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Figure 1: Dropping viscoelastic balls in an Eulerian fluid simulation. Invisible geometry is quickly deleted, while the visible surfaces retain
their details even after translating through the air and splashing on the ground.

Abstract

We present a method for accurately tracking the moving surface of
deformable materials in a manner that gracefully handles topologi-
cal changes. We employ a Lagrangian surface tracking method, and
we use a triangle mesh for our surface representation so that fine
features can be retained. We make topological changes to the mesh
by first identifying merging or splitting events at a particular grid
resolution, and then locally creating new pieces of the mesh in the
affected cells using a standard isosurface creation method. We stitch
the new, topologically simplified portion of the mesh to the rest of
the mesh at the cell boundaries. Our method detects and treats topo-
logical events with an emphasis on the preservation of detailed fea-
tures, while simultaneously simplifying those portions of the ma-
terial that are not visible. Our surface tracker is not tied to a par-
ticular method for simulating deformable materials. In particular,
we show results from two significantly different simulators: a La-
grangian FEM simulator with tetrahedral elements, and an Eulerian
grid-based fluid simulator. Although our surface tracking method is
generic, it is particularly well-suited for simulations that exhibit fine
surface details and numerous topological events. Highlights of our
results include merging of viscoplastic materials with complex ge-
ometry, a taffy-pulling animation with many fold and merge events,
and stretching and slicing of stiff plastic material.
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1 Introduction

The physical world is rich in materials that deform. In many in-
stances, these materials easily undergo topological changes, allow-
ing separation or joining of components. Such materials include
water, toothpaste, bread dough, peanut butter, taffy, tar, and clay. In

order to produce plausible animations of these deforming materials,
we must develop simulation techniques that retain visual details, but
at the same time allow topological changes to the surface. This is
the focus of our work.

We introduce a method of tracking and updating the surface of a
deforming object in a manner that gracefully allows for topology
changes. Our approach uses a mesh to represent the surface of ob-
jects. The key benefit of using a mesh is that it allows the surface to
be moved in a Lagrangian manner, using a high-order ODE integra-
tor to move the vertices of the surface. This results in the retention
of fine surface details. The drawback of using a mesh surface is that
changing the topology of a mesh is notoriously tricky, both in terms
of robustness and program complexity. Our approach avoids these
difficulties by replacing those portions of the mesh where a topol-
ogy change should occur with a simplified surface that is generated
using a standard isosurface creation method. This new portion of
the mesh is then stitched together with the untouched parts of the
surface.

Our approach to topology change lets us decide which potential
topological modifications are permitted and which ones should be
prevented. This allows us to customize the behavior of the simu-
lator in order to simulate materials with particular attributes. For
example, we can allow surface separation events, but forbid surface
merging. This might be appropriate for simulating bread dough that
has been rolled in flour so that it no longer sticks to itself. One par-
ticular rule for marking where a merge event should be triggered
is what we refer to as the deep cell test. This test allows surface
merging when it is deeply embedded in the folds of a material, but
it leaves alone potential merge events that are near the surface and
that might produce visually distracting results.

The key attributes of our approach to surface tracking are as fol-
lows:

• Our algorithm performs topological splits and merges, which
decreases the memory and computation requirements of deal-
ing with complicated surfaces and permits interesting behav-
iors like the merging of water droplets.

• Our simulator retains thin features and fine surface details.

• The method is robust, even during complex topology changes.

• The surface tracker can be easily tuned to allow or forbid par-
ticular kinds of topology changes to better suit a material.

• Our surface tracker does not depend upon any particular sim-
ulation technique. In particular, we demonstrate results from



both an Eulerian fluid solver and an FEM simulator.

• We decouple the physics, topological, and surface detail res-
olutions in our simulator. By modifying the level of detail in
each of these behaviors, we can customize our simulations
to exhibit complicated phenomena with a limited amount of
computation.

2 Related Work

Tracking surfaces with changing topologies is an important prob-
lem for a variety of fields - from numerical simulations to image
processing problems [Kass et al. 1988]. Currently, the most com-
monly used method for tracking such surfaces are level set methods.
They are especially popular in the field of physically based anima-
tion, as they can naturally handle topological changes and do not
require a surface parametrization. Level set methods track the sur-
face implicitly as the isosurface of a higher dimensional function,
typically a signed distance function stored in a Eulerian grid. They
were first presented by Osher and Sethian [1988], and have since
been extended and refined in many ways. Adalsteinsson and Sethian
[1995] presented a method to restrict the necessary computations to
a narrow band, while Sethian [1996] developed the related class of
fast marching methods. To accurately advect the implicit function,
higher-order WENO schemes are typically used [Liu et al. 1994].
However, these more accurate variants of the level set approach re-
quire small time steps to ensure stability. Particle level set methods,
developed by Enright et al. [2002b], combine Lagrangian advection
with Eulerian level set schemes to achieve a more accurate surface
evolution. In combination with semi-Lagrangian advection, such as
the method by Selle et al. [2008], this allows arbitrarily large time
steps. Our method likewise makes use of accurate Lagrangian ad-
vection, but in contrast to a particle level set, we store explicit mesh
connectivity information. Closely related to level sets are the so-
called volume-of-fluid methods, that explicitly track a surface by
computing mass fluxes [Hirt and Nichols 1981; Sussman 2003],
but they are not often used in computer graphics applications due
to flotsam and jetsam artifacts.

Strain [2001] formulated semi-Lagrangian contouring (SLC) for
surface tracking, and Bargteil et al. [2006] extended the idea for
3D fluid animation. Like our method, SLC computes signed dis-
tances exactly from a triangle mesh. However, the accuracy of SLC
is limited by the resolution of the implicit surface representation,
while our method retains high resolution details by only locally re-
sampling the surface where topological changes occur. If we recom-
puted the entire surface every time step, our method would behave
similarly to SLC.

Point-based methods use unstructured Lagrangian marker particles
to track the interface. These methods have been used in the field of
computer graphics to simulate melting objects [Terzopoulos et al.
1989], liquids [Müller et al. 2003; Zhu and Bridson 2005; Adams
et al. 2007] and deformable objects with topology changes [Pauly
et al. 2005]. Point-based surface tracking has been demonstrated
in [Keiser et al. 2005], but, in order to perform re-sampling or al-
low for topology changes, these methods still require a continuous
surface approximation which introduces smoothing.

Purely mesh based surface trackers [Reynolds 1992; Glimm et al.
1998; Jiao 2007], on the other hand make it very difficult to ac-
count for topological changes. [McInerney and Terzopoulos 2000]
use an underlying grid to compute topology changes for a mesh-
based tracking, but are restricted to a strictly inward or outward
motion. Other approaches have been suggested that focus on detect-
ing and re-meshing self-intersections using a set of heuristic rules
[Bredno et al. 2003; Lachaud and Taton 2005; Brochu 2006]. Pons

and Boissonat [2007] proposed a mesh-based approach for topol-
ogy changing interfaces that requires a tetrahedralization of the in-
terface points. This technique produces efficient and clean topolog-
ical changes for smooth surfaces, though it is asymptotically slower
than our method and its tetrahedralization makes topological con-
trol more difficult.

We overcome the difficulties of re-meshing by locally replacing the
invalid parts of the mesh with one generated by an isosurface cre-
ation method, such as marching cubes [Lorensen and Cline 1987].
The work most similar in spirit to ours is that of Jian Du et. al
[2006]; their approach also locally replaces invalid geometry with
an isosurface. However, Du et al. uses a conservative re-sampling
procedure by merging overlapping isosurface regions into convex
boxes, while our method allows arbitrary concavities. Furthermore,
their intent was to prevent geometry self-intersections, while our
aim is to control topology changes such as merging and tearing
sheets of material. A related technique by Bischoff and Kobbelt
[2005] converts a CAD model to a polygon mesh by sewing to-
gether closed polygonal patches and effectively removes mesh ori-
entation information during the conversion process. We only deal
with oriented manifold triangle meshes, which simplifies several
calculations and allows for clean self-intersection tests.

The control of topological changes is important in image segmen-
tation, where the topology is known beforehand and should not
change. This can be done using concepts from digital topology
[Rosenfeld 1979]. They have more recently been used to control
topology changes of level sets [Bischoff and Kobbelt 2003]. In-
stead, our algorithm is based on the complex cell test [Varadhan
et al. 2004], but we modify it to retain fine details on the tracked
surface while merging undesired folded sheets.

To demonstrate the versatility of our method, we will show simu-
lations of deformable objects based on a Lagrangian finite element
method (FEM), and liquid simulations performed with an Eulerian
fluid simulator. Deformable models were first used by Terzopolous
et al. [1988], while animations based on finite elements were first
presented by O’Brien and Hodgins [1999]. These methods were
since then extended by the use of shape matching [Müller et al.
2005], or by enforcing incompressibility [Irving et al. 2007].

The underlying simulation we will use in the following is based on
the work of Bargteil et al. [2007]. Similar to Sifakis et al.[2007]
and Wojtan and Turk [2008], we embed a high resolution mesh into
a body-centered cubic (BCC) lattice. Although these methods are
able to simulate deformable objects with thin features, they can-
not handle topological merges of the embedded mesh, which makes
simulations such as the taffy pulling shown in Figure 9 very difficult
and time consuming.

Our second set of examples was created with a Eulerian fluid sim-
ulator. Fluid simulations in computer graphics were first demon-
strated by Kass and Miller in [1990]. The approach we are using
for our simulations was pioneered by Stam [1999], and Fedkiw
et al. [Foster and Fedkiw 2001; Enright et al. 2002b]. The com-
bination of operator splitting, semi-Lagrangian advection, and par-
ticle level set based surface tracking was afterwards extended to
be coupled to thin shells [Guendelman et al. 2005], treat interface
discontinuities [Hong and Kim 2005], handle multiple interacting
liquids [Losasso et al. 2006], and animate viscoelastic fluids [Gok-
tekin et al. 2004]. A more accurate coupling with solid objects was
presented by Batty et al. [2007]. Approaches to reduce the high
amount of computations are model reduction [Treuille et al. 2006],
or the use of procedural models for detail [Kim et al. 2008]. An ex-
cellent overview of the algorithms that we use using can be found
in the book by Bridson [2008]. Our approach to handling topolog-
ical changes should also work in combination with other types of
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Figure 2: Overview of our topology modification pipeline.

solvers, such as Smoothed Paricle Hydrodynamics [Müller et al.
2003] or lattice Boltzmann based solvers [Thürey and Rüde 2004].

3 Overview of Approach

Our approach to surface tracking does not depend strongly on the
characteristics of the physics simulation that is being used. We as-
sume that we have a simulator that begins with the initial condi-
tions of the simulation (the geometry and associated material pa-
rameters) and that integrates the governing equations of motion to
produce a new simulation state at the next time-step. The simula-
tor may explicitly update the location of the material’s surface, or
it may implicitly specify the position of the surface with a velocity
field each time step. For example, the simulator may use an Eule-
rian grid to calculate the motion of a fluid using the Navier-Stokes
equations. The velocity field that is generated based on the fluid
motion is given to our surface tracker, and the tracker moves the
fluid surface–possibly modifying the topology in the case of events
such as splitting of a stream into drops or merging sheets of fluid
together.

The main steps of our surface tracking algorithm are shown in Fig-
ure 2. The tracker is given a closed manifold mesh M that rep-
resents the surface of the given material. The surface tracker first
moves the vertices of this mesh according to the update rule given
by the simulator: typically via interpolation of simulation nodes or
numerical integration through a velocity field, as will be described
in Section 4. Next, the space around the mesh is finely sampled on
a regular grid, and the result of this sampling procedure is a signed
distance field D. The sign of a sample in the distance field is deter-
mined by whether the sample is inside or outside of the mesh M,
and the magnitude is the distance to the nearest part of the mesh.
This distance field is then traversed, and the eight distance samples
at the corners of each cell are examined to determine whether a
topological event may be taking place at the given cell. There are
several possible decision processes that may be used, and one that
we favor is the deep cell test, which will be explained in Section 5.
This results in a list of cells that are marked for modification. We
clip the surface mesh M to the boundary of this collection of marked
cells, retaining only the portions of the mesh that are outside of the
marked cells. This will be described in Section 6. We then form new
mesh components inside the marked cells using marching cubes,
and the clipped exterior mesh is joined to the interior mesh compo-
nents. The result is a new mesh that has been modified in regions of
topological change. We give details about each of these steps in the
sections that follow.

4 Lagrangian Mesh Update

The first step of our method is to update the location our mesh M
with the information provided by our physics simulator. The mesh

consists solely of vertices with three-dimensional locations and tri-
angles with three pointers to vertices. In the absence of topology
changes, we can move the entire surface of the mesh by simply
moving the locations of the vertices and keeping the original trian-
gle connectivity. We proceed to move the vertices in this way during
our Lagrangian mesh update step, and we process any topological
events afterward.

Our fluid simulations use a grid-based Eulerian Navier-Stokes
solver, which produces a velocity field V at each time step. We
choose to accurately advect M through V using the explicit fourth-
order Runge-Kutta method. Our finite element simulations, on the
other hand, describe the surface vertex locations as a function
of simulation node positions. In this case, the tetrahedral compu-
tational elements are themselves repositioned with a Lagrangian
ODE solver, so we do not need to separately advect our sur-
face mesh. Instead, the location of each vertex is determined via
barycentric interpolation within each element.

Both of our physics simulation environments employ Lagrangian
techniques for repositioning the vertices of our surface mesh. This
Lagrangian update has an important strength, in that it inherently
preserves surface details.

An alternative to our approach is the level set method, which uses a
series of fixed grid points to accurately advect the surface through
space [Sethian 1999]. The grid points do not move along with the
surface in this case; instead, the surface is implicitly defined by
scalar values at the grid points, and an explicit surface is obtained
via interpolation. This Eulerian approach re-samples the surface
mesh at every simulation step, which quickly leads to numerical
smoothing of surface features. Furthermore, purely Eulerian meth-
ods make it impossible to represent a surface with details smaller
than the grid resolution.

Some methods choose to combine Eulerian and Lagrangian tech-
niques in order to better preserve surface details. This style of sur-
face tracking can begin with a level-set technique and re-sample
the surface at each timestep [Bargteil et al. 2006] or augment the
level-set with Lagrangian particles [Enright et al. 2002b; Hieber and
Koumoutsakos 2005; Mihalef et al. 2007]. Such hybrid Lagrangian
techniques significantly increase the amount of detail retained dur-
ing each simulation step through the use of extra information af-
forded by the Lagrangian particles. However, because the surface
is routinely re-sampled, it is difficult to retain sub-grid resolution
surface details using these hybrid methods.

5 Detection of Topological Events

After we update our surface mesh, we decide whether we should
split any surfaces apart or merge them together. We first calculate a
signed distance field D from our surface mesh, and then we exam-
ine the structure of this field to help decide where any topological
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Figure 3: A two-dimensional illustration of our deep cell test. Figure (a) shows an input surface mesh M (dark blue line) with a visualization
of the corresponding signed distance field D, where orange points are inside of the surface, and light blue points are outside. Next is a figure
showing all complex cells (b). The rightmost figure shows all deep cells (c). Note that the deep cells only label geometry necessary for a
topological change, while the complex cells aggressively label important surface details.

events should take place.

5.1 Signed Distance Field Calculation

We choose to place our signed distance function on a regular grid
that encloses our surface mesh M. The first thing we note is that the
only places where topological changes can occur are at grid cells
that intersect M (the surface cells). We then calculate the distance
to the triangle mesh at each grid point that touches a surface cell by
calculating the exact distance to each nearby triangle and taking the
minimum. We then use a voxelization method [Nooruddin and Turk
2000] to determine which grid points lie inside of M, and which lie
outside. We assign a positive signed distance to the grid points out-
side of M and a negative sign to the points inside of M. Because we
only calculate the signed distance at grid cells touching the surface,
and because we only sample the nearest triangles for each distance
query, this calculation of D is efficient.

5.2 Topological Event Detection Mechanisms

At this point, we have two surface representations: an explicit sur-
face mesh M, and a signed distance function D that implicitly de-
fines a surface at a specified grid resolution. We can contrast these
two surface representations to give us an idea of where the surface
is topologically complex.

One way to do this comparison is using digital topology [Rosenfeld
1979]. Although digital topology is a powerful tool for detecting
topological events, it is inappropriate for our problem, because it
requires a strict CFL condition for the movement of the surface. In
addition, digital topology will only detect actual topology changes,
leaving alone homeomorphic transformations. We would like to
simplify our surfaces in invisible regions, such as large folds, even
though this is not technically a topological change.

Another method we could use for detecting topology changes in-
volves complex cell tests. Complex cell methods essentially decide
whether our surface M is too complicated to represent with a piece-
wise linear isosurface extracted from D. Varadhan et al. [2004]
use a complex cell test in addition to a star-shaped test to decide
whether their isosurfaces are topologically equivalent to an input
mesh. Our method for detecting topological events uses a similar
test, but we tailor ours to minimize re-sampling of the visible sur-
face.

We can think of D as a network of cubic cells with edges connect-
ing each grid point to its 6 closest neighbors. In brief, a cell in D
is complex if the marching cubes algorithm [Lorensen and Cline
1987] will produce a significantly different surface from M in that
cell. More specifically,

• A complex edge is an edge in D that intersects M more than
once.

a) b)

Figure 4: This two-dimensional example shows how the complex
cell test will aggressively re-sample detailed surface features, even
in the absence of topological changes. In (a), we show cells that the
complex cell test will mark due to multiple edge intersections, and
we show the re-sampled surface in (b).

• A complex face is a square face in D that intersects M in the
shape of a closed loop or touches a complex edge.

• A complex cell is a cubic cell in D that has any complex edges
or complex faces, or any cell that has the same sign of D at
all of its corners while also having explicit geometry from M
embedded inside of it. The act of testing a cell for complexity
is called the complex cell test.

This complex cell test can be used to mark a region in space where
any topological changes occur in our surface. However, a straight-
forward application of this test will also mark detailed surfaces as
topologically complex (see Figure 4). If we wish to preserve surface
details like sharp corners, we must significantly modify this test.

5.3 Deep Cell and Self-Intersection Tests

Because we are primarily interested in the fidelity of the visual sur-
face, we would prefer that most surface re-sampling occurs only in
invisible regions or in the presence of major topological changes.
To avoid the excessive re-sampling of highly detailed surfaces, we
do not wish to mark all complex cells as topological events. Instead,
we start by contrasting the interface of our explicit surface M with
the interface of our implicit surface D. In the interest of surface de-
tail preservation, we ignore any complex cells that are sufficiently
close to both the interfaces. We only mark a complex cell that is
at least one cell away from the isosurface interface, as illustrated
in Figure 3. This deep cell test is necessary because subtle bumps
in surface geometry can still trigger any complex cell test, but only
cells with geometry fluctuations larger than a cell length will be
marked by our deep cell test.

The algorithm up to this point allows a great deal of control over
which cells should be marked and re-sampled. For example, a sim-
ple method for preserving thin features is to only allow merging, but
avoid splitting. This is done by not marking deep cells with corners
that lie completely outside of the mesh. There are only two types
of deep cells (those that are completely inside the implicit surface,
and those that are completely outside), and each type corresponds
to a merging or splitting event. By never marking deep cells that are
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Figure 6: A two-dimensional illustration of the cell-marching step.
In (a), all deep cells are marked. We march outward along complex
edges and faces until the marked region is topologically simple (b).
The right figure (c) shows a topological change after re-sampling
the marked cells.

outside of the mesh, we can avoid splitting events and preserve thin
features like sheets and spikes.

In addition to topological changes triggered by surface proxim-
ity, we also choose to mark cells that indicate significantly large
self-intersections in M. This test is performed while marching rays
through the mesh in the voxelization phase of our signed distance
calculation. Whenever a ray intersects a triangle, we determine
whether the ray is entering or leaving the surface by calculating
the dot product of the ray direction with the triangle normal: a neg-
ative dot product indicates that the ray is entering the surface, while
a positive dot product indicates an exit ray. In our implementation,
we initialize an integer variable to zero at the start of the ray march,
and then we increment the value if the ray enters the surface and
decrement the value if the ray leaves. As the ray passes through
each grid node, every node that does not have an integer value of
zero or one necessarily is in a region of multiple overlapping or
inside-out surfaces. We mark any cells touching these grid nodes as
topologically complex. To ensure that this check is robust at triangle
edges and vertices, we can use any techniques from the large liter-
ature for calculating robust ray-triangle intersections. We obtained
robust behavior by simply jittering any vertices that lie too close to
a ray.

Once we have marked every cell that we wish to re-sample, we
want to replace M in these cells with a topologically-simple isosur-
face extraction. However, we need to ensure that every cell on the
boundary of our marked cell region provides a topologically sim-
ple interface with marching cubes. In other words, the boundary
must contain no complex edges and no complex faces. We execute
a flood fill algorithm, starting with the initially marked cells and
marching outward across complex faces, until the entire region of
marked cells is bound by topologically simple cube faces (see Fig-
ure 6). Once this region has a clean interface with marching cubes,
we can perform surgery on the mesh.

6 Altering the Mesh Topology

At this stage in the algorithm, we have a mesh M, a distance field D,
and a list of marked grid cells. Each of these marked cells describes

a region of space in which we will locally remove the topologically
complex explicit surface M and replace it with the topologically
simple extracted isosurface of D. The surface inside of these cells
is computed with a marching cubes algorithm and connected to the
original mesh at the cell boundaries. To maintain a manifold surface
mesh, it is important to ensure that the interface between the isosur-
face and the explicit surface matches up perfectly. We spend the rest
of this section explaining how to compute this interface efficiently
and robustly.

6.1 Basic Interface Computation Algorithm

Here, we describe the basic method for matching the interface be-
tween an explicit triangle mesh and an extracted isosurface. We also
explain this algorithm graphically in Figure 5.

1. After marking topologically complex cells, we find each trian-
gle that intersects a cell edge on the boundary of the marked
region. We then calculate the intersection point between the
triangle and edge, and we subdivide the triangle into three new
triangles that share a vertex at the intersection point. We call
this newly created vertex a type 1 vertex.

2. Next, we find all triangle edges that intersect a cell face on the
boundary of the marked region. We split each triangle edge
at the point where it intersects the face, subdividing the two
original triangles into four and inserting a new vertex on the
face. We call this face vertex a type 2 vertex.

3. At this point, the triangle edges between type 1 and type 2 ver-
tices describe a single piecewise linear curve connecting type
1 vertices along each boundary cell face. We want to simplify
this curve until it is a straight line between type 1 vertices.
We repeatedly collapse the edges between type 1 and type 2
vertices until all type 2 vertices are removed from the mesh.

4. After all subdivisions have been performed, no triangles will
cross the faces of any marked cells. That is, each triangle will
lie completely inside or completely outside of the marked re-
gion. We delete all triangles that lie completely inside of the
marked region.

5. After all edge collapses have been performed, at most one ver-
tex lies on each boundary edge, and the mesh intersects the
marked cell faces along a single line segment in each bound-
ary cell face – the boundary faces are topologically simple and
line up perfectly with a piecewise linear isosurface extraction
of the signed distance field D. We use marching cubes to gen-
erate a triangle mesh in the marked region, and we connect
the meshes together at the type 1 vertices.

Our method of modifying the topology of a mesh is similar to that of
Du et al. [2006], but with a couple of significant differences. First,
Du et al. only perform re-meshing when they detect a mesh self-
intersection, whereas we also use this surface re-sampling for the
more general purpose of permitting meshes to merge and split. Sec-
ond, their approach forces their groups of marked cells to be in rect-
angular blocks, which means they often have to mark a much larger



Figure 7: Comparison between different surface tracking methods. Left: Level set. Middle: Particle level set. Right: Our mesh-based tracker.

Figure 8: These images from an animation show viscoelastic horses being dropped onto one another. Many topological merges occur, yet
details of the surfaces are kept.

portion of the mesh for modification. We allow our marked cells to
be more sparsely distributed, such as a marked set of cells whose
union forms concave regions like the shape of the letter L. Allow-
ing these more general marked cell configurations necessitates extra
checks during stitching, and we describe this next in Section 6.2.

6.2 Robustness

For robust simulation and intersection tests, we must ensure that
our triangles are well-shaped. We adaptively subdivide surface tri-
angle edges when they become too long, and we collapse edges
when they become too short or when their triangles have bad as-
pect ratios. We also perform edge flips after the creation of type 1
vertices if any newly created triangle has particularly small angles.
We avoid any edge-flip and edge-collapse operations that will cre-
ate nonmanifold geometry. The edge-collapse operations may cause
some re-sampling, but only in very small features. The triangle sub-
division does not remove any surface details.

We also must take care to maintain simple topology along bound-
ary faces before sewing the meshes together. Specifically, perform-
ing an edge decimation in step 3 of the above algorithm can deliver
collateral damage to the surrounding cells by creating an additional
curve between type 1 vertices on the face of a different boundary
cell. If these edges are collapsed in the wrong order, we can easily
force ourselves into creating nonmanifold geometry. For this rea-
son, we delay an edge collapse operation if it will prematurely con-
nect other type 1 vertices. Typically, collapsing other edges first will
quickly resolve this degenerate case.

Unfortunately, on rare occasions we can arrive at a gridlock situ-
ation in which no safe edge collapses can be performed, and we
cannot produce a clean interface to the isosurface. In such situa-
tions, we simply add the surrounding cells to the existing list of
marked cells and repeat the flood fill steps in Section 5.3, replacing

the nonmanifold geometry with the topologically simple isosurface.

7 Integration with Physics

For integration with physics animation systems, any changes to sur-
face topology must be communicated to the physics calculations.
We have integrated our surface tracker into both a finite element
viscoelasticity solver and an Eulerian fluid solver. To couple the sur-
face tracker with an embedded mesh FEM solver, the finite element
mesh should be recomputed after any major topological changes.
For this reason, we only calculated topological changes immedi-
ately before re-mesh events in the simulator. Coupling with an Eu-
lerian fluid simulator is similar. We use the fluid velocity field to
move the surface, and we use the surface to update the active grid
cells in the simulation (the actual location of the fluid). We chose
to only calculate topological changes once per frame of the output
animation.

8 Results

In this section we describe the results of our surface tracking
method using two different simulators and a variety of materials
properties. Please see the accompanying video for animations of
these results.

We compare our surface tracker to two other popular surface track-
ing methods in Figure 7. This figure shows how three different sur-
face trackers perform on a dam-break fluid example. The left por-
tion of the figure shows the result of using a pure level set approach
with MacCormack advection [Selle et al. 2008]. Note that most of
the surface details are washed away by this method. The middle
image shows the result of the particle level set approach (note that
we do not explicitly render the escaped particles). Here, more of
the surface details are kept. The right image shows the result of our



Figure 9: A virtual taffy-pulling machine creates complicated surface folds.

Figure 10: Clapping hands influenced by strong surface tension forces.

surface tracking method. Note the detailed features that are visible
near the middle of this image where a wave has folded over onto
a flat region of the liquid. The same Eulerian grid fluid solver and
the same computational grid resolution of 643 was used for all three
simulations.

Figures 8 and 1 show examples of dropping complex geometry onto
a flat surface. In Figure 8, the objects that are being dropped are
model horses. The underlying visco-elastic simulation [Goktekin
et al. 2004] had a resolution of 60× 60× 90 cells in both cases,
while the marching cubes reconstruction was run with a three times
higher resolution. The thin legs of the horses would be difficult to
resolve using only a distance field representation. Figure 1 shows
several ornately carved spheres in free-fall. The details that are
carved onto the surface of these models are retained by our method
because regions of the surface are not re-sampled until a topological
event is triggered, and most areas of the visible surface are never re-
sampled at all. Note the detailed folds that are created and retained
when the surfaces push into one another. Each sphere initially has
more than 420 thousand triangles. In total, 15 spheres are dropped.
Due to the merging of sheets, the final surface has roughly 1.6 mil-
lion triangles. The simulation of this example took 63 seconds on
average per frame.

Figure 9 shows a taffy pulling device. The initial torus of soft ma-
terial is stretched and folded by three bars. In the absence of topo-
logical merging, each cycle of this mechanism would double the
size of the surface. Our simulation merges the folded portions of
the surface, which has the consequence of keeping the size of the
surface tractable. Moreover, the surface of our taffy retains geomet-
ric details from the folding process that would be washed out by a
level set surface tracker. The physical simulation for this example
was performed using our FEM simulator.

Figure 10 shows how we can use a mesh-based surface tension tech-
nique [Brochu 2006; Wojtan and Turk 2008], effectively computing
high resolution surface tension forces in an Eulerian fluid simula-
tor. This particular example illustrates how topological changes sig-
nificantly affect simulated phenomena. Two liquid hands are heav-
ily influenced by surface tension effects, first forming individual
droplets and then merging together. Without the topological change,
these two droplets would simply bounce off each other. Figure 13

shows frames from an animation of several plastic blocks dropped
onto a plane. The blocks immediately merge and then splash out-
ward, creating a thin sheet. By the end of the simulation, this sheet is
far thinner than the topological grid resolution, but we prevented its
deletion with the simple method for topological control described in
section 5.3. Our final example shows how our method can separate
thin features. Figure 12 features a stiff plastic cow being stretched
out and then ripped into pieces by two passing blocks.

Figure 11 shows a direct comparison between our surface track-
ing and other state-of-the-art methods. We performed tests with the
“Zalesak’s Sphere” example as defined by Enright et al. [2002a]

LS PLS SLC ours

Figure 11: Results from the Zalesak Sphere example for imple-
mentations of a level set (far left), particle level set (middle left),
semi-Lagrangian contouring (middle right), and our method (far
right).



Figure 12: A stretched cow that is torn when two bars scissor together.

using implementations of a level set, particle level set, semi-
Lagrangian contouring, and our method. Note that our method per-
fectly preserves the sharp corners because of the deep cell test.

Out of the total time spent on our surface tracking algorithm, the
core topology handling takes approximately 60% of the compu-
tation. The calculation of the signed distance field requires about
20%, while the other steps, such as the mesh update, the mesh sub-
division, and interfacing with the simulation code take the last 20%.
The ratio between computations for surface tracking and simulation
strongly depends on the complexity of each part. For the example
of Figure 1, with a very complex surface mesh and a coarse simula-
tion, the surface handling takes up the majority of the computations.
For a more complex simulation, such as the 200× 100× 100 fluid
simulation of Figure 10, the fluid simulation requires roughly 2/3
of the total runtime. In this case, the overall computations took 12.9
seconds per frame on average, while for a smaller example, such as
the 643 simulation of Figure 7, each frame took on average slightly
less than one second.

The Lagrangian FEM simulations, on the other hand, featured far
fewer topological changes, so computation times were dominated
by the physics simulation. The cow animation in Figure 12 finished
with 12 thousand elements and 250 thousand surface triangles, the
four cubes simulation in Figure 13 finished with 105 thousand el-
ements and 206 thousand surface triangles, and the simulation of
three cubes at the start of our video finished with 24 thousand ele-
ments and 45 thousand surface triangles. Each of these simulations
took about 3 minutes per frame and spent less than 1% of the time
on topological detection and meshing code.

9 Discussion and Limitations

There are several limitations to our approach. Chief among these is
that the method identifies topological events and locally re-meshes
based on the particular cell size of the distance field. Changes to the
mesh can be noticeable if this cell size is too large. In addition, our
method’s topological classification will ignore small features like
handles that lie completely within a cell. Another topological con-
cern is that the extracted isosurface may not match the surface mesh
at ambiguous marching cubes faces, leaving a quadrilateral hole in
the mesh. We correct this behavior by triangulating the hole after
the mesh surgery, though we could use more principled topological
disambiguation in the future. In section 5.3, we proposed a strat-
egy for maintaining thin sheets by re-sampling regions where sur-
faces merge together, and preserving regions that would split apart.
This technique is effective in many of our examples, but it does
not properly preserve complicated regions that exhibit both split-
ting and merging behavior.

Another drawback to our approach is that the re-meshing depends
only on the sampled distance field, and it ignores the actual geom-
etry of the mesh. This means that the joint between the original
mesh and the new portions of the mesh can at times appear rough.
We think that it may be possible to take into account more infor-

mation about the original mesh during isosurface creation, and we
view this as a fruitful avenue for future work. One final drawback of
our approach is that the changes to the mesh may result in changes
to the volume of the material. For example, when two portions of
the taffy are folded together, any empty regions in the cells that are
re-meshed will be turned to taffy. This effect is slight if the cell
sizes are small, but it can be noticeable for long simulations. There
are several approaches to volume control that can correct for this
problem, but we have not yet applied any of these methods to our
simulator. For example, we could accurately compute the changed
volume before and after the re-meshing step and use a method such
as [Kim et al. 2007] to locally correct this.

We think that our method has a number of strengths that make it
attractive for simulating a variety of material types. Level set meth-
ods for surface tracking tend to aggressively merge surface compo-
nents that come close to one another. This has a tendency to wash
away the detailed folds that are formed when surfaces are pressed
together. Our deep cell test only flags such merge events when they
occur deep in the folds, and in most cases it leaves the visible por-
tions of such folds alone. It would be possible to achieve detailed re-
sults similar to ours by using a surface tracker that never makes any
topological changes, but simply allows pushed-together surfaces to
lie next to each other. There is a costly consequence to this, how-
ever. In such a system, folded materials or complex mixing would
result in a huge, overly-complex surface mesh. Most of the geomet-
ric detail would be inside folds and would never be seen, and this
retained extra detail would be extremely expensive both in terms
of memory and computation (updating many more vertices). Our
method avoids this pitfall by joining surfaces when they meet and
by keeping only the visible portion of the mesh, resulting in a con-
siderable saving in mesh size. Our surface tracker lives between the
two extremes of level sets and deforming meshes that do not allow
topological changes, and our approach retains the best features of
these two approaches.

Many physical simulation methods restrict the amount of detail in
the visible surface to that of the underlying physics calculations,
and some maintain a separate resolution for the physics calcula-
tions and the surface topology calculations. Our method provides
three separate detail resolutions: the physics resolution, the topo-
logical resolution, and the visible surface resolution. We found this
quite useful for exploiting low resolution physics calculations while
displaying high resolution topology changes and even higher reso-
lution surface details. We found that the physics simulator was the
bottleneck for our computations, because the surface update step
is relatively efficient, and because all of our topological calcula-
tions are computed sparsely in time and locally in space. We found
it immensely useful to maintain decoupled resolutions for physics,
topological changes, and surface detail to effectively provide the
illusion of complicated behavior with inexpensive calculations.



Figure 13: Dropped blocks that merge and spread into a thin sheet.

10 Conclusion and Future Work

We have presented a technique for updating the surface of a de-
forming mesh that allows topological changes. The method is ro-
bust because the topology changes are carried out using a standard
isosurface creation method that only uses a sampled distance field,
rather than the full complexity of the mesh. The method handles all
manner of difficult situations, such as twisted and tangled surfaces.
The motion of the surface mesh can be guided by any velocity field,
allowing a wide latitude in choice of physics simulators.

There are a number of extensions to our basic technique that we
are considering as future work. We would like to couple our surface
tracking method to other kinds of simulators, such as smoothed par-
ticle hydrodynamics or the lattice Boltzmann method. Other isosur-
face creation methods should be easy to use instead of marching
cubes. In particular, we think that a dual contouring method of iso-
surface creation may allow us to preserve more surface details dur-
ing topology changes. Related to this is the possibility of using local
mesh operations such as edge collapses that recognize and preserve
sharp features. Finally, we are interested in exploring other rules for
triggering topology changes that are appropriate for other materials
and applications.
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