant). Together, it appears that the math
task covered a broad range of affective states relevant for learning and that positive
states (R3, R4, R5) dominate.

4.2.3 Classification Performance

Table 4.2 and Figure 4.4A present the predictive performance of the model based on
the five defined regions. Using all sensors, the model achieved an accuracy of 65%
(chance level = 20%). Here, the slightly lower value for the macro-averaged AUC
(0.83) compared to the micro-averaged AUC (0.88) may be related to class imbalance.
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A) ROC curve for biosensors & stylus B) ROC curve for individual sensors

C) Confusion matrix

Figure 4.4: ROC curves and micro-averaged AUC scores for five regions chosen by k-
means clustering for (A) the biosensors, stylus and the combination of biosen-
sors and stylus and (B) the individual biosensors & stylus. (C) The confusion
matrix is computed by using the combination of biosensors and stylus.

Figure 4.4C depicts the confusion matrix based on all sensors. The matrix shows that
regions R1 and R2 are more difficult to predict than the other regions. This may be
due to the lower number of data points collected for these regions. As expected, the
larger the distance between the regions, the easier it is for the model to discriminate
between them.

Feature importance. Table 4.1 presents the 10 most important features (in bold).
The features are sorted according to their relative importance which we computed us-
ing permutation feature importance (permuting each feature 100 times and measuring
the mean decrease in micro-averaged AUC). We obtained the same relative feature
importance ordering using the Gini importance measure. EDA and heart measures
provided 3 out of the 10 most important features and stylus features contributed with
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4 of the most important features. There were no skin temperature features among the
top 10 features. Regarding the heart measures, the features related to IBIs were more
important than HR features. An interesting observation can be made for the stylus
features. Features related to the distance between strokes appear to be more important
than speed between stroke features indicating that the spread of writing attributed to
thinking (i.e., how the writing space is covered) provides more information than the
actual writing behavior.

4.2.4 Sensor Comparison

Biosensors. If we consider the individual sensors (Figure 4.4B), skin temperature
performs substantially worse (−0.11 AUC) compared to EDA (0.80 AUC) and heart
rate measures (0.81 AUC). The combination of all the biosensors (Figure 4.4A)
provides only marginal performance improvements (+0.05 AUC) compared to the
individual sensors.

Stylus. Our most important finding is that the stylus performs equally well as the
biosensors (Figure 4.4B), rendering the data from the biosensors redundant and
unnecessary for the prediction of affective states. The performance of the stylus
is only marginally inferior (−0.02 AUC) when compared to the combination of all
biosensors. In contrast, the combination of the biosensors and the stylus achieves a
slightly higher performance (+0.02 AUC) compared with the biosensors and stylus
alone (Figure 4.4A). This might be an indication that they may contain complementary
information, although the difference appears to be small.

4.2.5 Affective Region Analysis

To investigate the ability of our pipeline to predict different affective regions based
on the recorded biosensor and stylus data, we defined two additional coverings of the
valence and arousal space (Figure 4.3B and Figure 4.3C). Based on Russell [1980]
and Scherer [2005] we manually defined specific regions associated with frustration
(annoying; region R6, 185 data points), boredom (taken aback; region R7, 199) and
interest (engaged concentration, flow; region R8, 720) as shown in Figure 4.3B. For
example, in education, it is important to distinguish these three regions due to their
impact on learning gain [Baker et al., 2012; Csikszentmihalyi, 2008; Miserandino,
1996]. To cover the valence and arousal space evenly, we manually defined the
six regions shown in Figure 4.3C, dividing arousal in two and valence into three
components (the number of data points from region R9 to R14 are 287, 154, 134,
852, 432 and 506). The results for both space partitionings are listed in Table 4.2
(note that chance level for the accuracy is 33% for three regions and 16.66% for
six regions). The performance of the classification of three regions outperforms the
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one for five and six regions in terms of accuracy. On the other hand, when taking
into account the AUC, there is no substantial difference in performance between the
different coverings. This difference between accuracy and AUC stems from the fact
that predicting only three regions is a much easier task than predicting five or six
regions. This is in line with the finding that the accuracy for predicting five regions is
slightly higher than for six regions. Nevertheless, we can conclude that we saw that
our approach can provide good results for three different coverings. Thus, we come
to the conclusion that our pipeline is rather flexible being able to handle different
regions in the valence-arousal space. Compared to previous work relying on fixed
affective states, our approach has the advantage that the regions do not have to be
pre-defined allowing for much more flexible use.

4.2.6 Model Transfer

In addition to the math tasks, we also gathered biosensor data as well as valence and
arousal ratings from the participants while they observed pictures from the IAPS. We
used this data to investigate our model’s capacity to generalize to more passive tasks,
such as looking at pictures. To predict the affective regions of interest, we applied
our model trained on the biosensor data recorded during math task solving to data
collected while participants viewed and rated the set of IAPS pictures. When we
consider the 5 different regions (Figure 4.3A), the model’s accuracy reaches 39%
(chance level = 20%, AUCmicro = 0.68, AUCmacro = 0.64). When we train and
evaluate a model directly on the picture data, we achieve a slightly better classification
performance (accuracy = 42%, AUCmicro = 0.74, AUCmacro = 0.66). There may be
several reasons behind the suboptimal performance when predicting affective states
during the picture task. These include sociocultural aspects when rating emotions
based on pictures (e.g., rating how it is expected), old and low-resolution pictures
from the IAPS data set, media influence desensitizing participants to the content of
the IAPS, and the fact that the math and picture domains are very different. Together
these initial results indicate that building a general predictor of affective states might
be possible, but further experiments are necessary.

4.3 Discussion

In this chapter, we presented a generic pipeline for predicting affective regions of
interest using biosensor and stylus data. We validated our pipeline for the case of
math solving tasks and demonstrated that our pipeline can accurately predict various
regions in the valence-arousal space (up to 0.88 AUC). In addition, we compared
different input signals with each other. The performance of the Shimmer GSR+

(measuring skin conductance) and Polar H10 (measuring heart activity) were on the
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same level (up to 0.81 AUC). Due to the higher cost of the Shimmer GSR+, we
recommend the usage of the Polar H10. Besides the cost factor, the Polar H10 is also
more robust against movement artifacts and more comfortable to wear.

Moreover, we found that the classification performance using only stylus data is
comparable to the classification performance based on the biosensors. Taking into
account the emerging digitization of education and the spread of tablets in schools and
private households, these results make the stylus a preferred alternative to biosensors
for measuring affective states in classrooms. Using biosensors in classroom settings
can be cumbersome and costly as it requires the purchase and synchronization of
several devices. In contrast, systems that depend on a stylus only are cheaper than
systems relying on biosensor devices, and styluses often come bundled with mobile
devices, such as tablets or smartphones. In addition to being cheaper and more
ubiquitous, styluses are easier to setup (e.g., no attachment of electrodes, no motion
artifacts) and less intrusive. Furthermore, stylus data is not only restricted to digital
devices but can also be recorded using digital pens. Finally, we demonstrated the
possibility of a generalized model for predicting affective states by applying the
model trained on the data from the math tasks (active part) to pictures from the IAPS
(passive part) reaching a performance of 0.68 AUC.

There are some potential limitations to our approach presented in this chapter. First
of all, the experimental setup was restricted to a lab environment and the population
of bachelor students may limit generalization to students at other levels. We assume
that given a proper baseline correction the signals are also predictive for a heteroge-
neous group of people. Another limitation is the restriction to math tasks. Similar
to biosensor data, we believe that handwriting data carries affective information
independent of the task. Thus, we expect our approach to work also in other domains
involving handwriting, such as solving exercises for different school subjects and
writing essays.
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C H A P T E R 5
Affective State Prediction Using
Smartphones in the Lab

Recent work has suggested that being aware of one’s current affective state can be
particularly useful in the context of mobile devices as individuals become more
dependent on smartphones for social purposes [LiKamWa et al., 2013]. Here, chat ap-
plications are especially relevant as they currently rank as the most used applications
on smartphones [Androidrank, 2021].

The majority of methods to detect affective states rely on biosensor data (see Chap-
ter 4) or camera data to infer emotions from facial expressions (see Chapter 3).
However, most of these setups are privacy-invasive and potentially costly, which
can limit their applicability in real-world environments. As such, researchers have
explored different methods to infer affective states directly from smartphone data,
including sensor inputs (e.g., accelerometer and gyroscope) [Lane et al., 2012], ap-
plication usage patterns [Bachmann et al., 2015; LiKamWa et al., 2013], and typing
speed [Gao et al., 2012].

In this chapter, we propose a non-invasive solution that can accurately predict affective
states based on sensor data from a mobile device (see Figure 5.1). We achieve this by
considering only touch input from the smartphone’s on-screen keyboard to generate
two-dimensional heat maps of typing characteristics. We train our semi-supervised
deep learning architecture on these heat maps to learn a low-dimensional feature
embedding. The subsequent classification can predict valence (up to 0.84 AUC),
arousal (up to 0.82 AUC), and dominance (up to 0.82 AUC) on three levels each (low,
medium, high). We demonstrate the effectiveness of predicting the affective states
based on the touch characteristics of smartphone users in a data collection study with
70 participants engaged with a chat application.
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1 2 3

Figure 5.1: Our system extracts touch input characteristics of users while typing on smart-
phones (1) and aggregates these metrics into two-dimensional heat maps (2).
A semi-supervised classification pipeline dynamically predicts affective states
(valence, arousal, and dominance) of the user (3).

5.1 Method

We present a semi-supervised classification pipeline for predicting affective states
based on touch data collected during typing on smartphones. While touch data is
continuously available, ground truth is typically only available in certain intervals
(e.g., from self-reports). To make use of the large amount of unlabeled data, we
employ variational autoencoders to infer meaningful low-dimensional embeddings
from two-dimensional heat maps (see Figure 5.2A). In a second step, we add a fully
connected classification layer to the learned data encoder and fine-tune the entire
network for the classification of affective states (see Figure 5.2B). In the following,
we provide details on every part of our method.

5.1.1 Heat Maps

Modern smartphones allow for the collection of accurate information about the user’s
screen inputs. An input ei = (x, y, t) is defined by the coordinates (x, y) on the
screen and the timestamp t in milliseconds. A single touch event E = [e1, . . . , en]
can consist of n touch inputs from the time the user initially touched the screen (e1,
touch down) until he or she releases the screen (en, touch up). Based on the raw
input data, we can extract several touch event metrics: Down-down speed provides
information about the typing speed and is equal to the time difference between two
consecutive touch downs normalized by the distance. Up-down speed is equal to
the time between a touch up and the subsequent touch down normalized by the
distance. Up-down speed provides information about the speed between touch
events. In contrast to previous research [Araújo et al., 2005; De Luca et al., 2012;
Monrose et al., 2002], we do not account for touch duration (i.e., down-up speed)
since touch events often consist of a single input E = [e1] for which no duration can
be computed. All metrics are standardized based on the mean and standard deviation
during a baseline typing period.
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Figure 5.2: Overview of the main steps of our model. A) A variational autoencoder is
trained on heat maps created from smartphone touch data to learn an efficient
low-dimensional feature embedding. B) For classification, the low-dimensional
embedding is used as input to fully connected layers.

Since touch inputs are inherently spatial, we aggregate the touch event metrics into
two-dimensional heat maps. These heat maps cover the keyboard region and the send
button (see the red dashed line in Figure 5.4B) as we only include keyboard inputs in
this chapter. We use a sliding window with a window size of 180 seconds shifted by
five seconds to extract a sequence of heat maps for each user. Since the down-down
speed and up-down speed metrics always correspond to two consecutive touch events
Ei and Ei+1, we assign their value to every pixel on a straight line between the events
(see Figure 5.3B and 5.3C).

Finally, we apply Gaussian smoothing to the heat maps to reduce high-frequency
noise. We use a kernel of size k = 31 × 31 pixels, which is twice the typical key
distance in pixels, and prevents smearing into neighboring keys while keeping inter-
key resolution high. In addition, we use σ = 5 provided by OpenCV [Bradski,
2000].

Figure 5.3 shows examples of extracted heat maps for pressure, down-down speed,
and up-down speed. The colors in the heat maps are for visualization purposes only.
In our pipeline, we only use one value per pixel.
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Low

High
A) Pressure B) Down-down speed

C) Up-down speed

Figure 5.3: Examples of heat maps extracted from the touch events of a user. A) The color
indicates the average pressure applied. B) and C) Consecutive touch events
are connected by a line, and the color indicates the down-down and up-down
speed between these two events, respectively. The colors are for visualization
purposes only.

5.1.2 Variational Autoencoder

While touch data is available continuously, labels are sparse. We make use of the
unlabeled data by learning a low-dimensional representation of the heat maps that
capture as much information from the original heat maps as possible. To extract such
a low-dimensional representation (also called latent space or embedding), we employ
a particular type of neural network called variational autoencoder [Kingma et al.,
2014] (see Figure 5.2A). Variational autoencoders have the advantage of providing
representations with disentangled factors and allow control over modeling the latent
distribution (in our case, multivariate Gaussian) [Higgins et al., 2016; Kingma and
Welling, 2013]. Previous research has shown that variational autoencoders are capable
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of automatically learning meaningful low-dimensional representations in different
domains [Aksan et al., 2018; Klingler et al., 2017].

A variational autoencoder consists of an encoder and decoder. The encoder network
qφ(z|x) learns an efficient compression of the input data x (heat map) into a low-
dimensional space z using a deep neural network parameterized by φ. The decoder
network pθ(x|z) reconstructs the input based on sampling from the distribution of
the latent space. Here, θ are the parameters of the decoder network. We train the
variational autoencoder using the loss function

L(φ, θ, x) = Eqφ(z|x) [log pθ(x|z)] − βKL [qφ(z|x)||p(z)] ,

where KL denotes the Kullback-Leibler divergence. The left term measures the
reconstruction quality, and the right term regularizes the latent space towards the
prior p(z). By using the Lagrangian multiplier β, we introduce a trade-off between
reconstruction quality and disentanglement of the latent factors fostering a more
efficient encoding. This modification of the loss function has been successfully used
for training variational autoencoders [Higgins et al., 2017].

For the autoencoder, we use two-dimensional convolutions with symmetric encoder
and decoder. Depending on the resolution of the input heat maps, it is necessary to
down-sample the heat maps to reduce training time. Input data is commonly scaled
before training. We use Min-Max scaling of the heat maps per user.

5.1.3 Classification

We take advantage of the learned low-dimensional representation by adding a classi-
fication network to the pre-trained encoder network (see Figure 5.2B). The classifica-
tion network consists of fully connected layers with rectified linear unit activations
except for the last layer, where we use softmax activation for the classification output.
The different heat maps are aggregated by stacking the latent space of the individual
heat maps.

The fully connected network is trained on the labeled data (heat maps and corre-
sponding affective states) using backpropagation that minimize the cross-entropy
loss. Fine-tuning the classification network has shown good performance in other
domains [Sun et al., 2016].
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5.2 Experiment

We conducted a controlled lab experiment to validate our pipeline for the prediction
of affective states based on smartphone touch data. The experiment was approved by
the ethics board of ETH Zurich. During the experiment, we collected smartphone
touch data while participants interacted with a chat application (i.e., Skype) for
approximately 70 minutes. We used text-based chat conversations because they are
widely used [Androidrank, 2021] and would be familiar to the participants in the
study. In addition, these applications require interaction with the smartphone and can
provide the data necessary for testing our prediction model.

5.2.1 Participants

We recruited 70 participants (35 female) between the ages of 18 and 31 (mean = 23.0
years, standard deviation SD = 2.7 years) from 20 different departments at the master
and bachelor level of ETH Zurich and the University of Zurich. We only considered
participants that were fluent in English1 and used smartphone-based chat applications
on a daily basis. We excluded participants taking any type of medication, tranquilizers,
or psychotropic drugs (e.g., anti-depressants) as well as participants affected by any
type of the autism spectrum disorders. To control for external environmental factors,
we kept the room temperature and the humidity at an average of 23.9° (SD = 0.24°)
and 30.1% (SD =3.6%), respectively. All participants provided written informed
consent before the start of the experiment and were rewarded with CHF 45 for their
participation. Participants were rewarded with an additional CHF 5 if they missed
only one response window when completing the self-report measures.

5.2.2 Apparatus

Participants interacted with five contacts within the Skype application on a Huawei
P9 Plus smartphone running Android 7.0. This smartphone provides over 17000
levels of touch pressure sensitivity. The software keyboard used was Gboard with
auto-correction and spell-checker features disabled. Throughout the experiment,
we recorded their interaction with the device, including sensor (acceleration and
orientation) and touch (pressure and position) data. In addition, participants used a
Huawei MediaPad M2 tablet to report their emotional state at regular intervals during
the experiment. Figure 5.4A presents the experimental setup.

1A post-experiment questionnaire revealed that 94% of the participants judged their English level to be
"proficient" (C2) or "advanced" (C1) according to the Common European Framework of Reference for
Languages.

68



5.2 Experiment

2

1

A) Experimental setup B) Input area

C) Self-reports

Figure 5.4: Experimental setup. A) During each session, participants engaged in chat
conversations using Skype on a smartphone (1). At regular intervals, partici-
pants were asked to complete self-reports on a tablet (2). B) Chat interface
and the region that was considered in the prediction model (red-dashed area).
C) Self-reports for capturing valence, arousal and dominance (left), basic
emotions, and stress level (right).

5.2.3 Self-Reports

To gather ground truth data for our model (valence, arousal, and dominance on
a 9-point scale), we asked participants to complete the Self-Assessment Manikin
(SAM) [Bradley and Lang, 1994] at regular intervals during the experiment. Partici-
pants were also asked to select from a series of basic emotions (i.e., anger, sadness,
happiness, and surprise) represented by different emojis. To ensure that choices were
independent and to enable blending of basic emotions to form complex emotions,
participants were allowed to simultaneously select more than one emoji at a time
(e.g., anger and surprise). The basic emotions did not include fear and disgust after
a pilot study (n = 8) revealed that participants did not experience these emotions
during the chat conversations. However, participants had the choice of selecting a
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‘stress’ emoji when reporting their emotions. Participants were allowed to select
all possible combinations of the basic emotions and stress without any restrictions.
Figure 5.4C shows an illustration of the self-reports.

5.2.4 Procedure

Before the day of the experiment, participants were asked to complete the Patient
Health Questionnaire [Kroenke et al., 2001] and the Big Five Inventory [John et
al., 1991; John et al., 2008] as measures of mental health and personality traits,
respectively. On the day of the experiment, the participants were given an oral
overview of the procedure, including an introduction to the self-report questionnaires
and an explanation regarding the use of the smartphone. The experimenter then exited
the room and used one of the Skype contacts (guiding contact) to start a conversation
(five minutes) with the participants. During this conversation, the experimenter asked
six predefined questions about well-being, age, living place, work, hobbies, and
family. These questions were used to make the participants comfortable with the
keyboard and the handling of the smartphone. Next, participants were instructed to
watch a nature video for five minutes on the smartphone that was used as relaxation
and allowed them to acclimate to the room environment. At the end of the nature
video, participants were asked to type two well-known pangrams (149 characters)
that served as a baseline for touch input during the modeling stage. During the main
phase of the experiment, participants chatted with four different Skype users. These
Skype users were fake accounts created and controlled by the experimenter sitting
in an adjacent room. After finishing all four chat conversations, participants were
asked to type once again the two pangrams. Finally, participants completed an exit
questionnaire on smartphone use, demographics, and overall mood. Figure 5.5A
provides an overview of the procedure used in the experiment.

At the beginning of the experiment, participants were given an oral explanation
regarding the procedure for answering the self-reports and had a chance to practice
with four examples. We collected a total of 1893 self-reports covering a large range
of the SAM response space.

During the experiment, participants were alerted with an audio notification when it
was time to complete the self-report. At this time, the SAM and emojis appeared on
the tablet, and participants had 20 seconds to start the self-report. This time buffer,
allowed participants to finish the current sentence in the Skype conversation without
having to rush to complete the self-report. If participants were slow to respond, the
tablet started to vibrate as a final reminder. After completing the self-reports, a delay
of 90 seconds was introduced until the next self-report was presented. This time
interval was decided based on feedback from participants in the pilot experiment as it
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Figure 5.5: Overview of the different parts of the experiment. A) Overall experimental
procedure. B) Changes in valence, arousal, and dominance for one participant
during the four chat conversations.

provided the best trade-off between the amount of data collected and the number of
interruptions.

There was no restriction for participants in using one or two hands to type. Never-
theless, in a post-experiment questionnaire, we found that only eight participants
used the right hand, and one participant used the left hand while typing. All other
remaining 61 participants used both hands.

The device was locked in portrait mode because this is the usual orientation for
chatting (no participant complained). Swiping gestures, auto-completion, and auto-
correction were disabled to make it consistent between participants. On the other
hand, participants could use the symbolic keyboard, and they could chat during
emotional surveys. Restricting chatting during emotional surveys is difficult because
the survey was filled in on an external tablet. Apart from the 20 seconds time limit to
start the rating, we did not put a time limit to fill in the survey to not put additional
pressure on the rating, which could introduce a negative bias.

53% of the user were iOS users. According to the post-questionnaire, 49% of the par-
ticipants felt very comfortable with the smartphone, 44% medium comfortable, and
only 5% little comfortable (with the lowest rating being not at all comfortable). Thus,
we conclude that although the keyboard differs between smartphones, participants
were not affected too much by readjusting to another keyboard.

5.2.5 Tasks

To trigger different affective states, we created four different types of chat conversa-
tions (i.e., exciting, shocking, rude, and confusing) by varying the content and context
of the text messages sent to the participants. Participants saw a list of five contacts in
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the Skype application on the smartphone that was provided to them. Each contact
was associated with one of the conversation types. A fifth contact representing the
experimenter was created to guide participants through the experiment and to provide
help in case of questions.

To make the chat task more credible, we employed NVIDIA’s face generator [Karras
et al., 2019] to create fake profile pictures for each of the four contacts. We used the
image of the experimenter for the fifth contact. In addition, participants were told
that the four contacts were real people sitting next door. All conversations followed
a predetermined script to keep them consistent across participants. The paragraphs
below describe in more detail each of these conversations.

Exciting conversation. During this conversation, the participants were chatting
about their most beautiful holiday experience. This conversation was designed
to make participants remember and reminisce, leading to positive feelings (e.g.,
enjoyment).

Shocking conversation. This conversation focused on the topic of the Rohingya
refugee crisis, which is an ongoing persecution of Muslim Rohingya people in Myan-
mar by the government. This conversation was intended to sadden the participants
leading to negative feelings (e.g., anger).

Rude conversation. In this conversation, we asked participants to provide help with
a malfunctioning smartphone. Independent of the help participants provided, they
could not resolve the issue at any point during the conversation. Here, the Skype
contact chatting with participants became increasingly rude and was intended to
trigger negative feelings (e.g., anger) and surprise.

Confusing conversation. For this conversation, we used Cleverbot [Carpenter, 2011].
Cleverbot is a well-known chatbot that learns from past conversations. We found
this chatbot to be a good way to trigger confusion, anger, and surprise. We reset
the chatbot engine for every participant to avoid introducing potential bias from
conversations with previous participants. A post-experiment questionnaire revealed
that 63% of the participants did not recognize that this conversation was with a
chatbot.

The order of conversations was randomized across participants with the exception
that the confusing conversation was always last to prevent participants from behaving
differently should they recognize that they were chatting with a chatbot [Hill et al.,
2015]. This lead to the counterbalancing of three conditions and a total of six orders.
With our randomization approach, we achieved an almost complete counter balanced
distribution (12, 11, 11, 14, 10, 12). In general, the average duration of the rude and
confusing conversations (836 seconds and 650 seconds) was shorter compared to the
exciting and shocking conversations (1212 seconds and 1272 seconds). These shorter
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durations may be related to the fact that participants became tired of engaging in the
conversations.

Figure 5.5B depicts the changes in valence, arousal, and dominance during the four
chat conversations for one participant. The figure shows that valence increases during
the exciting and confusing conversations and decreases for the other two conversations
(we see the opposite pattern for arousal). The rude and shocking conversations seemed
to be more intense than the exciting and confusing conversations. We also see that
dominance is following a similar pattern than valence with the participant feeling
more in control during the exciting and confusing conversations.

5.3 Results

We evaluated our classification pipeline based on the data we collected during the
experiment. We collected 1893 self-reports on the affective and emotional state of
participants that were used as the ground truth to our model. Because the SAM is
scored on a 9-point scale, we evaluated the performance of the classifier for three
classes (low, medium, high) of valence, arousal, and dominance. We also recorded
3720 minutes of touch data from which we extracted 44625 heat maps for each of
the three types of heat maps (i.e., pressure, down-down speed, and up-down speed).
We also reveal the runtime of our method to analyze the real-time applicability of
our approach. To measure the performance of our model, we calculated the accuracy
(chance level is 0.33 for three classes and 0.5 for two classes) and the micro-averaged
area under curve (AUC) of the receiver operating characteristic (ROC) curve (chance
level is 0.5). The micro-averaged AUC aggregates the contributions of all classes by
considering each element of the label indicator matrix as a label. Because these two
metrics are both affected by class imbalance, we also calculated the macro-averaged
AUC (chance level is 0.5) by taking the mean of the class-wise AUCs. We evaluated
our model using leave-one-user-out cross-validation to ensure that data of an user is
not used for training and testing at the same time.

5.3.1 Network Parameters

Variational autoencoder. For each of the three types of heat maps, we trained
a variational autoencoder to learn a low-dimensional representation. We used a
resolution of the heat maps of 80 × 64 pixels. To find the network parameters, we
employed the approach described by Bengio [2012]. Specifically, we increased the
number of layers, and the number of features maps per layer until a good fit of the
data was achieved (i.e., the loss was minimal). For the pressure heat maps, this
resulted in a variational autoencoder consisting of two layers (32 and 64 feature
maps) for the encoder and decoder, a kernel size of 4 × 4, and a latent space with ten
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dimensions. For the down-down speed and up-down speed heat maps, this resulted in
a variational autoencoder with four layers (32, 64, 128, and 256 feature maps) for the
encoder and decoder, a kernel size of 3 × 3 and a latent space with 20 dimensions.
In comparison to the network for the pressure heat maps, the down-down speed and
up-down speed network was deeper and with a dimensionality of the latent space
twice as high due to the higher complexity of the heat maps. For both networks, we
used a stride of 2 × 2 for each convolution. We chose a relatively small β = 0.00001
(compared to [Higgins et al., 2017]) because of the difference in magnitude between
reconstruction loss and the Kullback Leibler divergence. We trained the variational
autoencoders for 200 epochs with a batch size of 64 on 40162 heat maps and used
4463 heat maps as the validation set.

Fully connected network. The network parameters for the fully connected network
used for classification were defined using a randomized search with 50 iterations. We
trained the network using nested leave-one-user-out cross-validation for 100 epochs
with a batch size of 8. All networks were implemented using the Keras framework
with TensorFlowTM back-end and optimized using Adam optimization with standard
parameters [Kingma and Ba, 2015].

5.3.2 Experimental Validation

We conducted three Kruskal-Wallis tests to investigate whether the four text conver-
sations elicited different levels of valence, arousal, and dominance. Results revealed
significant differences in terms of valence (H = 144.431, 3 d.f., p < 0.001), arousal
(H = 19.461, 3 d.f., p < 0.001) and dominance (H = 39.982, 3 d.f., p < 0.001). We
performed five additional ANOVAs to investigate whether there were significant dif-
ferences in terms of the basic emotions and stress reported by participants during the
four conversations. For the ANOVAs, we added the times that participants reported
a specific basic emotion or stress during each of the conversations. Here again, we
found significant differences in terms of anger (F(3, 233) = 21.768, p < 0.001), hap-
piness (F(3, 233) = 238.068, p < 0.001), sadness (F(3, 233) = 79.389, p < 0.001),
surprise (F(3, 233) = 6.158, p < 0.001) and stress (F(3, 233) = 5.525, p = 0.001).
All tests are significant after Bonferroni correction. Table 5.1 presents the means
and standard deviation for each of these variables (see Appendix A.1 for additional
statistics). We also performed a series of correlations to investigate the relationship
between the SAM ratings for valence, arousal, and dominance and the four basic
emotions and stress. Table 5.2 presents the results for each of these correlations.
Notably, these results suggest a close match between the SAM ratings and the four
basic emotions and stress.
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Table 5.1: Means and standard deviations (in brackets) for the self-reported SAM, four
basic emotions, and stress during the four conversations. Percentages for the
four basic emotions and stress do not add to 100% since participants could
either simultaneously pick more than one emotion or not pick an emotion at all.

Exciting Shocking Rude Confusing Total

Valence 7.3 (1.5) 3.3 (1.6) 4.8 (2.1) 5.2 (1.6) 5.2 (2.3)
Arousal 4.3 (2.1) 5.0 (2.2) 4.4 (2.2) 3.4 (1.9) 4.4 (2.2)
Dominance 6.3 (1.7) 4.8 (2.1) 5.3 (2.2) 5.1 (2.2) 5.4 (2.1)

Anger 0.7% 28.6% 25.4% 10.3% 15.7%
Happiness 77.5% 2.6% 16.7% 21.8% 33.1%
Sadness 2.9% 52.7% 10.5% 2.5% 21.0%
Surprise 7.6% 12.5% 18.7% 37.4% 16.0%
Stress 2.1% 8.0% 20.5% 15.6% 9.3%

Table 5.2: Effect sizes of the Pearson correlations between valence, arousal, and domi-
nance (from the SAM) and the four basic emotions and stress. Asterisks denote
correlations that survived Bonferroni correction (p = 0.003).

Anger Happiness Sadness Surprise Stress

Valence −0.55∗ +0.79∗ −0.62∗ −0.14 −0.30∗

Arousal +0.41∗ +0.07 +0.37∗ +0.03 +0.18
Dominance −0.19∗ +0.43∗ −0.24∗ −0.10 −0.33∗

5.3.3 Affective State Prediction

The performance of our model was evaluated with regards to the prediction of three
classes (low ∈ [1, 3], medium ∈ [4, 6], high ∈ [7, 9]) of valence (523, 712 and 660
data points), arousal (786, 758, 349) and dominance (375, 886, 632). We chose these
three classes to cover the entire space considering all available ratings. Figure 5.6
and Table 5.3 present the performance of our model (ROC curves were calculated
using the micro-averaging approach). See Table A.1 in the appendix for additional
metrics.

Classification performance. Using all heat maps in combination, our model
achieves an accuracy of 67% for valence, 63% for arousal, and 65% for domi-
nance (chance level is 33%). Here, the slightly lower values for the macro-averaged
AUC (0.83, 0.80, 0.80) compared to the micro-averaged AUC (0.84, 0.82, 0.82) may
be attributed to class imbalance. If we consider the percentage of the most frequent
class as baseline (valence = 38%, arousal = 42%, dominance = 47%), the predic-
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Table 5.3: Performance for the prediction of three classes (low, medium, high) of valence,
arousal, and dominance. AUCmicro and AUCmacro represent micro-averaged
AUC and macro-averaged AUC, respectively. The chance level of accuracy and
AUC is 0.33 and 0.5, respectively.

Dimension Heat Map AUCmicro AUCmacro Accuracy

Valence Pressure 0.75 0.74 56%
Down-down 0.81 0.81 64%
Up-down 0.79 0.79 61%
Combination 0.84 0.83 67%

Arousal Pressure 0.80 0.78 62%
Down-down 0.75 0.73 55%
Up-down 0.73 0.70 53%
Combination 0.82 0.80 63%

Dominance Pressure 0.79 0.77 63%
Down-down 0.80 0.78 63%
Up-down 0.78 0.76 61%
Combination 0.82 0.80 65%

tions of our model are also above this baseline for all three dimensions. Figure 5.7
presents the confusion matrices for valence, arousal, and dominance based on the
combination of all heat maps. The confusion matrices are calculated by predicting
self-reports across all chat conversations. The matrices show that for valence, arousal,
and dominance the low and high classes were often wrongly predicted as the medium
class. As expected, the larger the distance between the classes, the easier it is to
differentiate them for our model (i.e., the low class was only rarely confused with
the high class and vice versa). Interestingly, for arousal, the medium class was most
often wrongly predicted as the low class (Figure 5.7B), but medium dominance was
more often confused with high dominance (Figure 5.7C).

Heat map comparison. Pressure is the best predictor of arousal (+0.05 AUC),
while down-down speed and up-down speed are the best predictors for valence
(+0.06 AUC). In terms of dominance, all three heat maps perform similarly (up
to 0.80 AUC). Overall, the combination of all heat maps provides only marginal
improvements compared to the individual heat maps (up to 0.03 AUC).

5.3.4 Affective Sequence Analysis

Affective states can change over time, and this may be characterized either by smooth
transitions or abrupt changes (e.g., from low to high states). We hypothesize that the

76



5.3 Results

A) Valence B) Arousal

C) Dominance

Figure 5.6: ROC curves and micro-averaged AUC scores for classification of three levels
(low, medium, high) of A) valence, B) arousal, and C) dominance.

performance of our classifier can be affected by the period over which affective states
are constant. For example, if affective states are alternating in short time, it can be
much harder to make an accurate prediction compared to when affective states are
constant over a longer period. This potential fluctuation in affective states, cannot be
taken into account if we consider all labeled data from the conversations. As such, we
recalculated the accuracy measure by considering only the data points for which the
affective state was constant over a certain period (i.e., a specific number of preceding
data points with the same class). Figure 5.8 shows the result of this accuracy measure
for valence, arousal, and dominance. Here, a sequence length of zero corresponds
to considering all data while sequence lengths of one, two, and three imply that we
only considered data points having at least one, two, and three preceding data points
with the same label. By excluding only immediate jumps (sequence length of one),
we observe a steep increase in accuracy, reaching 78%, 75%, and 77% for valence,
arousal, and dominance. In contrast, increasing the sequence length to two or three
preceding data points provides only marginal improvements.
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A) Valence B) Arousal

C) Dominance

Figure 5.7: Confusion matrices for classification of three levels (low, medium, high) of A)
valence, B) arousal, and C) dominance. The confusion matrices are calculated
by predicting self-reports across all chat conversations.

5.3.5 Basic Emotion and Stress Prediction

With regard to the four basic emotions and stress, our classifier achieved a predictive
performance of 87% (0.84 AUC) for anger, 81% (0.88 AUC) for happiness, 84%
(0.87 AUC) for sadness, 84% (0.76 AUC) for surprise and 92% (0.80 AUC) for stress.
The large differences between accuracy and AUC can be attributed to class imbalance
(e.g., 164 vs. 1729 labels for stress). Altogether, these results reveal that our model is
not only able to predict affective states measured in terms of valence, arousal, and
dominance but is also predictive for a subset of the basic emotions and stress.
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Figure 5.8: Accuracy only considering data points with a specific number of preceding
data points with the same class label.

5.3.6 Runtime Analysis

For evaluating the applicability of our method for realtime predictions, we conducted
a runtime analysis of the different parts of our model. Our computing environment
consisted of an Intel® Xeon® CPU E5-2698 v4 @ 2.20GHz and an NVIDIA
GeForce® GTX 1080 Ti. The training time of the variational autoencoder amounted
to 182 minutes (pressure heat maps) and 611 minutes (down-down speed and up-down
speed heat maps). For real-time applicability the training time of the networks does
not matter because the networks can be trained beforehand on the existing data set
and then used for the prediction of new data. Prediction of a new data point consisted
of extracting heat maps (mean = 0.38 s, SD = 0.09 s), followed by extracting the
low-dimensional embedding of the heat maps using the encoder (mean = 0.065 s,
SD = 0.0089 s) and using the fully connected network for prediction (mean =
0.002 s, SD = 0.003 s). Summing up these values leads to a prediction time of 0.447
seconds. In other words, the system is capable of making two new predictions every
second.

5.4 Discussion

In this chapter, we presented a complete classification pipeline that is capable of
accurately predicting three classes (low, medium, high) of valence (up to 0.84 AUC),
arousal (up to 0.82 AUC) and dominance (up to 0.82 AUC). In addition, we also
showed that we could accurately predict two levels (present vs. not present) of stress
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(0.80 AUC) and the basic emotions of anger (0.84 AUC), happiness (0.88 AUC),
sadness (0.87 AUC) and surprise (0.76 AUC).

These predictions were based on heat maps generated from pressure and touch speed
(i.e., down-down and up-down) collected during text conversations. We found that
all three types of heat maps can predict valence, arousal, and dominance. Interest-
ingly, while down-down speed showed the best performance for valence (0.81 AUC)
and dominance (0.80 AUC), pressure was most predictive for arousal (0.80 AUC).
These results may be related with the findings reported by Hernandez et al. [2014],
suggesting that people apply more pressure on keyboards under stressful conditions.
Moreover, affective states characterized by higher valence (e.g., excitement) can lead
to higher typing speed, increasing the down-down speed and up-down speed, which
has also been reported in previous work (e.g., Lee et al. [2015]).

The performance of our model cannot be directly compared with previous work due to
differences in experimental setup. For example, Gao et al. [2012] used a game-based
setting and different measures of emotional states while Huang et al. [2018] predicted
mood on a regression scale. Our work in this chapter did not focus on the comparison
of performance but instead on automatic feature extraction in a different setting.
Our use of heat maps also allowed us to investigate the distributions of keystrokes
as a measure of affective states (e.g., use of more backspaces when experiencing
negative emotions). Interestingly, running our model using only spatial heat maps,
we achieved a performance of only up to 0.60 AUC. Thus, we conclude that the
distribution of keystrokes alone has only little predictive power.

We also showed that accuracy depends on the sequence of previous affective states
and that accuracy tends to drop if affective states alternate. The reason for this is
that when there is a preceding state belonging to a different class (e.g., low), noise is
added to the window used for calculating the heat maps because this window contains
touch data from both states whereby 1) the touch data is very different (e.g., low and
high classes) or 2) the touch data is similar, but the class is different (e.g., low and
medium classes).

Another noteworthy property of our model is its efficiency, which is particularly
relevant for interactive applications in real-world environments. The computation of
the heat maps, embedding, and prediction takes 0.447 seconds in total, meaning that
the system can provide feedback on the user’s emotional state in less than a second.

We acknowledge some limitations of the approach presented in this chapter. First,
the experiment was restricted to a controlled lab environment and a population
consisting of bachelor and master students. In addition, by querying emotions every
90 seconds, we might miss finer changes in emotions. A remedy would be to allow
users to manually fill in self-reports when they face changes in emotions or to allow
retrospective ratings. Finally, we acknowledge that using the pressure signal is limited
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to devices supporting pressure measurement. Pressure can also be measured using
the contact area of the fingertips, which is a supported measure by many smartphones
nowadays, but this might negatively affect the performance of the prediction because
the contact area can only approximate real pressure. In Chapter 6 we overcome some
of these limitations by evaluating a refined system in real-world settings on different
devices and by providing the users more freedom in choosing the moment for filling
in the self-reports.

5.5 Conclusion

In this chapter, we presented a semi-supervised pipeline for predicting affective
states and emotions based on heat maps generated from smartphone touch data.
We validated our pipeline on touch data collected from text conversations in a lab
experiment with 70 participants. We conducted the evaluation using a leave-one-
user-out cross-validation, which ensures that our results generalize among users,
and similar results can be expected when applying our pipeline to data from new
users. We demonstrated that our pipeline could accurately predict three classes (low,
medium, high) of valence (up to 0.84 AUC), arousal (up to 0.82 AUC) and dominance
(up to 0.82 AUC). We also presented results for the prediction of two levels (present
vs. not present) of anger (0.84 AUC), happiness (0.88 AUC), sadness (0.87 AUC),
surprise (0.76 AUC), and stress (0.80 AUC). Considering the real-time applicability
of our method (predictions are possible in less than 1 second), our pipeline can be
useful in combination with our proposed visualization of affective states in Chapter 7.
Our model provides an elegant way to combine features (i.e., the features are learned
automatically by the encoder as part of the low-dimensional embedding) without
explicit feature engineering. By using heat maps in contrast to raw data, we are also
taking into account the spatial distribution of the data. In contrast to our other work
using biosensor data (see Chapter 4) and video data (see Chapter 3), our approach
is lightweight, less invasive, and can be used on different types of mobile devices.
The findings of this chapter show a promising possibility of leveraging touch data to
create emotion-aware chat conversations.
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C H A P T E R 6
Affective State Prediction Using
Smartphones in the Wild

The ubiquitous use of smartphones for social interactions (e.g., chat applications
and social networks), entertainment (e.g., music and video platforms), and news
consumption provides a distinct opportunity for collecting information to recognize
the affective states of users. In addition, smartphone use is also highly diverse in
context and location (e.g., at home, on the train, or in school), which enables capturing
the variability in affective states that may be used for prediction models in real-world
environments. In Chapter 5, we leveraged data from a fixed setting and context (i.e.,
using a chat application while sitting at a table). Instead, in this chapter, we rely
on data captured in real-world environments without any restrictions in smartphone
usage and context.

In this chapter, we propose a system that can accurately predict affective states in
real-world environments. We focus on typing-based applications (e.g., chat and
browsing applications) as these are the most used applications [Androidrank, 2021]
as well as smartphone sensor data (i.e., gyroscope and accelerometer sensors).

Using data from our in-the-wild user study with 82 participants, we show that we
can accurately predict three levels of valence, arousal, and dominance. We also
demonstrate a similar performance when using two-dimensional heat maps of just the
inertial sensor data. We conclude that sensor data is a viable alternative to keyboard
data for the prediction of affective states due to the continuous availability of data
and the increased protection of privacy. The use of sensor data provides also greater
flexibility in the wild and can increase the acceptance of users.
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Figure 6.1: Overview of the main steps of our model. A convolutional neural network
(MobileNetV2 [Sandler et al., 2018]) is trained on heat maps created from
smartphone keystroke and inertial sensor data. For classification of the af-
fective states, the features learned by MobileNetV2 are used as input to fully
connected layers.

6.1 Method

Our model predicts affective states based on keyboard and inertial sensor data col-
lected during smartphone usage (see Figure 6.1). We encode these data in two-
dimensional heat maps and train convolutional neural networks to automatically
extract meaningful features from the heat maps. For the classification of affective
states, we then add a fully connected classification layer. The paragraphs below
provide details on every step of our model.

6.1.1 Heat Maps

From the smartphone data collected in the wild, we generate two types of two-
dimensional heat maps. First we create keystroke heat maps that encode typing
characteristics of bigrams (i.e., key combinations) of consecutive keystrokes on the
smartphone keyboard. Second, we create sensor heat maps encoding the distribution
of the gyroscope and linear acceleration measurements.

Keystroke heat maps. A keystroke ki = (x, y, tdown, tup) is defined by the coor-
dinates (x, y) on the screen as well as tdown and tup providing the timestamp in
milliseconds of pressing (touch down) and releasing (touch up) the key, respec-
tively. A text K = [k1, . . . , kn] consists of n keystrokes. Based on the raw input
data, we extract three keystroke metrics. First, "up-down" measures the time of
moving from one key to the next key (up-down = ti+1,down − ti,up). Second, "down-
down" measures the time of moving between keys as well as the hold time of the
first keystroke (down-down = ti+1,down − ti,down). Third, "down-up" considers the
time of moving between keys and the hold time of the first and second keystroke
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(down-up = ti+1,up − ti,down). All three keystroke metrics are normalized by the
distance between the keys.

Using a window of 80 keystrokes before the self-reports, we aggregate the keystroke
metrics into two-dimensional heat maps covering all possible bigrams of characters
(a–z including umlauts ä, ö, and ü) and special keys (i.e., delete, space, symbol, shift,
return, period, comma, question mark, and exclamation point). In total, we consider
38 keys. We encode all possible key combinations in a 38 × 38 heat map H. The
rows and columns encode all 38 keys taken into consideration using a centralized
alignment of the keys. More frequently used keys in the English language [Solso and
King, 1976] and German language [Best, 2005; Beutelspacher, 1996] are placed in
the middle of the heat map (the space bar is considered to be the most frequent key
and the exclamation point and q are the least frequent keys). The first and second
keystroke in a bigram is encoded in the row and column, respectively. For example,
H(a, p) contains the keystroke metric (i.e., up-down speed, down-down speed, or
down-up speed) calculated from the keys a (row) and p (column) of the bigram ap.
We average all the values for each cell in the heat map H. In addition, all heat maps
are standardized based on the mean heat map during a baseline typing period.

Figure 6.2 shows examples of extracted heat maps for up-down speed, down-down
speed, and down-up speed. The colors in the heat maps are for visualization purposes
only. In our model, we are using only one value per pixel. Up-down speed is larger
than down-down speed and down-down speed is larger than down-up speed. From
the heat maps, it is also visible that the highest up-down speed (see Figure 6.2A)
is concentrated in the bigrams (space bar, D), (E, N), and (space bar, shift key).
The bigram (space bar, D) has the largest down-down speed (see Figure 6.2B). The
highest value for down-up speed (see Figure 6.2C) is associated with the bigram
(N, symbol key).

Sensor heat maps. For creating the sensor heat maps, we extract the rate of rotation
and linear acceleration of smartphones from the inertial sensors. Linear accelera-
tion reports the gravity-subtracted acceleration of a smartphone in SI units (m/s2)
along three axes (i.e., x, y, and z). The linear acceleration sensor typically uses the
gyroscope and accelerometer (providing acceleration including gravity) as input. On
the other hand, a gyroscope is measuring the rate of rotation in radians per second
around three-axis (i.e., x, y, and z). Linear acceleration and gyroscope measurements
are relative to the smartphone’s local coordinate system (the x-axis is parallel to the
smaller screen side, the y-axis is parallel to the larger screen side, and the z-axis is
normal to the screen). As a preprocessing step, we temporarily align the signals and
convert the sampling rate to 100 Hz (i.e., downsampling and upsampling), which
provides a noise reduction as a positive side effect.

We encode the three-axis combinations into separate heat maps: linear acceleration
along the x-axis & rate of rotation around the z-axis, linear acceleration along the
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A) Up-down speed B) Down-down speed

C) Down-up speed

Figure 6.2: Examples of keystroke heat maps extracted from 80 keystrokes of a selected
participant. Abbreviations: exclamation point (EP), question mark (QM), ü
(Ue), ö (Oe), and ä (Ae). Color saturation indicates the average up-down
speed (A), down-down speed (B), and down-up speed (C) between consecutive
keystrokes. The colors are for visualization purposes only.
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y-axis & rate of rotation around the x-axis, and linear acceleration along the z-axis &
rate of rotation around the y-axis. We choose these axis combinations, because they
reflect typical motion sequences. Using a window of 30 seconds, we bin the absolute
sensor values into logarithmically spaced bins and count the number of values in
each bin. We chose a logarithmic scale because the absolute sensor measurements
are exponentially distributed. Thus, when taking the logarithm, the measurements
become approximately normal distributed. Moreover, we believe that the distinction
of smaller values is more important than larger values so that also micromotions can
be adequately exploited [Ma et al., 2012]. For the heat maps, we use a resolution
of 96 × 96 (i.e., 96 bins in each dimension) because it is divisible by a multiple of
two, which is advantageous for the spatial downsampling in a convolutional neural
network and it provides a sufficiently high resolution. We standardize all heat maps
based on the mean heat map during a baseline period.

Figure 6.3 shows examples of extracted heat maps for the three-axis combinations (the
colors are for visualization purposes only). The linear acceleration in the direction
of the x-axis and the y-axis shows a large spread. The largest linear acceleration is
contributed to the z-axis (i.e., moving the smartphone forth and back). The rotation
around the x-axis and y-axis was slightly larger than around the z-axis.

6.1.2 Convolutional Neural Network

For the keystroke and sensor heat maps, we stack the three types of heat maps into
three channels. To extract meaningful features from the keystroke (38 × 38 × 3)
and sensor heat maps (96 × 96 × 3), we employ a particular type of convolutional
neural network called MobileNetV2 [Sandler et al., 2018]. Affective labels are
typically sparse and labeled datasets are relatively small for training a network
for predicting affective states, making it prone to overfitting. Using a smaller but
expressive network such as MobileNetV2 counters this effect. MobileNetV2 is a
network optimized for low memory consumption and high execution speed and is
parameterized to meet the resource constraints of mobile devices [Sahlol et al., 2020;
Xiang et al., 2019].

The basic building block of MobileNetV2 is the bottleneck depth-separable convolu-
tion with residuals which consist of three operations [Sandler et al., 2018]. First, a
1 × 1 convolution layer expands the number of feature maps. Second, the depthwise
convolution applies a single filter to each feature map. Finally, a pointwise convo-
lution with a kernel size of 1 × 1 is used to combine the outputs of the depthwise
convolutions (i.e., linear combinations of the feature maps) reducing the number
of feature maps, and thus the amount of data flowing through the network. The
factorization of the convolution into depthwise and pointwise convolutions reduces
the computational cost and model size. In addition, the input and output to the basic
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A) Accelerometer x & gyroscope z B) Accelerometer y & gyroscope x

C) Accelerometer z & gyroscope y

Figure 6.3: Examples of sensor heat maps extracted from 30 seconds of the gyroscope
and linear acceleration measurements of a selected participant. The color
saturation indicates the number of sensor measurements for the combinations
of the linear acceleration along the x-axis & the rate of rotation around the
z-axis (A), the linear acceleration along the y-axis & the rate of rotation
around the x-axis (B), and the linear acceleration along the z-axis & the rate
of rotation around the y-axis (C). The colors are for visualization purposes
only.
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building block are connected with a residual connection which enables faster training
and better accuracy [Sandler et al., 2018].

MobileNetV2 was developed for images with a resolution of 224 × 224 × 3 and
consists of five downsampling layers (i.e., a stride of two). Thus, for the keystroke
heat maps (38 × 38 × 3), we disable the first three downsampling layers (i.e., setting
the stride to one). For the sensor heat maps (96 × 96 × 3), we disable the first
downsampling layer. This modification of the network was successfully used on
the CIFAR10 dataset (containing images with a resolution of 32 × 32 × 3) [Ayi and
El-Sharkawy, 2020]. Input data is commonly scaled before training. We use Min-Max
scaling of the heat maps to the range [−1, 1].

6.1.3 Classification

We take advantage of the learned features from the convolutional neural network by
adding a classification network. The final output of the convolutional neural network
is passed through a global average pooling layer and a fully connected layer with
softmax activation. We aggregate the keystroke and sensor heat maps by stacking
the output of the global average pooling layer of the pre-trained networks of the
individual heat maps. For the combination of the sensor and keystroke heat maps, we
use fully connected layers between the global average pooling and the softmax layer
to foster the learning of mixtures of the extracted features from the heat maps. We
train the whole network on the labeled data (heat maps and corresponding affective
states) using backpropagation minimizing the cross-entropy loss.

6.2 Experiment

We conducted an experiment in the wild to validate our pipeline for the prediction of
affective states based on smartphone keystroke and sensor data. The ethics board of
ETH Zurich approved the experiment. During the experiment, we collected keyboard
data, sensor data, and context data (e.g., foreground application) while participants
used their smartphones in everyday life for approximately 70 days.

6.2.1 Participants

We recruited 82 participants (43 female, 39 male) between the ages of 18 and 43
(mean = 23.0 years, standard deviation SD = 3.64 years). Eleven participants
were left-handed and seventy-one participants were right-handed. The majority of
participants were students at the bachelor (61 participants), master (13 participants),
and Ph.D. (3 participants) levels from ETH Zurich and the University of Zurich. The
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remaining participants were an IT consultant, a nurse, a trainee, and two software
engineers. We only considered participants that were German native speakers (due
to the keyboard layout) and used typing-based applications (e.g., browsers and chat
applications) daily on the smartphone. We excluded participants taking any type of
medication, tranquilizers, or psychotropic drugs (e.g., anti-depressants) as well as
participants affected by any type of autism spectrum disorders. We recruited only
participants using Android devices (Android 7 to 10). The participants used a variety
of devices from different manufacturers, i.e., Samsung (31 participants), Huawei (21),
Xiaomi (7), OnePlus (7), Sony (3), LG (3), Google (2), Nokia (2), Blackberry (1),
Fairphone (1), HTC (1), Lenovo (1), Oppo (1), and Wiko (1). The participants
actively engaged for an average of 72 days (SD = 2 days) in our experiment.

Compensation. Participants were rewarded for their participation depending on their
level of contribution and received between CHF 60 and CHF 120 for submitting an
average of 3 and 6 self-reports per day, respectively. One participant was awarded an
additional CHF 1000 from a lottery draw. Depending on the number of submitted
self-reports participants could reach three different levels providing a different number
of tickets for the lottery: gold level (420 self-reports, 10 tickets), silver level (320
self-reports, 5 tickets), and bronze level (210 self-reports, 1 ticket). In addition, the
participants with the highest number of average self-reports per day (after 70 days
of participation) received additional tickets for the lottery (5 tickets for rank 1, 2
tickets for rank 2, and 1 ticket for rank 3). Such an incremental reward system and
the chance to win an additional price via a lottery was already successfully employed
in other works [Healey et al., 2010; Stieger et al., 2018; Wang et al., 2014].

6.2.2 Apparatus

To collect a large-scale dataset in the wild to validate our pipeline, we developed
an Android application consisting of four main components: 1) a graphical user
interface (GUI) providing the participant information, control, and statistics of the
experiment, 2) a data logging component for collecting sensor data, context data, and
usage logs in the background, and 3) a keyboard the participants had to use during
the experiment. In the following, we detail the three components.

Graphical user interface. The main page of the app (see Figure 6.4A) provided
information about the number of remaining days of participation and the number
of self-reports until the next level is reached. Participants could manually start and
pause the data recording. This mechanism enabled privacy when they did not want
their data to be recorded.

Participants were required to have recording enabled for at least 90% of the time to
be eligible for compensation. Furthermore, the experimenter could send messages
in the form of notifications to specific or all participants (e.g., information about the
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A) Main page B) Statistics C) Leaderboard

Figure 6.4: Graphical user interface of the Android application. A) Main page of the
application. B) Statistics providing information about self-reports and com-
pensation. C) Leaderboard showing badges (level), average number of self-
reports per day, and the rank. Users were assigned animal names to preserve
anonymity.

experiment or motivating messages). Participants could also access help information
(i.e., help text, tutorial videos, and the information sheet) and change the settings
(e.g., the storage location of the recorded data, finishing participation, and manual
triggering synchronization with the server).

The statistics page (see Figure 6.4B) provided information about the number of self-
reports, average number of self-reports per day, percentage of enabled recording, and
information about compensation and lottery tickets. Finally, in the leaderboard (see
Figure 6.4C), participants could track their rank in relation to the other participants
in terms of the average number of self-reports per day. To maintain privacy of the
participants, we assigned an animal name to each participant.

Data recording. When the phone was unlocked, the Android application logged the
following data in the background: sensor data (i.e., accelerometer, gyroscope, mag-
netometer, proximity sensor, light sensor, and step counter), device usage logs (e.g.,
foreground application, charging state, screen orientation, ringer mode, timezone
changes, and audio mode), and activity predicted by the activity recognition API of
Google (i.e., still, in-vehicle, on a bicycle, running, on foot, tilting, and walking). We
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A) Study keyboard B) VAD C) Basic emotions & stress

Figure 6.5: The keyboard included in our application and the self-reports the participants
had to fill in. A) Two additional buttons in the top bar for enabling private
mode (left button) and starting a self-report (right button). The upper keyboard
has private mode disabled and a self-report available (yellow star) and the
lower keyboard has private mode enabled (purple top bar) and no self-report
available. Self-reports captured valence, arousal, and dominance (B) and the
basic emotions and stress (C). Selected items are highlighted with a green
background.

did not use all sources of data in this work. For example, we discarded activity from
our analysis because on some devices there was a substantial lag in recognition of
activities.

The data was uploaded in the background to a server several times during the day.
Communication between the application and the server was encrypted and upload
only took place when the smartphone was connected to Wi-Fi.

Keyboard. Our application included a keyboard with a layout similar to the default
German Android keyboard (see Figure 6.5A). Participants were required to use our
keyboard during the study. From the keyboard, we recorded touch-related data (i.e.,
position and timestamps). We did not record the pressed keys. In the modeling
stage, we then mapped the touch positions to the keys. No data was recorded when
participants typed passwords, phone numbers, names, postal addresses, and e-mail
addresses.

The keyboard did not support auto-correction, auto-completion, and swiping. A pre-

92



6.2 Experiment

experiment questionnaire revealed that before the experiment, 79% of the participants
had never used swiping, 71% had never used auto-correction, and 75% had never or
only rarely used auto-completion.

We extended the keyboard layout by two additional buttons at the top. The private
mode button (left button in the top bar in Figure 6.5A) allowed participants to pause
the recording of data directly on the keyboard. By pressing the star button for 2
seconds (right button in the top bar in Figure 6.5A), participants could fill in a self-
report. Participants could start a self-report using the self-report button on the main
page of the app (Figure 6.4A). Ninety-three percent of the submitted self-reports
were started using the star button on the keyboard.

6.2.3 Self-Reports

To gather labeled data for our model, we asked participants to complete self-reports
at regular intervals while using their smartphones. To quantify valence, arousal, and
dominance, we adapted the Self-Assessment Manikin (SAM) [Bradley and Lang,
1994] in terms of the dimensions it represents and the number of levels. The SAM is
not applicable on smartphones due to its old-fashioned style and the space constraints
of smartphone screens. Based on the work by Hayashi et al. [2016] and feedback
from participants in a pilot study (n = 17), we substituted the figures from the SAM
with emojis and reduced the scale to five items (i.e., very low, low, neutral, high,
very high). Emojis are commonly used in social networks and other communication
applications. This familiarity made the self-reports more appealing and fostered a
fast and accurate understanding of the experimental procedure by the participants.

Figure 6.5B shows an illustration of the emoji-based self-reports. For the valence
dimension, we varied the emojis from a happy face (most positive) to a sad face (most
negative). In the arousal dimension, the emojis varied from a awake emoji with large
eyes (highest arousal) to a sleepy emoji (lowest arousal). Finally, for the dominance
dimension, we increased the size of the emoji to portray control, similar to the SAM.
Participants were also asked to select from a series of basic emotions (i.e., happiness,
anger, sadness, surprise, disgust, and fear) and stress represented by different emojis
(see Figure 6.5C). To track complex emotions, participants were allowed to select all
possible combinations of the basic emotions and stress. Participants could also select
None of them if none of the provided items applied (in that case no other items could
be selected).

Following the guidelines by Schmidt et al. [2018] and Ghosh et al. [2019a], we used
a combination of time-based and event-based schedules to trigger self-reports. A self-
report became available (i.e., the star button on the keyboard turned yellow and started
blinking) when four conditions were fulfilled. First, the participant typed at least 80
characters on the keyboard in the current session (we define a session as the period
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App Setup
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1

3

5
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Sunday Monday TuesdaySaturday

A) Study procedure B) Example self-assessment for four days

Figure 6.6: Overview of the different parts of the experiment. A) Overall experimental
procedure. B) Changes in valence, arousal, and dominance of a selected
participant during four consecutive days.

from unlocking the smartphone until it is locked again). Second, the smartphone
was unlocked for at least 30 seconds in the current session. Third, between 30
minutes and 60 minutes elapsed since the last self-report was filled in. Fourth, data
recording was enabled (i.e., private mode on the keyboard was disabled). Depending
on the number of average self-reports per day, the minimum amount of time between
self-reports (condition 3) was set to 30 minutes, 45 minutes, or 60 minutes. This
helped to balance the number of self-reports per day and prevented participants
from exaggerating submissions of self-reports. Once a self-report became available,
participants could start the self-report until the smartphone was locked again (an
additional margin of 10 seconds was provided in case participants accidentally locked
the phone). We did not enforce a time limit for filling in the self-reports to not put
additional pressure on the rating, which could introduce a negative bias. All these
parameters were decided based on results from a pilot study (n = 17).

6.2.4 Procedure

Figure 6.6A provides an overview of the procedure used in the experiment. Before
installing the application, we asked participants to read the information sheet and
watch two YouTube tutorial videos explaining the application and the self-reports
including four examples. The participants then installed the application from the
Google Play Store. After opening the application for the first time, participants logged
in with a username (i.e., an animal name) and password provided by the experimenter.
After participants provided informed consent by selecting a checkbox, they were
given a second chance to watch the tutorial videos. Next, the application requested
participants to grant various device permissions. After setting up the application
(i.e., watching two tutorial videos and granting device permissions), participants
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conducted a typing test on their default keyboard used before the experiment and on
the application keyboard before setting the application keyboard as the new default
keyboard. The typing test consisted of six sentences in random order including two
well-known pangrams (27, 30, 56, 37, 44, and 46 characters) [Dhakal et al., 2018;
Palin et al., 2019].

After the setup was completed, participants used their smartphones for 10 weeks in
everyday life, filling in self-reports in regular intervals. We collected a total of 30083
self-reports covering a large range of the valence-arousal-dominance space. Within
the first week, we asked participants to fill in an online questionnaire on demograph-
ics and smartphone usage as well as the Patient Health Questionnaire [Kroenke et al.,
2009] and the Big Five Inventory 2 [Danner et al., 2016] as measures of mental health
and personality traits, respectively. At the end of the experiment, participants again
typed the six sentences in random order on our keyboard and their default keyboard
used before the experiment. Finally, participants completed an exit questionnaire
on the self-reports (understandability, truthfulness, and frequency). The exit ques-
tionnaire also probed their perception of the application’s keyboard and smartphone
usage. Finally, participants were asked to fill in the Patient Health Questionnaire and
the Big Five Inventory for a second time.

Figure 6.6B depicts the changes in valence, arousal, and dominance during four
days of one selected participant. The figure shows that valence and dominance were
highest on Saturday and Sunday and decreased on Monday and Tuesday. Arousal
showed an opposite pattern with lower values on Saturday and Sunday and higher
values on Monday and Tuesday.

6.3 Results

We used the data we collected during the study to evaluate our model. The 30083 self-
reports served as labels to our model. We evaluated the performance of our pipeline
in terms of accuracy (chance level is 0.33 for three classes and 0.5 for two classes),
micro-averaged AUC (chance level is 0.5), and macro-averaged AUC (chance level
is 0.5). We evaluated our model using leave-one-user-out cross-validation to ensure
that data of an user in the test set is not used for training.

6.3.1 Model Parameters

Heat maps. To extract the keystroke and sensor heat maps, we used 80 keystrokes
and 30 seconds before the filled in self-reports, respectively. We set these thresholds
due to the minimum number of keystrokes (i.e., 80 keystrokes) and minimum time
passed (i.e., 30 seconds) since the start of the session until a self-report could be filled
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in. On the training data, we used all available heat maps to compute the baseline heat
map. For heat map n of an user in the test set, we used the n− 1 heat maps to compute
the baseline heat map (i.e., the baseline gradually improves the more the user types).
For creating the sensor heat maps we clipped linear acceleration to 4 g = 39.2 m s−2

as 98% of the sensor data were below 4 g. We clipped the gyroscope measurements
at 5 rad s−1 because 99% of the measurements were below this threshold. In addition,
we only considered linear acceleration and gyroscope measurements greater than
0.02 m s−2 and greater than 0.003 rad s−1, respectively.

We chose these thresholds because in a pilot study 95% of the sensor measurements
were below these thresholds when the smartphones were lying flat on a table. Thus,
we excluded noise inherent to the sensors. To exclude breaks during typing, we chose
a threshold of 1 second between keystrokes for the keystroke heat maps. We motivate
this threshold by the longest median time per character (400 milliseconds) [Buschek
et al., 2018] and the fact that median + 3 ∗median absolute deviation = 0.9 s [Leys
et al., 2013]. By choosing a conservative threshold of 1 second, we retain delays that
are part of natural typing behavior.

Classification pipeline. For the sensor and keystroke heat maps, we trained the
MobileNetV2 architecture and used a fully connected network for the classification
of affective states. For the combination of the sensor and keystroke heat maps, we
used a fully connected layer with 2048 units between the global average pooling and
the softmax layer to foster the learning of mixtures of the extracted features from the
heat maps. Due to the prevalent class imbalance, we used balanced class weights to
give smaller classes more weight. To train the networks we minimized cross-entropy
loss using 80 epochs and a batch size of 128. We optimized the networks using
stochastic gradient descent with a momentum of 0.9 and a cyclical learning rate using
an exponential decay (γ = 0.99994) with a minimum and maximum learning rate of
10−5 and 10−2, respectively [Smith, 2017]. We implemented all networks using the
Keras framework with TensorFlowTM back-end.

6.3.2 Experimental Validation

Smartphone usage. Figure 6.7A shows the smartphone usage over the hours of the
day and each day of the week aggregated over all participants. Smartphone usage
was lowest during the night (1 a.m. to 6 a.m.). During the day, smartphone usage was
stable with a peak around 10 p.m. On Saturdays, participants used their smartphones
least, whereas on Sundays usage was high throughout the day with peaks in the late
afternoon and evening.

We collected data from 13071 hours of smartphone usage. On average we recorded
3533 sessions per user (SD = 1624 sessions, max = 8861 sessions, min = 1060
sessions). On average a session lasted for 183 s (SD = 532 s) and we recorded
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A) Smartphone usage

B) Self-reports

Figure 6.7: The distribution of average smartphone usage (A) and self-reports (B) for the
days of the week and the times of the day aggregated over all participants.

an average of 47 keystrokes per session (SD = 174 keystrokes). The mean break
between sessions was 11 min (SD = 72 min). Participants used the smartphone in
landscape mode in 0.96% of the sessions. To simplify the analyses, we excluded
all sessions where the smartphone was used in landscape mode. Participants could
pause the recording by enabling the private mode. Participants used private mode
only 0.026% of the time.

Self-reports. We collected a total of 30083 self-reports for valence (669 very low,
2767 low, 8071 neutral, 14642 high, 3934 very high), arousal (1643 very low, 5260
low, 12572 medium, 7591 high, 3017 very high), dominance (1866 very controlled,
3256 controlled, 12823 neutral, 8089 in-control, 4049 very in-control) and the basic
emotions of anger (selected 1208 times), happiness (16425), sadness (1918), surprise
(786), fear (1628), disgust (515), and stress (4795). On average, a participant
submitted 402 self-reports (SD = 154 self-reports, min = 44, max = 835) totalling
5.64 self-reports per day on average (SD = 2.12 self-reports). Participants also spent
an average of 6.76 s (SD = 27.27 s) filling in the self-reports. In addition, an average
of 154 keystrokes (SD = 177 keystrokes) and 40 s (SD = 266 s) passed since the
start of the session until a self-report was triggered.
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Table 6.1: Effect sizes of the Pearson correlations between valence, arousal, and domi-
nance and the basic emotions and stress. Asterisks denote correlations that
survived Bonferroni correction (p = 0.0024).

Anger Happiness Sadness Surprise Fear Disgust Stress

Valence −0.30∗ +0.55∗ −0.37∗ −0.006 −0.22∗ −0.14∗ −0.24∗

Arousal +0.05∗ +0.27∗ +0.01 +0.04∗ +0.02∗ −0.008 +0.004
Dominance −0.16∗ +0.17∗ −0.18∗ −0.04∗ −0.17∗ −0.10∗ −0.20∗

Figure 6.7B shows the number of self-reports for the days of the week and the times
of the day. As expected, a close match to smartphone usage is visible. Most self-
reports were filled in between 7 a.m. and 11 p.m. Peaks are located on Mondays at
9 p.m. (318 self-reports) and 10 p.m. (323 self-reports), Thursdays at 10 a.m. (324
self-reports), and Fridays at 5 p.m. (338 self-reports).

We also performed a series of correlations to investigate the relationship between the
valence, arousal, and dominance ratings, the basic emotions and stress. Table 6.1
presents the results for each of these correlations. The effect sizes are largest for
valence and smallest for arousal. Notably, these results are a close match to the
correlations found for the data collected in our laboratory experiment (see Table 5.2).
We found the same direction for the correlations but smaller effects sizes.

Russell and Mehrabian [1977] provide a correspondence between valence, arousal,
and dominance and the basic emotions based on laboratory experiments. In Table 6.2,
we compare these values to the mean values obtained from the self-reports collected
in our experiment. In Russel and Mehrabian’s model, the affective dimensions (i.e.,
valence, arousal, and dominance) spanned the interval [−1, 1]. Thus, we mapped
the self-reports collected in our experiment to the same interval to obtain a proper
measure for comparison. The self-reports collected in our experiment closely match
the correspondences found by Russel and Mehrabian. In contrast to Russel and
Mehrabian, the mean values for valence, arousal, and dominance are smaller in our
data. These differences may be related to the fact that we performed the experiment
in the wild without using emotion-eliciting situations as stimuli. Notably, for anger,
surprise, and disgust, the mean dominance value shows a reversed sign compared to
Russel and Mehrabian’s model. For stress, the mean values of all three dimensions
(i.e., valence, arousal, and dominance) are around zero. It is known that stress can be
positive and negative with different intensity levels [Folkman and Moskowitz, 2000;
Folkman, 2008], thus potentially, positive and negative ratings cancel each other out
leading to a mean close to zero.

A post-experiment questionnaire revealed that most participants completely (87%) or
mostly (10%) understood the self-reports. All participants reported that they always
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Table 6.2: Mean values for valence, arousal, and dominance for the six basic emotions
and stress. Results from our study are compared to the correspondences derived
by Russell and Mehrabian [1977]. All measurements are mapped to the interval
[−1, 1]. Values in brackets denote standard deviation.

Valence Arousal Dominance

Russel Ours Russel Ours Russel Ours

Anger -0.43 -0.36 (0.44) 0.67 0.19 (0.52) 0.34 -0.24 (0.56)
Happiness 0.76 0.54 (0.33) 0.48 0.20 (0.50) 0.35 0.24 (0.51)
Sadness -0.63 -0.34 (0.50) 0.27 0.10 (0.54) -0.33 -0.21 (0.51)
Surprise 0.40 0.29 (0.51) 0.67 0.20 (0.54) -0.13 0.04 (0.52)

Fear -0.64 -0.12 (0.51) 0.60 0.12 (0.53) -0.43 -0.21 (0.53)
Disgust -0.60 -0.18 (0.52) 0.35 0.04 (0.55) 0.11 -0.23 (0.57)
Stress – 0.05 (0.49) – 0.08 (0.51) – -0.08 (0.51)

(81%) or often (19%) filled in the self-reports truthfully. Most participants (59%)
also felt that the self-reports had the right frequency. Only 11% and 30% of the
participants reported that they found the self-reports being either too seldom or too
often available, respectively.

Keyboard. We recorded an average of 7669 keyboard sessions per user (SD = 3341
sessions, min = 2255, max = 18445). We define a keyboard session as the time from
opening to closing the keyboard. The ten most used keys were the space bar (13.5%),
delete key (11.6%), E (8.3%), I (5.5%), A (5.1%), S (4.9%), N (4.7%), H (4.4%),
T (4.0%), and R (3.8%).

In the modeling stage we generated the heat maps from key pairs. We hypothesize that
the typing speed of a key pair depends on the involved thumbs (e.g., key combinations
typed with the left and right thumb might be faster). Key pairs can be located in
the left or right part of the keyboard (left-left and right-right) or belong to both
parts of the keyboard (left-right and right-left). We define the left (right) part of the
keyboard as all keys to the left (right) of the vertical line going through the keys
z, h, and v (the space bar is split in the middle). Here, we assume that the left and
right thumb are used for the left and right part of the keyboard, respectively. In a pre-
experiment questionnaire, 84% of the participants reported to type with both hands
(i.e., left and right thumb). An ANOVA revealed that there were significant differences
in terms of the average typing speed for these four different key pair locations
(F(3, 336) = 110.395, p < 0.001). Post hoc comparisons using the Tukey HSD test
indicated that the mean typing speed for pairings of left-left (mean = 132 pixels per
second (pps), SD = 61 pps), right-right (mean = 73 pps, SD = 35 pps), left-right
(mean = 384 pps, SD = 211 pps) and right-left (mean = 505 pps, SD = 282 pps)
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were significantly different (all p < 0.001). Only the typing speed between left-
left and right-right was not significantly different (p = 0.135). By subtracting the
baseline heat map per participant, we correct for these differences in typing speed. In
addition, the convolutional neural network is capable of learning potential keyboard
layout-based bias in typing speed.

At the beginning and at the end of the experiment participants typed six sentences
in random order on their default keyboard and on our keyboard. A 2 (time) × 2
(keyboard) Aligned Ranked Transform (ART) ANOVA revealed that the typing
speed was significantly higher (F(1, 216) = 53.460, p < 0.001) at the end of the
experiment (mean = 1.380 characters per second (cps), SD = 0.255 cps) than at
the beginning of the experiment (mean = 1.235 cps, SD = 0.240 cps). We also
found that typing speed was significantly higher (F(1, 216) = 5.571, p = 0.019)
for the default keyboard (mean = 1.325 cps, SD = 0.260 cps) than our keyboard
(mean = 1.290 cps, SD = 0.235 cps). There was no interaction between keyboard
and time (F(1, 216) = 1.909, p = 0.169). The higher typing speed at the end of the
experiment might be because participants already saw the sentences at the beginning
of the experiment. We conclude that although participants used diverse keyboards
before the experiment, they quickly became familiar with our keyboard.

Sensor data. In addition to the data recorded from the keyboard, we also recorded
sensor data (i.e., linear acceleration, rate of rotation, and light intensity). In Figure 6.8
we show the valence, arousal, and dominance ratings in relation to these sensor mea-
surements (we used moving averages to smooth the curves). For linear acceleration
and the rate of rotation we calculated the magnitude

√
x2 + y2 + z2. It is visible that

valence and arousal increased with increasing linear acceleration (see Figure 6.8A),
rate of rotation (see Figure 6.8B), and light intensity (see Figure 6.8C). Interestingly,
dominance had only a small effect on the sensor measurements. Figure B.4 and
Figure B.5 in the appendix reveal that happiness was higher the larger the linear
acceleration and the rate of rotation were. On the other hand, sadness was decreasing
with increasing linear acceleration and rate of rotation. Thus, we conclude that when
participants were happy, they were more engaged in smartphone usage (e.g., more
jittery and moving more) and remained calmer during sad episodes. Similarly, with
increasing ambient light intensity, participants tended to be happier and less sad (see
Figure B.6). Noteworthy, the stress level is reduced when ambient light intensity is
increasing. Our final model did not employ data from the light sensor because it did
not provide significant performance improvements.

Context data. The five most-used application were YouTube (14.2% of the total us-
age time), WhatsApp Messenger (13.1%), Instagram (8.7%), Google Chrome (8.2%),
Netflix (2.6%), and Snapchat (1.9%). Accordingly, the top five application categories
where participants spent most time were communication (28.7% of the total usage
time), social networks (17.2%), video players (14.4%), games (8.4%), and entertain-
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Valence

Arousal

Dominance

A) Linear acceleration B) Rate of rotation

C) Light intensity

Figure 6.8: Valence, arousal, and dominance in relation to the magnitude of linear accel-
eration (A), the magnitude of the rate of rotation (B), and the light intensity
(C). The affective dimensions were encoded in the interval [1, 5]. The dashed
regression lines show the linear trends in the data.

ment (4.1%). Figure 6.9 shows the average valence, arousal, and dominance ratings
for each application category. For each category, we considered all self-reports for
which a corresponding application was used in a 30 seconds window before the
self-report. The category ‘events’ is characterized by low valence and low dominance
and high arousal. On the other hand, for the category ‘sports’ participants faced high
valence and high dominance and low arousal. Figure B.3 in the appendix provides
the same statistics for the basic emotions and stress level. Interestingly, applications
belonging to the category ‘music & audio’ and the category ‘lifestyle’ provoked
the highest levels of sadness and stress, respectively. Kruskal-Wallis tests revealed
significant differences after Bonferroni correction (α = 0.005) for valence, arousal,
dominance, basic emotions, and stress in terms of the different application categories.

Affective states can also fluctuate during the day and during the week. In Figure 6.10
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Figure 6.9: Mean and 95% confidence interval (shaded area) of the reported valence,
arousal, and dominance for different application categories. The affective
dimensions were encoded in the interval [1, 5]. The legend discloses the results
of Kruskal-Wallis tests to investigate whether there were significant differences
in terms of valence, arousal, and dominance for the application categories.

we see that valence, arousal, and dominance decreased around midnight and started
increasing again around 7 a.m. Similar patterns are visible for the basic emotions
and stress with peaks of anger, sadness, surprise, disgust, and stress in the night
(see Figure B.1 in the appendix). Using Kruskal-Wallis tests we found significant
differences after Bonferroni correction (α = 0.005) for valence, arousal, dominance,
all basic emotions (except anger and sadness), and stress in terms of the hour of the
day. However, these results must be taken with a grain of salt because the number of
self-reports was low during the night (see Figure 6.7B).

When considering the day of the week, valence and dominance culminated on
Saturdays (see Figure B.2 in the appendix). On the other hand, the stress level was
lowest at the weekends (i.e., Saturdays and Sundays). For dominance, happiness,
sadness, and stress we found significant differences after Bonferroni correction
(α = 0.005) in terms of the weekdays. In our final model, we did not leverage context
data as it did not provide significant performance improvements.
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Figure 6.10: Mean and 95% confidence interval (shaded area) of the reported valence,
arousal, and dominance for the time of the day. The affective dimensions
were encoded in the interval [1, 5]. The titles contain the results of Kruskal-
Wallis tests to investigate whether there were significant differences in terms
of valence, arousal, and dominance during the time of the day.

6.3.3 Affective State Prediction

To remove noise and foster balanced classes, we simplified the valence, arousal, and
dominance measures to three classes (low ∈ [1, 2], medium ∈ [3, 3], and high ∈ [4, 5])
of valence (3436, 8071, and 18576 self-reports), arousal (6903, 12572, 10608), and
dominance (4870, 12066, 11221). Table 6.3 reveals the performance of our model.
See Table B.1 in the appendix for additional metrics.

Classification performance. Using the combination of keystroke and sensor heat
maps, for valence, arousal, and dominance, the values for micro-averaged AUC (0.83,
0.85, 0.84) are slightly higher than for macro-averaged AUC (0.78, 0.84, 0.82). When
considering the percentage of the most frequent class as baseline (valence = 62%,
arousal = 42%, and dominance = 40%), the accuracy is well above the baseline
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Table 6.3: Performance for the prediction of three classes (low, medium, high) of valence,
arousal, and dominance. AUCmicro and AUCmacro represent micro-averaged
AUC and macro-averaged AUC, respectively. The chance level of accuracy and
AUC is 0.33 and 0.5, respectively.

Dimension Heat Map AUCmicro AUCmacro Accuracy

Valence Keystrokes 0.82 0.76 66%
Sensors 0.79 0.73 63%
Combination 0.83 0.78 70%

Arousal Keystrokes 0.81 0.80 63%
Sensors 0.83 0.82 64%
Combination 0.85 0.84 65%

Dominance Keystrokes 0.82 0.79 67%
Sensors 0.81 0.79 63%
Combination 0.84 0.82 68%

for valence (70%), arousal (65%), and dominance (68%). Figure 6.11 shows the
confusion matrices for valence, arousal, and dominance evaluated on the combination
of the keystroke and sensor heat maps. Often neighboring classes are confused with
each other. For all three dimensions, the high class was most often confused with
the medium class and vice versa. For arousal (see Figure 6.11B) and dominance (see
Figure 6.11C) the low class was often mispredicted as the medium class. In contrast,
for valence (see Figure 6.11A) the low class was more often confused as the high
class, which may be attributed to the class imbalance.

Heat map comparison. The keystroke heat maps perform slightly better than the
sensor heat maps for valence (+0.03 AUC) and dominance (+0.01 AUC). In contrast,
for arousal, the sensor heat maps outperform the keystroke heat maps (+0.02 AUC).
The combination of the two types of heat maps provides only a marginal improvement
in performance (up to 0.03 AUC).

6.3.4 Basic Emotion and Stress Prediction

Our model achieved a performance of 90% (0.77 AUC) for anger, 75% (0.81 AUC)
for happiness, 93% (0.82 AUC) for sadness, 95% (0.86 AUC) for surprise, 93% (0.85
AUC) for fear, 97% (0.86 AUC) for disgust, and 82% (0.83 AUC) for stress. The
differences between AUC and accuracy are due to class imbalance. Basic emotions
can also be blended to form complex emotions (e.g., the combination of happiness and
sadness result in melancholy) [Shoumy et al., 2020]. Table 6.4 presents the F1-scores
and the number of self-reports (in brackets) for the first-order complex emotions. We
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A) Valence B) Arousal

C) Dominance

Figure 6.11: Confusion matrices for the classification of three levels (low, medium, high)
of A) valence, B) arousal, and C) dominance. The confusion matrices are
calculated by predicting self-reports using the combination of keystroke and
sensor heat maps.

evaluated the performance by combining the predictions of the individual models
pertaining to the respective basic emotions. Complex emotions formed by happiness
were recognized well. Similarly, the combinations of stress and the basic emotions
were identified accurately. Interestingly, the combination of stress and happiness (i.e.,
positive stress) occured most often (1563 times) and was recognized well (F1-score
of 0.80). Altogether, we can conclude that our model is also predictive for basic
emotions and stress and may even be predictive for complex emotions.
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Table 6.4: F1-scores for complex emotions formed from two basic emotions and stress. We
treat the presence of the complex emotion as the positive class. The number of
self-reports for each complex emotion is given in brackets.

Anger Happiness Sadness Surprise Fear Disgust Stress

Anger – 0.76 (153) 0.30 (384) 0.24 (101) 0.28 (222) 0.19 (126) 0.46 (429)
Happiness 0.76 (153) – 0.78 (402) 0.76 (394) 0.77 (518) 0.76 (104) 0.80 (1563)
Sadness 0.30 (384) 0.78 (402) – 0.31 (89) 0.37 (418) 0.31 (119) 0.49 (561)
Surprise 0.24 (101) 0.76 (394) 0.31 (89) – 0.31 (98) 0.23 (53) 0.48 (203)
Fear 0.28 (222) 0.77 (518) 0.37 (418) 0.31 (98) – 0.28 (105) 0.47 (966)
Disgust 0.19 (126) 0.76 (104) 0.31 (119) 0.23 (53) 0.28 (105) – 0.46 (214)
Stress 0.46 (429) 0.80 (1563) 0.49 (561) 0.48 (203) 0.47 (966) 0.46 (214) –

6.3.5 Window Size Analysis

The results presented in Table 6.3 are based on keystroke heat maps extracted from 80
characters and sensor heat maps extracted from 30 seconds (i.e., 3000 sensor values).
On average participants typed 74 characters (SD = 43 characters) in the 30 seconds
window before filling in the self-report. Thus, the two types of windows for extracting
the keystroke and sensor heat maps are a close match Nevertheless, considering longer
periods can be beneficial for the classification performance, because the model has
more data available. As such, we evaluated our model on heat maps extracted on larger
windows ranging from 2 minutes to 30 minutes (the minimum time between self-
reports was 30 minutes). To analyze different window sizes, we relaxed the constraint
of a fixed number of characters (i.e., 80 characters) and sensor measurements (i.e.,
3000 samples). Thus, the heat maps contain a different number of characters and
sensor measurements depending on the number and the duration of sessions in the
corresponding window. Figure 6.12A shows the macro-averaged AUC for valence,
arousal, and dominance for the different window sizes. Peak performance is reached
with a window size of 5 minutes for valence (0.80 AUC), arousal (0.86 AUC), and
dominance (0.83 AUC). Further increasing window sizes leads to a substantial drop
in the performance for all three dimensions. Overall, performance improvements are
only marginal for all three dimensions (up to 0.02 AUC).

6.3.6 Personalization

Affective states can be individual and can reflect idiosyncrasies in users. While
there may be similar typing and sensor patterns between users characterizing similar
affective states, leveraging user-specific data can improve the performance of the
model. To investigate the extent of performance gain for a participant with N filled
in self-reports, we used the first n self-reports to fine-tune the whole model using 5
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Valence

Arousal

Dominance

A) Window size B) Fine-tuning per user

C) Ablation study

Figure 6.12: Macro-averaged AUC for the classification of three levels (low, medium,
high) of valence, arousal, and dominance using A) different window sizes
for the heat map extraction, B) fine-tuning the network per participant on
varying number of self-reports, and C) different number of participants in
the training set. The dashed lines represent the baseline performance (see
Table 6.3).

epochs and predicted then the N − n remaining self-reports. Figure 6.12B reveals the
macro-averaged AUC in terms of n (i.e., the number of self-reports used to fine-tune
the model). Fine-tuning on only 10 self-reports provides already a slight performance
improvement (up to 0.02 AUC). The performance improvement plateaus at around 40
to 60 self-reports used for fine-tuning. The performance improvements are substantial
for valence (+0.07 AUC) and arousal (+0.05 AUC), reaching a performance of 0.85
AUC and 0.89 AUC, respectively. For dominance, the improvements are smaller
(+0.03 AUC).

6.3.7 Ablation Study

A model can only be as good as the data that supports it. If the data (i.e., the heat
maps) show clear patterns, we can achieve a well-performing model with only a little
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amount of data. On the other hand, if the data is noisy, a much larger dataset is needed
to achieve the same performance. In our experiment, we collected a homogeneous
dataset consisting of mostly bachelor and master students around the age of 23. Thus,
we hypothesize that typing and smartphone usage behavior were similar among
participants and less training data is needed to achieve a good performance for the
classification of affective states. To test our hypothesis, we conducted an ablation
study by training the model on data from a subset of the participants. To accomplish
this, we selected a percentage of participants at random in each of the 82 training sets
of the leave-one-user-out cross-validation. Figure 6.12C shows the macro-averaged
AUC for different percentages of users in the training data. Performance plateaus
at around 60% (49) of participants for valence (0.77 AUC) and around 80% (66) of
participants for arousal (0.84 AUC) and dominance (0.82 AUC). Thus, a subset of the
users (i.e., between 60% and 80%) is enough to achieve a performance close to the
performance reached when using data from all the users. By linear extrapolation, we
can roughly predict that with the double amount of participants (i.e., 164 participants),
we could come close to a performance of around 0.83 AUC for valence, 0.89 AUC
for arousal, and 0.87 AUC for dominance.

6.3.8 Runtime Analysis

We conducted a runtime analysis of the different parts of our model. Our computing
environment consisted of an Intel® Xeon® CPU E5-2630 v4 @ 2.20GHz and an
NVIDIA GeForce® GTX 1080 Ti. The prediction of a new data point consisted of
extracting keystroke heat maps (mean = 0.84 s, SD = 0.03 s) and sensor heat maps
(mean = 0.23 s, SD = 0.18 s), followed by the convolutional neural network and the
fully connected layer for the classification of the affective states (mean = 0.0036 s,
SD = 0.004 s). Summing up these values leads to a prediction time of 1.07 seconds
if considering both types of heat maps. If only the keystroke heat maps and sensor
heat maps are used, the prediction time amounts to 0.84 seconds and 0.23 seconds,
respectively. The higher runtime for creating the keystroke heat maps compared to
the sensor heat maps is due to the preprocessing (i.e., mapping touch positions to
keys, calculating the metrics between the key pairs, and sanity checks).

6.4 Discussion

In this chapter, we presented a model that can be used on mobile devices for predicting
valence, arousal, and dominance, the basic emotions, and stress. We believe that
the ability to run our model on smartphones can improve user experience, provide
ubiquitous access to affective state predictions, and can be beneficial for security and
privacy.
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The predictions of our model were based on heat maps generated from keystroke
data and sensor data collected during smartphone usage in real-world environments.
We found that both types of heat maps are capable of accurately predicting valence,
arousal, and dominance. In particular, the sensor heat maps showed the best perfor-
mance for predicting arousal (0.83 AUC), while the keystroke heat maps were most
predictive for valence (0.82 AUC) and dominance (0.82 AUC). These results are in
line with the findings by Olsen and Torresen [2016], reporting that accelerometer data
is more predictive for arousal than valence. In Figure 6.8 we saw only a slight effect
of the magnitude of acceleration and the rate of rotation on dominance. Potentially,
the model benefited from having x-axis, y-axis, and z-axis data separately available
and from the combination of both types of sensors in the heat map.

The keystroke heat maps provide an intuitive and compact visualization of typing
patterns compared to the heat maps presented in Chapter 5. On the other hand, the
recording of sensor data is less privacy-invasive. Sensor data is also less prone to
bias than typing data (i.e., users might be more aware of their typing behavior than
of their smartphone holding behavior). In addition, the runtime to generate sensor
heat maps is substantially lower than that of keystroke heat maps. In conclusion, we
suggest the sensor heat maps as most appropriate for the prediction of affective states
in real-world applications.

We used 80 characters and 30 seconds of accelerometer and gyroscope data to
generate the keystroke and sensor heat maps, respectively. In practice, 30 seconds
of sensor data can be stored continuously in the background of the smartphone until
the user has typed 80 characters. If only sensor data is used for the prediction, the
restriction does not apply anymore and predictions are possible more often (i.e., also
when users did not type). For larger window sizes it takes longer until a prediction
is possible. We showed that peak performance is reached with a window size of 5
minutes (+0.02 AUC). A potential explanation for the performance improvement is
that with larger window sizes the model can implicitly gauge the total time spent on
the smartphone from the sparseness of the heat maps (i.e., a sparser heat map implies
a less active user). On the other hand, if the window size becomes too large, the heat
maps become too dense and noisy which degrades the performance.

We also showed that fine-tuning our model per participant can substantially improve
the performance for valence (+0.07 AUC), arousal (+0.05 AUC), and dominance
(+0.03 AUC). Peak performance for personalizing the model was reached using the
first 40 to 60 self-reports of the participants. After the start of the experiment, it
took some time until the participants got used to filling in the self-reports (i.e., the
variance tended to be larger for the first self-reports). Thus, 40 to 60 self-reports
were necessary for fine-tuning the model to learn the stable self-report pattern of
the participants and reaching peak performance. A reason for this performance
improvement is that the network can learn keystroke and sensor patterns typical for
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a specific participant. Moreover, for participants that reported one class (e.g., high
valence) more often than other classes, the model can shift towards predicting this
class with a higher probability. Other researchers reported performance improvements
for personalized models of up to 6.3% for predicting valence [Dai et al., 2016] and
17.6% for predicting arousal [Ghandeharioun et al., 2019].

For the prediction of the affective states, we employed an architecture that can
be used on mobile devices. The ability to run our model on a smartphone can
improve user experience, provides anytime and anywhere access to affective state
predictions, and can be beneficial for security, privacy, and energy consumption. In
addition, our model is easier to tune compared to the autoencoder architecture used in
Chapter 5. We also experimented with an LSTM architecture to model the time series
of self-reports and the time series of the heat maps in the windows. We did not find
significant performance improvements but substantial higher memory consumption
and higher runtime. Similarly, joint optimization of the labels (i.e., valence, arousal,
and dominance as well as the basic emotions) substantially degraded performance.

We also experimented with enriching our model by context data (i.e., mean ambient
light, application type, daytime, and weekday) extracted over the same windows as
the heat maps were extracted. We encoded the daytime and weekday as integers
ranging from 0 to 23 and 0 (Monday) to 6 (Sunday), respectively. We further
encoded the duration in seconds of the used applications as a 29-dimensional vector
capturing 29 different application categories provided by the Google Play Store (e.g.,
communication, entertainment, and events). From the light sensor, we considered
only the mean value because ambient light is typically constant over short periods
(e.g., 30 seconds). In the context of affective state prediction, the light sensor can
be used to gauge the location of the phone. For example, the values are low in the
night under dimmed light, higher under normal light during the day, and highest
outdoors. Although ambient light correlates to daytime, it still carries additional
information which daytime cannot provide (e.g., using the phone in the evening
in a dark versus bright environment). Overall, we encoded the context data using
a 32-dimensional vector, which we passed through a fully connected network and
subsequently concatenated with the output of the global average pooling layer of the
heat maps. Although ambient light is connected to emotions and moods [Canazei
and Weiss, 2013] and our analysis of the context data presented in Section 6.3.2 was
promising, performance did not improve significantly. We believe that the heat maps
provide similar or richer information than the context data. In addition, typing-based
applications constitute the largest part which decreased the variance of the application
types (i.e., prevalence of communication applications).

A direct comparison of the performance of our model is difficult due to differences
in the measurement of affective states and experimental setups. Olsen and Torre-
sen [2016] reported slightly higher accuracy for the prediction of arousal (+10%) but
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lower accuracy for valence (−19%). In contrast to our work, they captured accelerom-
eter data during sequences of walking from only 10 participants. In comparison to
Ruensuk et al. [2019], our model performed similar for valence (+1%) and arousal
(−7%), although these authors predicted only two levels of valence and arousal.
Contrasted to the personalized model of Ghosh et al. [2019b], our generalized model
performed similar for happiness (−0.03 AUC), sadness (−0.02 AUC), and stress
(−0.01 AU). In addition to most other works, we also considered dominance, which
we believe is an important dimension of affective states.

In comparison to our model evaluated on laboratory data presented in Chapter 5, the
performance in terms of macro-averaged AUC was superior for arousal (+0.04 AUC)
and dominance (+0.02 AUC) but inferior for valence (−0.05 AUC). The inferior
performance for valence may be attributed to class imbalance (11% low, 27% medium,
62% high) or the data collection in the wild. With regard to the basic emotions, our
model presented in this chapter performed better for surprise (+0.1 AUC) and stress
(+0.03 AUC) but was inferior for anger (−0.07 AUC), happiness (−0.07 AUC), and
sadness (−0.05 AUC). Laboratory experiments provide more control while in the
wild experiments provide more ecological validity (i.e., less control) and offer the
possibility of collecting larger datasets.

We acknowledge potential limitations of the approach presented in this chapter. We
analyzed the runtime of our model on a computer. On a mobile device the runtime
of generating the heat maps and the inference time of the network might be slightly
higher. To keep runtime low, the model could be deployed on a server. Another
limitation is the number of data required until a prediction can be made. In our
experiment, we ensured that we have enough sensor and keystroke data available
by unlocking a self-report when the user typed at least 80 characters and used the
smartphone for at least 30 seconds. In practice, using only the sensor heat maps
for the prediction of affective states relaxes the constraint of typing 80 characters
while at the same time providing a similar performance. In addition, by allowing
the participants to fill in self-reports only every 30 minutes, we could have missed
finer-grained changes in affective states. Finally, due to the requirement of having
typed at least 80 characters for unlocking a self-report, the windows used for creating
the sensor heat maps always contained keystrokes. As such, predicting affective
states using sensor heat maps during periods with no keyboard input (e.g., watching
videos on YouTube) requires further research.

6.5 Conclusion

In this chapter, we presented a pipeline for predicting affective states, basic emotions,
and stress based on two-dimensional heat maps generated from 80 keystrokes and
30 seconds of sensor data. We evaluated our pipeline with data collected in an
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experiment in the wild with 82 participants over 10 weeks. Using leave-one-user-out
cross-validation, we demonstrated that our model can accurately predict three levels
(low, medium, high) of valence (up to 0.83 AUC), arousal (up to 0.85 AUC), and
dominance (up to 0.84 AUC). By fine-tuning the network per participant we achieved
substantial performance improvements for valence (+0.07 AUC), arousal (+0.05
AUC), and dominance (+0.03 AUC). We also showed that 60% to 80% of the training
data is enough to achieve a similar performance. When doubling the number of users
for training the network, we expect a performance improvement for valence (0.83
AUC), arousal (0.89 AUC), and dominance (0.87 AUC). We further presented results
for the prediction of two levels (present vs. absent) of stress (0.83 AUC) and the basic
emotions anger (0.77 AUC), happiness (0.81 AUC), sadness (0.82 AUC), surprise
(0.86 AUC), fear (0.85 AUC), and disgust (0.86 AUC). Finally, we showed that we
could achieve a similar performance using sensor heat maps alone which is beneficial
in terms of privacy and runtime (0.23 seconds vs. 0.84 seconds).

In comparison to the typing heat maps presented in Chapter 5, the keystroke heat
maps provide an intuitive and compact visualization of the typing characteristics.
In addition, the keystroke heat maps allowed us to investigate the distribution of
keystroke pairs in relation to the measured affective states (e.g., more frequent occur-
rence of keystroke pairs with a backspace when experiencing negative emotions). By
using sensor heat maps instead of raw sensor data, we are taking into account the rela-
tionship between acceleration and rotation and provide a less privacy-invasive way for
affective state prediction compared to typing heat maps. In comparison to Chapter 5,
we evaluated our model on data collected in real-world environments, demonstrating
the applicability of affective state prediction beyond laboratory settings.
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C H A P T E R 7
Visualization of Affective States

Recognizing the affective state of users is one significant part of an affect-aware
system. Another important component is the visualization of the recognized affective
states. Such visualizations can be used to communicate affective information to others
and for making users aware of their affective states. Despite the variety of benefits,
graphical user interfaces (GUIs) often focus on the purely objective interaction
with the user and do not visualize affective states [Cernea et al., 2013]. In this
chapter, we therefore visualize the affective states by extending existing approaches
and optimizing them for intuitiveness and precision. To achieve this objective, we
developed two application-specific GUI widgets, which visualize the user’s affective
state with glyph-based methods [Borgo et al., 2013] in two different ways. The first
widget, called the intuitive widget, focuses on users that need an assessment of the
current affective state at first sight, e.g., teachers monitoring the widgets of their
students. The second widget, called the precise widget, focuses on users that want
to track the individual dimensions of the affective states over time to enable a more
detailed analysis of affective states. The design space of the glyphs can be seen in
Figure 7.1. The widgets are compared to a baseline visualization in a user study
with 644 participants for testing them on understandability and intuitiveness. The
study shows that, particularly in terms of understandability, our widgets are able to
outperform the baseline significantly. Furthermore, the intuitive widget is intuitive
and understandable without further explanation of the meaning of the visualization.
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A) Design space of the intuitive widget
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B) Design space of the precise widget
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Figure 7.1: We developed two graphical user interface widgets that visualize affective
states in terms of valence, arousal and dominance to users. Our first widget
in A) focuses on the intuitiveness of understanding different combinations of
valence and arousal. Therefore, they are mapped to color. Our second widget
in B) focuses on the precise representation of the levels of the three dimensions
using radial bar charts.
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7.1 Method

First, we describe three requirements for the design space of our widgets. We then
outline the intuitive widget (fast assessment of affective states) and the precise widget
(accurate tracking of affective states over time) in relation to these requirements.

7.1.1 Requirements

The requirements for the visualization are application-dependent. In this chapter, we
consider two possible use cases. First, we focus on users that are mainly interested
in a fast assessment of the current affective state, e.g., teachers that are monitoring
the affective states of their students. Such users may want to have an overview of the
affective states at first sight. Second, we focus on users that are interested in precise
measurements over time, e.g., a user that is interested in adjusting daily routines
based on potential stress causes. Such a user may want a more detailed analysis of
the affective dimensions over time in order to draw useful conclusions. From those
two use cases, we derive the following requirements.

R1. We aim for a fast assessment of the current affective state. The state should be
identifiable at first sight (i.e., intuitive and preattentive [Ware, 2020]). Past affective
states are less important.

R2. To track current trends over time, we aim for exact values and an intuitive reading
of time. Furthermore, the visualization should keep the dimensions easily separable
for clarity.

R3. In both use cases, a core requirement is a small space consumption. Further, the
glyphs should be orientation-independent, compact, and transparent, such that users
can place the widget wherever it interferes least with other activities on the screen. A
circular shape meets these requirements and is therefore used for both widgets.

7.1.2 The Intuitive Widget

The widget that focuses on the first use case from Section 7.1.1 should meet R1 and
R3. Since it is more self-explanatory than the second widget, we call it the intuitive
widget. For its design, we extended the idea by Cernea et al. [2015] and improved
the visualization for the use on small screens, see Figure 7.2 for an overview.

Valence. Because of the similarity of spikes and waves for small widget sizes, we
replaced the spikes by a curve that resembles a saw blade because it maintains a sharp
appearance that is better distinguishable from the waves (see Figure 7.1A).
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Figure 7.2: As in the literature [Ståhl et al., 2005], valence and arousal are mapped to
color. Valence increases from left to right, arousal increases from bottom to
top.

Dominance. Dominance is incorporated by smoothly adapting the radius of the base
circle proportional to the change in dominance. In addition, a thin gray reference
circle denoting medium dominance is constantly displayed (see Figure 7.1A).

Arousal. Since pulsation affects the widget size—which would interfere with
dominance—we used concentric waves flowing with constant speed from the widget
center to the border (see Figure 7.1A). The number of waves increases with increasing
arousal.

Color. The widget is color-coded to enable affective state identification even at
peripheral vision. The color is determined by the level of valence and arousal
based on a unification [Ståhl et al., 2005] of Itten’s color wheel [Itten, 1970] and
Russell’s Circumplex Model of Affect [Russell, 1980]. A measurement of valence
and arousal can be seen as a two-dimensional point living in the discrete space
{1, . . . , 9} × {1, . . . , 9}. Given a certain level of valence v and arousal a, we map the
corresponding point to its polar angle φ = atan2(a, v). The angle is then mapped
to hue in HSV color space, similar to Ståhl et al. [2005]. For the neutral point
(v = 5, a = 5) the color is mapped to gray. Thereby, saturation and value are set
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A) Normalization B) Polar angle C) Hue extraction D) Base circle

Figure 7.3: Color mapping example. The affective space is centered around the origin and
is normalized (A). Then, the polar angle of the current point of interest (red
dot) is calculated (B). From the polar angle, the hue is extracted (C). The base
circle is filled using the color having this hue, setting the saturation and the
value to one in HSV color format (D).

to one (see Figure 7.3). For colors like yellow or green, we adapt the saturation to
enhance contrast.

7.1.3 The Precise Widget

The precise widget focuses on the second use case from Section 7.1.1. It should meet
R2 and R3. A simple bar chart fulfills R2. For R3, we visualize the bar chart as a
circle such that three sectors are formed, each of which corresponds to one affective
dimension (see Figure 7.1B). Thus, all dimensions are adjacent, which enables direct
comparability among dimensions. The number of filled parts per segment denotes
the current level of the corresponding affective dimension. This representation is
unambiguous and lossless with respect to the underlying space of valence, arousal,
and dominance since each affective state is displayed precisely. However, this is less
intuitive and demands more time for interpretation because the user has to parse first
which affective state is represented by combining the dimensions.

The time dimension is incorporated by dividing each sector into equal pieces (see
Figure 7.4). The pieces in a sector show the development of a dimension over the last
few affective states. This allows the user to track current trends in each dimension.

7.2 User Study

To evaluate our intuitive and precise widgets we conducted a user study. First, we
outline the study setup showing the task design which consisted of images and
sentences. Then, we evaluate the intuitiveness of the first (intuitive) widget, followed
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time

Figure 7.4: The precise widget shown in five consecutive time steps from left to right. The
new affective state is put in the first segment in clockwise direction, and all
other affective states are shifted in this direction whereby the oldest one is not
shown anymore.

by comparing both widgets to a baseline widget. Finally, we present results on the
understandability of our widgets.

7.2.1 Study Setup

The user study was carried out using an online survey platform. We recruited 644
participants between the ages of 18 and 52 (mean = 23.8 years, standard deviation
SD = 4.2 years), mostly undergraduate students. The study was split into three parts.
The first part assessed the intuitiveness of the first widget, while the other two parts
compared our two widgets to the baseline. As baseline, we used the visualization
by Cernea et al. [2013] (see Section 2.3). Since their approach does not include
dominance, we extended it by a third bar using a different sequential color map
(ochre). The last part focused on demographical questions and subjective ratings of
understandability. We enclosed the experimental setup in Appendix C.

Task design. In Part 1 and Part 2, we presented six images and six short sentences.
Each image showed a person, expressing a specific affective state. Alternatively, each
sentence consisted of a statement about a person and contained one affective keyword.
For each image and each sentence, the participants were shown three different
visualizations of each widget visualizing different affective states. The participants
were asked to choose the correct one. For the sentences, the keywords were mapped to
valence, arousal, and dominance using the lexicon by Mohammad [2018]. While there
are databases for images such as the International Affective Picture System [Lang
et al., 2008] that trigger certain affective states, there is no database for images that
expresses affective states analogously to the lexicon used for the sentences. Thus, we
mapped affective keywords to the images instead, and then tested and improved the
choice of images as well as sentences in a pilot study (n = 10). To obtain affective
states, the keywords were mapped to valence, arousal, and dominance using the same
lexicon as used for the sentences.
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7.2.2 Intuitiveness of Widget 1

Hypotheses. Since the color mapping was shown to be intuitive [Ståhl et al., 2005],
we expect that the design of our widget is intuitive.

Experimental setup. The participants were shown the images described above, and
three different states of the intuitive widget. For this part, no explanation about the
widget nor any background information about affective states was provided to the
participants.

Results. 54.9% of the responses were correct, which is above random level (33%).
Furthermore, the state of the widget, which differed the most from the correct state in
terms of valence, was often ruled out by the participants. A more detailed analysis of
the results showed that in 82.9% of the cases either the correct version or the most
similar version in terms of valence was chosen. Hence, the visualization of valence
seems self-explanatory (64.0% for arousal, 65.9% for dominance).

7.2.3 Baseline Comparison

Research question. How do our two widgets compare to the baseline in terms of
performance in the tasks presented above?

Experimental setup. In this part, background information about affective states and
a detailed explanation about the widgets were provided. Afterwards, both images
and sentences were presented to the participants. In order to ensure comparability,
the three states shown per widget always encoded the same affective state across the
widgets. The order of the appearance of the widgets and the order of the states was
randomized.

Results. In the sentence-based part the average number of correct answers was 86.6%
(SD = 18%) for the intuitive widget, 83.5% (SD = 19%) for the precise widget, and
82.8% (SD = 20%) for the baseline. For the image-based part, the average number of
correct answers was 71% (SD = 18%) for the intuitive widget, 76.2% (SD = 18%)
for the precise widget, and 70.6% (SD = 17%) for the baseline. Our widgets provide
a small but statistically not significant improvement over the baseline.

7.2.4 Questionnaire

In the last part of the study, the participants were asked to rate the understandability
of the widgets on a 5-point scale. The average ratings were 3.6 (SD = 1.0) for the
intuitive widget, 4.05 (SD = 1.0) for the precise widget, and 2.45 (SD = 1.25)
for the baseline. An independent Welch’s t-test showed that the differences of the
means are pairwise significant (t = −7.8, p = 1.62 · 10−14 for our two widgets,

119



Visualization of Affective States

t = 17.86, p = 8.09 · 10−64 for the intuitive widget and the baseline). Hence, the
precise widget is the most understandable, followed by the intuitive widget and
the baseline. In addition, the participants were asked to indicate on a 5-point scale
how important each dimension was when solving the tasks. The results showed a
mean score of 4.5 (SD = 0.7) for valence, 3.95 (SD = 0.9) for arousal, and 2.9
(SD = 1.15) for dominance. An independent Welch’s t-test showed a statistically
significant difference of the means (t = 12.74, p = 5.1 · 10−35 for valence and
arousal, t = 18.13, p = 3.0 · 10−65 for arousal and dominance).

7.2.5 Discussion

At the end of the study, participants had the opportunity to leave comments. It was
repeatedly pointed out that two images were ambiguous, and that the participants
struggled in guessing the affective state of the person in the image. For one of those
two images the number of correct answers was in fact random.

7.3 Conclusions

Measuring the affective state of users and visualizing it to the users themselves can
have various benefits such as increasing the learning experience [Grawemeyer et al.,
2015] or improving the user’s well-being [Lane et al., 2012]. However, GUIs seldom
make use of those benefits. We developed two application-dependent GUI widgets
that provide affective feedback. The intuitive widget focuses on an intuitive and
fast assessment of the current affective state. The precise widget concentrates on an
exact, clear, and time-dependent visualization. We tested the widgets on intuitiveness
and understandability, and compared them with a baseline in a user study with 644
participants. The results showed that the intuitive widget is indeed self-explanatory,
especially the valence dimension. In terms of subjective understandability ratings,
both widgets outperformed the baseline widget. The widgets were designed to
be compact and transparent such that they interfere as little as possible with other
activities on the user’s screen.
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C H A P T E R 8
Conclusion

In this thesis, we investigated different data modalities to predict affective states. We
evaluated the different data modalities in terms of the protection of privacy and the
applicability in real-world environments. These two factors are important to increase
the users’ acceptance of novel affective technologies and enable the embedding of
affective components in real-world applications. The technical foundation is based on
data-driven concepts. We employed novel data representations and features extracted
from the data and used machine learning to predict affective states enabling innovative
applications in different fields (e.g., psychology and education).

In the following, we review the principal contributions of the thesis, exemplify the
limitations of our work, and outline some potential future work.

8.1 Principal Contributions

In Chapter 3, we leveraged video data to predict affective states from recordings of
external cameras and built-in cameras of mobile devices. From video recordings,
we extracted novel features from user movement, eyes, and face. Using data from a
laboratory experiment with 88 participants, we demonstrated that our Random Forest
classifier can accurately predict two levels (low and high) of valence (up to 0.80 AUC)
and arousal (up to 0.73 AUC) while participants were solving math tasks (active part)
and were looking at pictures (passive part). In general, video recordings pose a strain
on privacy due to the disclosure of the identity of the user and other people in the
vicinity of the user. On the other hand, usability in real-world environments depends
on the used cameras. Built-in cameras of mobile devices are usually preferable in
terms of unobtrusiveness and costs. Typically, recordings from built-in cameras suffer
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from only partially visible faces due to the angle of view of the camera. Thus, we also
developed a novel cheap and unobtrusive mirror construction and neural inpainting
pipeline to improve the visibility of the user’s face on cameras of mobile devices. Our
setup improved confidence in facial landmark detection by up to 88% and provided
comparable performance to external cameras in terms of affective state prediction.

In Chapter 4, we employed handwriting data recorded from a stylus and biosensors
measuring skin conductance, heart rate, and skin temperature to predict affective
states. In comparison to video data, both biosensor and handwriting data are less
privacy-invasive which fosters user acceptance. In our model, we fused different ex-
isting approaches with novel features extracted from biosensor data and handwriting
data. We showed that our Random Forest classifier is capable of accurately predicting
(0.88 AUC) five regions in the valence and arousal space while participants solved
math tasks on a tablet. Interestingly, using only data acquired by the stylus provided
a comparable performance (0.84 AUC). Thus, we conclude that stylus data is a viable
alternative to biosensors in light of the higher usability in real-world environments.
In addition, we also investigated if our model can generalize from solving math tasks
(active) to looking at pictures (passive). We reported a satisfying performance of 0.68
AUC considering the very different domains.

In Chapter 5, we presented a semi-supervised classification pipeline based on novel
pressure and speed of typing heat maps generated from touch input from the smart-
phone’s on-screen keyboard. In comparison to raw data, these two-dimensional heat
maps also consider the spatial distribution of the data. To take advantage of the vast
amount of unlabeled touch data, we employed a variational autoencoder to learn
a low-dimensional representation of the heat maps. We then used fully connected
layers on this low-dimensional representation for the classification of affective states.
To evaluate our model, we conducted a laboratory experiment with 70 participants
engaged in a chat conversation. We demonstrated that our model can accurately
predict three levels (low, medium, high) of valence (up to 0.84 AUC), arousal (up to
0.82 AUC), and dominance (up to 0.82 AUC). In addition, our model can also predict
two levels (present vs. absent) of anger (0.84 AUC), happiness (0.88 AUC), sadness
(0.87 AUC), surprise (0.76 AUC), and stress (0.80 AUC). Our lightweight and less
invasive model can be used on different types of mobile devices and has the potential
to enable emotion-aware chat conversations.

In Chapter 6, we introduced two-dimensional heat maps which encode different
typing metrics of keystroke pairs. The heat maps provide an intuitive visualization
of typing characteristics. Using a MobileNetV2 network architecture, we extracted
meaningful features from the heat maps and used a classification network for the
prediction of affective states. We evaluated our model based on data collected in
the wild in a large-scale user study with 82 participants over 10 weeks. We showed
that our model can accurately predict three levels (low, medium, high) of valence
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(up to 0.83 AUC), arousal (up to 0.85 AUC), and dominance (up to 0.84 AUC).
Performance could be further increased by personalizing the model (up to +0.07
AUC). In addition, our model showed also decent performance for predicting two
levels (present vs. absent) of stress (0.83 AUC) and the basic emotions anger (0.77
AUC), happiness (0.81 AUC), sadness (0.82 AUC), surprise (0.86 AUC), fear (0.85
AUC), and disgust (0.86 AUC). We also showed that by using two-dimensional
heat maps built from gyroscope and accelerometer measurements, a comparable
performance can be achieved. Thus, sensor heat maps are a viable alternative to
keystroke heat maps considering the higher privacy protection and faster generation
(0.23 seconds vs. 0.84 seconds). Another noteworthy contribution is our novel
emoji-based questionnaire for measuring valence, arousal, and dominance on five
levels. Our questionnaire is particularly useful on mobile devices and provides a
modern and easy-to-understand visualization for a fast and accurate assessment of
affective states.

Finally, in Chapter 7, we presented two compact and transparent widgets for visualiz-
ing valence, arousal, and dominance on mobile devices. The first widget provides a
fast and intuitive assessment of affective states, which can be useful for conceiving
affective states of several people at the same time (e.g., students in a classroom). The
second widget provides an exact and time-dependent visualization, which is valuable
when observing the affective state of a single person over time. We proved our design
choices and the requirements imposed on the widgets by conducting a user study
with 644 participants.

In conclusion, we showed that deep learning and traditional machine learning tech-
niques can predict affective states accurately using a variety of data modalities. In
general, our models performed well on laboratory data but also the model for predict-
ing affective states in a real-world environment based on smartphone data showed
a decent performance. We conclude, that it is possible to build a non-invasive and
privacy-protecting system that can reliably predict affective states in the wild by care-
fully selecting the source and representation of the data. In this thesis, we presented
such a model based on heat maps extracted from smartphone sensor data. Other data
modalities (i.e., video data, biosensors, and handwriting data) can provide a com-
parable performance but with typically lower usability in real-world environments
and higher invasion of privacy. On the other hand, these modalities are not tied to a
specific context (i.e., smartphones). To conclude, we believe that machine learning
for affective computing has a huge amount of potential with unexplored areas in
different fields. We hope that this thesis has contributed a step forward in predicting
affective states in the wild and has raised awareness of the importance of privacy
protection for affect-aware systems.
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8.2 Limitations

In the following, we discuss the core limitations of the presented models. A discussion
of the specific limitations of the different models can be found in the corresponding
chapters. We collected the ground truth (i.e., the affective states) for training our
models by using self-reports of people. Directly measuring affect or emotions is
difficult [Rosenthal and Rosnow, 1991]. Thus, our results are restricted to the specific
conceptualization of affect that we chose (i.e., basic emotions and valence, arousal,
and dominance). We identify three potential sources of bias associated with the
self-reports:

• Truthfulness. Potentially, participants filled in the self-reports not always
truthfully due to getting used to filling in self-reports or embarrassment to
report certain emotions (e.g., reporting happiness when looking at a cruel
picture). In post-experiment questionnaires, participants reported having
filled in the self-reports truthfully. For the self-reports collected in the wild,
we did not find any patterns of irregularities in the self-reports. Similarly, the
self-reports collected in the laboratory experiments were in accordance with
the emotions we wanted to trigger with the different tasks.

• Subjectivity. Self-reports always have a subjective component because
perceptions of emotions are not universal but they are dependent on different
factors such as culture and social background [Gendron et al., 2014; Jack
et al., 2012; Mesquita and Frijda, 1992]. In our experiments, we recruited
a homogeneous population of participants in terms of culture (i.e., most
participants were European). The generalization of our models to other
cultures needs further investigation. To reduce the subjective component, we
provided the participants a detailed explanation of the self-reports including
examples at the beginning of the experiments. By merging the self-reports
into classes or regions, we also tried to alleviate the subjective bias.

• Burn-in phase.1 It takes some time until participants are getting used to
filling in self-reports. During such a burn-in phase self-reports may be biased
(e.g., fluctuating too much or too little). Similarly, self-reports can be biased
if participants are getting bored of filling in self-reports.

Another limitation is the missing interpersonal relations in laboratory experiments
(i.e., the experimenter does not know the participants beforehand). This is different
from interactions in the real world, where communication often happens between
people knowing each other. It is known that interpersonal relationships can influence
emotional reactions [Calvo and D’Mello, 2010]. In particular, it is a limitation for
chat conversations on smartphones. Solving math tasks, looking at pictures or other

1Suggested by R.M. Weber (personal communication, March 25, 2021).
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egocentric activities are less affected. In addition, the presence of the experimenter in
laboratory experiments and the awareness of being recorded can also influence the
participants [Calvo et al., 2015].

In our experiments, we recruited a homogeneous population of bachelor and master
students which may limit the generalization to the non-academic world and people
of other ages. We are optimistic that our models also work for a broader population
given proper baseline normalization of the signals.

Finally, we trained and evaluated our models offline using resources (i.e., memory,
CPU, and GPU) exceeding the resources of most mobile devices. In particular,
smartphones and tablets rarely have built-in GPUs. A workaround for incorporating
the models in real-world applications would be to deploy the models on a server
instead of directly on mobile devices. This workaround may cause additional privacy
issues and can lower the acceptance of users. On the other hand, deploying the model
on mobile devices requires some adaptations of the model. Our model presented
in Chapter 6 for predicting affective states based on smartphone keystroke and
sensor data leverages the MobileNetV2 architecture. We chose this architecture
keeping in mind the potential deployment of the model on mobile devices. Using
depthwise separable convolutions, MobileNetV2 models can be run efficiently on
mobile devices [Sandler et al., 2018].

8.3 Future Work

Future research comprises refining and extending our hardware setup and inpainting
pipeline presented in Chapter 3. The CelebA-HQ dataset, which we used to train our
inpainting model, contained only images with a frontal view of faces. In our record-
ings, individuals are captured at different angles. Thus, rotation of the recordings or
using a dataset providing faces at different angles can improve the neural inpainting
model. In addition, the feature set could be extended by gesture-based features. Such
features have shown to be promising for predicting affective states [Bustos et al.,
2011].

Potential refinements for our model based on biosensors and handwriting shown
in Chapter 4 include using non-linear IBI features and frequency features for skin
temperature. Additionally, an in-depth analysis of handwriting that takes into account
the slant of the handwriting could further improve the classification performance.
Another interesting direction would be to make use of existing large biosensor
databases for semi-supervised learning by using autoencoders to infer an efficient
feature embedding similar to the semi-supervised pipeline presented in Chapter 5.

Further, personality traits and the depression level could be modeled. We measured
personality traits and the depression level of the participants in the experiments pre-
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sented in Chapter 5 (laboratory experiment) and Chapter 6 (in the wild experiment).
This would complement ongoing research that has shown the feasibility of predicting
personality based on keyboard input [Khan et al., 2008], touchscreen-based inter-
actions [Küster et al., 2018], and smartphone accelerometer data [Gao et al., 2019].
Knowing a person’s personality traits can help context-aware recommender systems
to provide recommendations tailored to the personality of the person [Braunhofer et
al., 2015; Recio-Garcia et al., 2009]. Automatic inference of the personality traits and
the depression level can also be useful in therapeutic settings to change the personality
or coping with depression [Martin et al., 2014]. Further, predicting feelings, moods,
attitudes, and temperament in addition to emotions could be beneficial to model
affective states holistically [Calvo and D’Mello, 2010].

The deep learning models presented in Chapter 5 and Chapter 6 could be refined by
transfer learning from other existing large-scale datasets such as ImageNet [Deng
et al., 2009], which contains millions of images. Transfer learning was already
successfully applied for emotion recognition from video data [Ng et al., 2015] and
stress prediction from smartphone sensor data [Maxhuni et al., 2016].

In this thesis, we evaluated our models on a homogeneous population of bachelor and
master students. Future research should consider a more heterogeneous population
consisting of people of different ages, professions, and cultural backgrounds. Re-
cently, methods capturing similarity in human behavior such as community similarity
networks [Lane et al., 2011] have attracted attention. The underlying idea of such
methods is to generalize affective state prediction by identifying individuals who can
be treated as uniform in terms of affective state inference. Another possibility to foster
generalization is to fuse different data modalities for building competent multimodal
affective state prediction systems. Several techniques to fuse data have been proposed
such as feature-level fusion, decision-level fusion, and data-level fusion [Wagner
et al., 2009]. On that ground, several works presented models fusing different data
sources for affective state prediction [Shoumy et al., 2020]. Although combining
different data modalities can improve performance, issues related to privacy and
usability in the real world might be amplified.

Another extension of our work could broaden the affective space by extending
the set of basic emotions to include more distinct categorical states (e.g., bored,
contented, excited, nervous, relaxed, and upset). Affective ground truth labels can
also be targeted to the specific context. For example, in an educational setting,
confusion, frustration, flow, curiosity, and anxiety can be of interest [Calvo and
D’Mello, 2010]. In addition, instead of performing classification on the dimensional
states (i.e., valence, arousal, and dominance), a regression model is an alternative
providing a more fine-grained distinction between affective states.

Potential future work for the visualization presented in Chapter 7 is to investigate
the cognitive processing time for both widgets, as well as the cognitive processing
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stages when translating from sentences and images to visualizations. Furthermore,
the precise widget can be improved in two ways. The different levels of the radial bar
chart show varying prominence, which could be solved by using varying thickness
of the rings. Also, the medium level could be highlighted such that the sign of the
dimension is identifiable. One could investigate other choices than a radial bar chart
for the precise widget. A final step would consist of testing the widgets on different
devices such as smartwatches and using a perceptually normalized hue for the color
mapping of the intuitive widget to eradicate contrast issues.

Finally, another future direction is to connect our visualization of affective states with
our models to provide visual feedback in real-time. Such feedback can be useful
for teachers in classrooms to observe student’s emotions and for status messages on
mobile phones to communicate the emotional state to others. Aside from real-time
feedback, retrospective feedback can provide useful information about the dynamics
of affective states in the past days or weeks (e.g., in a calendar application), which
can foster self-regulation. A connection between our models and our visualization
widgets can be achieved by deploying the models on a server and sending the
predicted affective state back to the mobile device or by conducting the inference on
the mobile device itself.
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A P P E N D I X A
Affective State Prediction Using
Smartphones in the Lab

Table A.1: Performance for the prediction of three classes (low, medium, high) of valence,
arousal, and dominance. AUCmicro and F1micro represent micro-averaged AUC
and F1-score, respectively. AUCmacro and F1macro represent macro-averaged
AUC and F1-score, respectively. The chance level is 0.33 for accuracy and
F1-score, 0.5 for AUC, and 0 for Cohen’s kappa.

Dimension Heat Map AUCmicro AUCmacro Accuracy F1micro F1macro Cohen’s kappa

Valence Pressure 0.75 0.74 56% 0.56 0.55 0.33
Down-down 0.81 0.81 64% 0.64 0.64 0.45
Up-down 0.79 0.79 61% 0.61 0.61 0.41
Combination 0.84 0.83 67% 0.67 0.66 0.49

Arousal Pressure 0.80 0.78 62% 0.62 0.59 0.38
Down-down 0.75 0.73 55% 0.55 0.51 0.28
Up-down 0.73 0.70 53% 0.53 0.50 0.26
Combination 0.82 0.80 63% 0.63 0.61 0.41

Dominance Pressure 0.79 0.77 63% 0.63 0.57 0.37
Down-down 0.80 0.78 63% 0.63 0.56 0.37
Up-down 0.78 0.76 61% 0.61 0.55 0.34
Combination 0.82 0.80 65% 0.65 0.59 0.41

A.1 Additional Statistics Supporting Experimental Validation

The tables provide the p-values of the Pearson correlations between the chat conver-
sations (exciting, shocking, rude, and confusing) based on the self-reports (SAM,
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four basic emotions, and stress). For the SAM, we calculated the mean of the values
per participant and chat conversation. For the four basic emotions and stress, we
added the times that participants reported a specific basic emotion or stress during
each of the conversations. Values in bold represent statistical significant correlations
after Bonferroni correction.

Table A.2: The p-values of the Pearson correlations between the chat conversations based
on the reported valence. Bonferroni correction with α = 0.003 (18 compar-
isons).

Exciting Shocking Rude Confusing

Exciting < 0.001 < 0.001 < 0.001
Shocking < 0.001 < 0.001 < 0.001
Rude < 0.001 < 0.001 0.108
Confusing < 0.001 < 0.001 0.108

Table A.3: The p-values of the Pearson correlations between the chat conversations based
on the reported arousal. Bonferroni correction with α = 0.003 (18 compar-
isons).

Exciting Shocking Rude Confusing

Exciting 0.369 0.964 0.066
Shocking 0.369 0.718 < 0.001
Rude 0.964 0.718 0.082
Confusing 0.066 < 0.001 0.082

Table A.4: The p-values of the Pearson correlations between the chat conversations based
on the reported dominance. Bonferroni correction with α = 0.003 (18 compar-
isons).

Exciting Shocking Rude Confusing

Exciting < 0.001 0.003 < 0.001
Shocking < 0.001 0.231 0.834
Rude 0.003 0.231 0.495
Confusing < 0.001 0.834 0.495
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Table A.5: The p-values of the Pearson correlations between the chat conversations based
on the reported anger. Bonferroni correction with α = 0.002 (30 comparisons).

Exciting Shocking Rude Confusing

Exciting < 0.001 < 0.001 0.22
Shocking < 0.001 0.004 < 0.001
Rude < 0.001 0.004 0.007
Confusing 0.22 < 0.001 0.007

Table A.6: The p-values of the Pearson correlations between the chat conversations based
on the reported happiness. Bonferroni correction with α = 0.002 (30 compar-
isons).

Exciting Shocking Rude Confusing

Exciting < 0.001 < 0.001 < 0.001
Shocking < 0.001 0.015 0.006
Rude < 0.001 0.015 0.92
Confusing < 0.001 0.006 0.92

Table A.7: The p-values of the Pearson correlations between the chat conversations based
on the reported sadness. Bonferroni correction with α = 0.002 (30 compar-
isons).

Exciting Shocking Rude Confusing

Exciting < 0.002 0.339 0.693
Shocking < 0.002 < 0.001 < 0.001
Rude 0.339 < 0.001 0.192
Confusing 0.693 < 0.001 0.192

Table A.8: The p-values of the Pearson correlations between the chat conversations based
on the reported surprise. Bonferroni correction with α = 0.002 (30 compar-
isons).

Exciting Shocking Rude Confusing

Exciting 0.068 0.111 < 0.001
Shocking 0.068 0.944 0.014
Rude 0.111 0.944 0.021
Confusing < 0.001 0.014 0.021
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Table A.9: The p-values of the Pearson correlations between the chat conversations based
on the reported stress. Bonferroni correction with α = 0.002 (30 comparisons).

Exciting Shocking Rude Confusing

Exciting 0.022 < 0.001 0.022
Shocking 0.022 0.057 0.972
Rude < 0.001 0.057 0.065
Confusing 0.022 0.972 0.065
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A P P E N D I X B
Affective State Prediction Using
Smartphones in the Wild

Table B.1: Performance for the prediction of three classes (low, medium, high) of valence,
arousal, and dominance. AUCmicro and F1micro represent micro-averaged AUC
and F1-score, respectively. AUCmacro and F1macro represent macro-averaged
AUC and F1-score, respectively. The chance level is 0.33 for accuracy and
F1-score, 0.5 for AUC, and 0 for Cohen’s kappa.

Dimension Heat Map AUCmicro AUCmacro Accuracy F1micro F1macro Cohen’s kappa

Valence Keystrokes 0.82 0.76 66% 0.66 0.53 0.33
Sensors 0.79 0.73 64% 0.64 0.48 0.27
Combination 0.83 0.78 70% 0.70 0.57 0.40

Arousal Keystrokes 0.81 0.80 63% 0.63 0.60 0.42
Sensors 0.83 0.82 64% 0.64 0.61 0.43
Combination 0.85 0.84 65% 0.65 0.64 0.46

Dominance Keystrokes 0.82 0.79 67% 0.67 0.62 0.46
Sensors 0.81 0.79 63% 0.63 0.59 0.39
Combination 0.84 0.82 68% 0.68 0.64 0.47
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Figure B.1: Mean and 95% confidence interval (shaded area) of reported basic emotions
and stress level (interval [0, 1]) over the time of the day. The titles contain the
results of Kruskal-Wallis tests to investigate whether there were significant
differences during the time of the day.
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Figure B.2: Mean and 95% confidence interval (shaded area) of reported valence, arousal,
and dominance (interval [1, 5]) as well as the basic emotions and stress level
(interval [0, 1]) over the days of the week. The titles contain the results of
Kruskal-Wallis tests to investigate whether there were significant differences
during the day of the week.
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Figure B.2 (cont.): Mean and 95% confidence interval (shaded area) of reported valence,
arousal, and dominance (interval [1, 5]) as well as the basic emotions and stress level
(interval [0, 1]) over the days of the week. The titles contain the results of Kruskal-Wallis
tests to investigate whether there were significant differences during the day of the week.
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Figure B.3: Mean and 95% confidence interval (shaded area) of reported basic emotions
and stress level (interval [0, 1]) over different application categories. The
titles contain the results of Kruskal-Wallis tests to investigate whether there
were significant differences for the application categories.
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Figure B.3 (cont.): Mean and 95% confidence interval (shaded area) of reported basic
emotions and stress level (interval [0, 1]) over different application categories. The titles
contain the results of Kruskal-Wallis tests to investigate whether there were significant
differences for the application categories.
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Figure B.3 (cont.): Mean and 95% confidence interval (shaded area) of reported basic
emotions and stress level (interval [0, 1]) over different application categories. The titles
contain the results of Kruskal-Wallis tests to investigate whether there were significant
differences for the application categories.
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Figure B.3 (cont.): Mean and 95% confidence interval (shaded area) of reported basic
emotions and stress level (interval [0, 1]) over different application categories. The title
contains the result of a Kruskal-Wallis test to investigate whether there were significant
differences for the application categories.
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Figure B.4: The basic emotions and stress level (interval [0, 1]) in relation to the magnitude
of linear acceleration. The dashed regression line shows the linear trend in
the data.
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Figure B.5: The basic emotions and stress level (interval [0, 1]) in relation to the magnitude
of the rate of rotation. The dashed regression line shows the linear trend in
the data.
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Figure B.6: The basic emotions and stress level (interval [0, 1]) in relation to light intensity.
The dashed regression line shows the linear trend in the data.
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A P P E N D I X C
Affective State Visualization

C.1 User Study Examples

Two task examples from the study are shown. The first example shown in Figure C.1
is taken from part 1 where the intuitiveness of our first widget has been investigated.
The participants were not given any additional information about affective states or
the widgets at this point. The second example presented in Figure C.2 is taken from
part 2 where our widgets were compared to the baseline. Additional explanations
regarding the widgets and the concept of affective states were provided previously to
this task.

C.2 Sentences and Images Used in the Study

In Table C.1 we present an overview of the sentences that have been used in the study.
The sentences are provided together with the keyword that defines the corresponding
levels of valence, arousal and dominance. VAD stands for valence, arousal and
dominance and indicates the level of each dimension on a 9-point scale. Furthermore,
the alternatives listed on the right indicate which keyword has been used in the other
two state visualizations shown in a particular task. The same information is provided
for the images in Table C.2. Figure C.3 shows the six pictures used in the study.
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Figure C.1: Example from the study for investigating the intuitiveness of our first widget.
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C.2 Sentences and Images Used in the Study

Figure C.2: Example from the study for comparing our widgets to the baseline (GUI 3).
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Table C.1: The sentences used in the study. The keyword defines the corresponding valence, arousal and dominance (VAD) level on
a 9-point scale. The alternatives indicate which keyword has been used in the other two state visualizations shown in a
particular task.

Sentence Keyword VAD Score Alternative 1 Alternative 2

Alice feels sick today. sick 1, 4, 2 amused sleepy
Charlie’s team won the hacking competition. win 9, 7, 8 scared surprised
Bob gets very nervous before tests. nervous 3, 8, 2 bored in love
Charlie wasn’t really interested in the seminar. disinterested 4, 3, 4 depressed angry
Alice and Bob finally reached an agreement. agreement 7, 4, 7 excited sad
Charlie was shocked after hearing the news. shocked 3, 8, 4 bored relaxed

Table C.2: The images used in the study and the corresponding valence, arousal and dominance (VAD) level on a 9-point scale. The
alternatives indicate which keyword has been used in the other two state visualizations shown in a particular task.

Image VAD Score Alternative 1 Alternative 2

angry 2, 8, 6 surprised bored
happy 9, 7, 8 sleepy disinterested
relaxed 8, 1, 4 excited in love
bored 2, 2, 2 sick sleepy
in love 9, 5, 7 relaxed agreement
sad 2, 7, 2 disintested amused
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C.2 Sentences and Images Used in the Study

A) Angry B) Bored C) Depressed

D) In love E) Happy F) Relaxed

Figure C.3: The six pictures used in the study. The pictures express the emotional states
angry (A), bored (B), depressed (C), in love, (D), happy (E) and relaxed (F).
The images are taken from http://www.pexels.com and http://www.
unsplash.com .

149

http://www.pexels.com
http://www.unsplash.com
http://www.unsplash.com


Affective State Visualization

150



References

[ACT, 2017] ACT. The ACT technical manual, 2017.

[Aksan et al., 2018] Emre Aksan, Fabrizio Pece, and Otmar Hilliges. Deepwriting: Mak-
ing digital ink editable via deep generative modeling. In Proceedings of the CHI
Conference on Human Factors in Computing Systems. ACM, 2018.

[Andreassi, 2010] John L. Andreassi. Psychophysiology: Human Behavior and Physiolog-
ical Response. Psychology Press, 2010.

[Androidrank, 2021] Website, 2021. Retrieved May 13, 2021 from https://www.
androidrank.org.

[Araújo et al., 2005] Lívia C. F. Araújo, Luiz H. R. Sucupira, Miguel Gustavo Lizarraga,
Lee Luan Ling, and Joao Baptista T. Yabu-Uti. User authentication through typing
biometrics features. IEEE Transactions on Signal Processing, 53(2):851–855, 2005.

[Arroyo et al., 2009] Ivon Arroyo, David G. Cooper, Winslow Burleson, Beverly Park
Woolf, Kasia Muldner, and Robert Christopherson. Emotion sensors go to school.
In Proceedings of the Conference on Artificial Intelligence in Education: Building
Learning Systems That Care: From Knowledge Representation to Affective Modelling,
pages 17–24, NLD, 2009. IOS Press.

[Ayi and El-Sharkawy, 2020] Maneesh Ayi and Mohamed El-Sharkawy. RMNv2: Re-
duced Mobilenet V2 for CIFAR10. In 10th Annual Computing and Communication
Workshop and Conference (CCWC), pages 287–292. IEEE, 2020.

[Bachmann et al., 2015] Anja Bachmann, Christoph Klebsattel, Matthias Budde, Till
Riedel, Michael Beigl, Markus Reichert, Philip Santangelo, and Ulrich Ebner-Priemer.

https://www.androidrank.org
https://www.androidrank.org


References

How to use smartphones for less obtrusive ambulatory mood assessment and mood recog-
nition. In Adjunct Proceedings of the ACM International Joint Conference on Pervasive
and Ubiquitous Computing and Proceedings of the ACM International Symposium on
Wearable Computers, pages 693–702. ACM, 2015.

[Baker et al., 2012] Ryan S. J. D. Baker, Sujith M. Gowda, Michael Wixon, Jessica Kalka,
Angela Z. Wagner, Aatish Salvi, Vincent Aleven, Gail W. Kusbit, Jaclyn Ocumpaugh,
and Lisa Rossi. Towards sensor-free affect detection in cognitive tutor algebra. In
International Conference on Educational Data Mining (EDM), June 2012.

[Baltrusaitis et al., 2018] Tadas Baltrusaitis, Amir Zadeh, Yao Chong Lim, and Louis-
Philippe Morency. Openface 2.0: Facial behavior analysis toolkit. In 13th IEEE
International Conference on Automatic Face & Gesture Recognition, pages 59–66.
IEEE, 2018.

[Bauer and Lukowicz, 2012] Gerald Bauer and Paul Lukowicz. Can smartphones detect
stress-related changes in the behaviour of individuals? In IEEE International Conference
on Pervasive Computing and Communications Workshops, pages 423–426. IEEE, 2012.

[Benedek and Kaernbach, 2010] Mathias Benedek and Christian Kaernbach. A continuous
measure of phasic electrodermal activity. Journal of Neuroscience Methods, 190(1):80–
91, 2010.

[Bengio, 2012] Yoshua Bengio. Practical recommendations for gradient-based training of
deep architectures. In Neural Networks: Tricks of the Trade, pages 437–478. Springer,
2012.

[Bertacchini et al., 2013] Francesca Bertacchini, Eleonora Bilotta, Lorella Gabriele, Diana
Elizabeth Olmedo Vizueta, Pietro Pantano, Francesco Rosa, Assunta Tavernise, Stefano
Vena, and Antonella Valenti. An emotional learning environment for subjects with
Autism Spectrum Disorder. In International Conference on Interactive Collaborative
Learning (ICL), pages 653–659. IEEE, 2013.

[Best, 2005] Karl-Heinz Best. Zur Häufigkeit von Buchstaben, Leerzeichen und anderen
Schriftzeichen in deutschen Texten. Glottometrics, 11:9–31, 2005.

[Betella et al., 2014] Alberto Betella, Riccardo Zucca, Ryszard Cetnarski, Alberto Greco,
Antonio Lanatà, Daniele Mazzei, Alessandro Tognetti, Xerxes D. Arsiwalla, Pedro
Omedas, Danilo De Rossi, et al. Inference of human affective states from psychophys-
iological measurements extracted under ecologically valid conditions. Frontiers in
Neuroscience, 8:286, 2014.

[Beutelspacher, 1996] Albrecht Beutelspacher. Kryptologie, volume 7. Springer, 1996.

[Blanchard et al., 2014] Nathaniel Blanchard, Robert Bixler, Tera Joyce, and Sidney
D’Mello. Automated physiological-based detection of mind wandering during learning.

152



References

In 12th International Conference on Intelligent Tutoring Systems, pages 55–60, Berlin,
Heidelberg, 2014. Springer-Verlag.

[Bogomolov et al., 2013] Andrey Bogomolov, Bruno Lepri, and Fabio Pianesi. Happiness
recognition from mobile phone data. In International Conference on Social Computing,
pages 790–795. IEEE, 2013.

[Bogomolov et al., 2014] Andrey Bogomolov, Bruno Lepri, Michela Ferron, Fabio Pi-
anesi, and Alex Sandy Pentland. Daily stress recognition from mobile phone data,
weather conditions and individual traits. In Proceedings of the 22Nd ACM International
Conference on Multimedia, pages 477–486, New York, NY, USA, 2014. ACM.

[Borgo et al., 2013] Rita Borgo, Johannes Kehrer, David H. S. Chung, Eamonn Maguire,
Robert S. Laramee, Helwig Hauser, Matthew Ward, and Min Chen. Glyph-based visual-
ization: Foundations, design guidelines, techniques and applications. In Eurographics -
State of the Art Reports. The Eurographics Association, 2013.

[Bosch et al., 2015] Nigel Bosch, Sidney D’Mello, Ryan S. J. D. Baker, Jaclyn
Ocumpaugh, Valerie Shute, Matthew Ventura, Lubin Wang, and Weinan Zhao. Auto-
matic detection of learning-centered affective states in the wild. In Proceedings of the
20th International Conference on Intelligent User Interfaces, pages 379–388, 2015.

[Boucsein et al., 2012] Wolfram Boucsein, Don C. Fowles, Sverre Grimnes, Gershon
Ben-Shakhar, Walton T. roth, Michael E. Dawson, and Diane L. Filion. Publication
recommendations for electrodermal measurements. Psychophysiology, pages 1017–34,
2012.

[Bradley and Lang, 1994] Margaret M. Bradley and Peter J. Lang. Measuring emotion:
The self-assessment manikin and the semantic differential. Journal of Behavior Therapy
and Experimental Psychiatry, 25(1):49–59, 1994.

[Bradski, 2000] G. Bradski. The OpenCV library. Dr. Dobb’s Journal of Software Tools,
2000.

[Braunhofer et al., 2015] Matthias Braunhofer, Mehdi Elahi, and Francesco Ricci. User
personality and the new user problem in a context-aware point of interest recommender
system. In Information and Communication Technologies in Tourism, pages 537–549.
Springer, 2015.

[Breazeal, 2011] Cynthia Breazeal. Social robots for health applications. In Annual
International Conference of the IEEE Engineering in Medicine and Biology Society,
pages 5368–5371. IEEE, 2011.

[Buschek et al., 2018] Daniel Buschek, Benjamin Bisinger, and Florian Alt. Researchime:
A mobile keyboard application for studying free typing behaviour in the wild. In
Proceedings of the CHI Conference on Human Factors in Computing Systems, pages
1–14, New York, NY, USA, 2018. Association for Computing Machinery.

153



References

[Bustos et al., 2011] Dana May Bustos, Geoffrey Loren Chua, Richard Thomas Cruz,
Jose Miguel Santos, and Merlin Teodosia Suarez. Gesture-based affect modeling for
intelligent tutoring systems. In International Conference on Artificial Intelligence in
Education, pages 426–428. Springer, 2011.

[Cabestrero et al., 2018] Raul Cabestrero, Pilar Quirós, Olga C. Santos, Sergio Salmeron-
Majadas, Raul Uria-Rivas, Jesus G. Boticario, David Arnau, Miguel Arevalillo-Herráez,
and Francesc J. Ferri. Some insights into the impact of affective information when
delivering feedback to students. Behaviour & Information Technology, 37(12):1252–
1263, 2018.

[Calvo and D’Mello, 2010] Rafael A. Calvo and Sidney D’Mello. Affect detection: An
interdisciplinary review of models, methods, and their applications. IEEE Transactions
on Affective Computing, 1(1):18–37, 2010.

[Calvo et al., 2015] Rafael A. Calvo, Sidney D’Mello, Jonathan Gratch, and Arvid Kappas.
The Oxford Handbook of Affective Computing. Oxford Library of Psychology, 2015.

[Canazei and Weiss, 2013] M. Canazei and E. Weiss. The influence of light on mood and
emotion. Handbook of Psychology of Emotions: Recent Theoretical Perspectives and
Novel Empirical Findings; Nova Science Publishers: Hauppauge, NY, USA, 1:297–306,
2013.

[Carneiro et al., 2012] Davide Carneiro, José Carlos Castillo, Paulo Novais, Antonio
Fernández-Caballero, and José Neves. Multimodal behavioral analysis for non-invasive
stress detection. Expert Systems with Applications, 39(18):13376–13389, 2012.

[Carpenter, 2011] Rollo Carpenter. Cleverbot, 2011.

[Cernea et al., 2013] Daniel Cernea, Christopher Weber, Achim Ebert, and Andreas Kerren.
Emotion scents: A method of representing user emotions on gui widgets. In Visualization
and Data Analysis, volume 8654, pages 168–181. International Society for Optics and
Photonics, SPIE, 2013.

[Cernea et al., 2015] Daniel Cernea, Christopher Weber, Achim Ebert, and Andreas Kerren.
Emotion-prints: Interaction-driven emotion visualization on multi-touch interfaces. In
Visualization and Data Analysis, volume 9397, pages 82–96. International Society for
Optics and Photonics, SPIE, 2015.

[Chen et al., 2015] Yuxuan Chen, Nigel Bosch, and Sidney D’Mello. Video-based af-
fect detection in noninteractive learning environments. In Proceedings of the 8th
International Conference on Educational Data Mining, pages 440–443. International
Educational Data Mining Society (IEDMS), 2015.

[Christin et al., 2011] Delphine Christin, Andreas Reinhardt, Salil S. Kanhere, and
Matthias Hollick. A survey on privacy in mobile participatory sensing applications.
Journal of Systems and Software, 84(11):1928–1946, November 2011.

154



References

[Colombetti, 2009] Giovanna Colombetti. From affect programs to dynamical discrete
emotions. Philosophical Psychology, 22(4):407–425, 2009.

[Conati and Maclaren, 2009] Cristina Conati and Heather Maclaren. Modeling user affect
from causes and effects. In User Modeling, Adaptation, and Personalization, pages
4–15. Springer, 2009.

[Critchley, 2002] Hugo D. Critchley. Electrodermal responses: What happens in the brain.
The Neuroscientist, 8(2):132–142, 2002.

[Csikszentmihalyi, 2008] Mihaly Csikszentmihalyi. Flow: The Psychology of Optimal
Experience. Harper Perennial, New York, NY, 2008.

[Dai et al., 2016] Daxiang Dai, Qun Liu, and Hongying Meng. Can your smartphone
detect your emotion? In 12th International Conference on Natural Computation, Fuzzy
Systems and Knowledge Discovery (ICNC-FSKD), pages 1704–1709. IEEE, 2016.

[Danner et al., 2016] Daniel Danner, Beatrice Rammstedt, Matthias Bluemke, Lisa Treiber,
Sabrina Berres, Christopher J. Soto, and Oliver P. John. Die deutsche Version des Big
Five Inventory 2 (BFI-2). GESIS - Leibniz-Institut für Sozialwissenschaften, Mannheim,
2016.

[De Luca et al., 2012] Alexander De Luca, Alina Hang, Frederik Brudy, Christian Lindner,
and Heinrich Hussmann. Touch me once and I know it’s you!: Implicit authentication
based on touch screen patterns. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 987–996. ACM, 2012.

[Deng et al., 2009] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
Imagenet: A large-scale hierarchical image database. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 248–255. IEEE, 2009.

[Dhakal et al., 2018] Vivek Dhakal, Anna Maria Feit, Per Ola Kristensson, and Antti
Oulasvirta. Observations on typing from 136 million keystrokes. In Proceedings of the
CHI Conference on Human Factors in Computing Systems, pages 1–12, New York, NY,
USA, 2018. Association for Computing Machinery.

[Ditzler et al., 2016] Christine Ditzler, Eunsook Hong, and Neal Strudler. How tablets are
utilized in the classroom. Journal of Research on Technology in Education, 48(3):181–
193, 2016.

[D’Mello et al., 2018] Sidney K. D’Mello, Nigel Bosch, and Huili Chen. Multimodal-
Multisensor Affect Detection, pages 167–202. Association for Computing Machinery
and Morgan & Claypool, 2018.

[Dzedzickis et al., 2020] Andrius Dzedzickis, Artūras Kaklauskas, and Vytautas Bucin-
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