
Physically-Based Simulation
Final Project Presentation

Waterwheel
Group 12

Ge Cao, Xiao Wu, Mingyang Song



2

Introduction:
Implemented Features:
 Coupling with Rigid Bodies
 Iterative SESPH
 Particles Visualization (OVITO)
 Surface Reconstruction (splashsurf)
 Particles importing & exporting
 Rendering (Blender)
 Dambreak Scenario
 Waterwheel Scenario

Advanced Features:
 Multithreaded program
 Rendering with GPU

https://www.ovito.org/
https://github.com/w1th0utnam3/splashsurf


3



4

SPH Method:
 Coupling with Rigid Bodies

Boundary Handling:
Several Layers with Uniform Boundary Samples

 Incompressibility
Iterative SESPH



5

SPH Pipeline:
Navier-Stokes equation: 𝜌𝜌 𝐷𝐷𝑣𝑣

𝐷𝐷𝑡𝑡
= −∇𝑝𝑝 + 𝜇𝜇∇2𝑣𝑣 + 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒

Algorithm (basic pipeline):

 Update 𝑣𝑣𝑖𝑖 by non-pressure force: 𝑣𝑣𝑖𝑖∗ = 𝑣𝑣𝑖𝑖 + ∆𝑡𝑡 𝜇𝜇
𝑚𝑚𝑖𝑖
∑𝑗𝑗

𝑚𝑚𝑗𝑗

𝜌𝜌𝑗𝑗
𝑣𝑣𝑖𝑖𝑗𝑗

2 ∇𝑖𝑖𝑊𝑊𝑖𝑖𝑗𝑗

𝑟𝑟𝑖𝑖𝑗𝑗
+ 1

𝑚𝑚𝑖𝑖
𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒

 Determine pressure force 𝐹𝐹𝑖𝑖
𝑝𝑝 using state equation: 𝑝𝑝𝑖𝑖 = 𝑘𝑘 𝜌𝜌𝑖𝑖 − 𝜌𝜌0

𝐹𝐹𝑖𝑖
𝑝𝑝 = ∑𝑗𝑗𝑚𝑚𝑗𝑗

𝑝𝑝𝑖𝑖
𝜌𝜌𝑖𝑖
2 +

𝑝𝑝𝑗𝑗
𝜌𝜌𝑗𝑗
2 ∇𝑖𝑖𝑊𝑊𝑖𝑖𝑗𝑗

 Update 𝑣𝑣𝑖𝑖 by solving: 𝑣𝑣𝑖𝑖 𝑡𝑡 + ∆𝑡𝑡 = 𝑣𝑣𝑖𝑖∗ −
∆𝑒𝑒
𝑚𝑚𝑖𝑖
𝐹𝐹𝑖𝑖
𝑝𝑝

 Update 𝑥𝑥𝑖𝑖 by solving: 𝑥𝑥𝑖𝑖 𝑡𝑡 + ∆𝑡𝑡 = 𝑥𝑥𝑖𝑖 𝑡𝑡 + ∆𝑡𝑡𝑣𝑣𝑖𝑖 𝑡𝑡 + ∆𝑡𝑡



6

Boundary Handling:
https://interactivecomputergraphics.github.io/SPH-Tutorial/slides/03_boundary_handling.pdf

𝑥𝑥𝑖𝑖
𝑥𝑥𝑖𝑖𝑖𝑖

𝑥𝑥𝑖𝑖𝑖𝑖

Fluid

Boundary

To compute 𝐹𝐹𝑖𝑖
𝑝𝑝, boundaries are sampled with particles:

𝜌𝜌𝑖𝑖 = 𝑚𝑚𝑖𝑖�
𝑖𝑖𝑖𝑖
𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑚𝑚𝑖𝑖�

𝑖𝑖𝑖𝑖
𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖

𝑝𝑝𝑖𝑖 = 𝑘𝑘
𝜌𝜌𝑖𝑖
𝜌𝜌0
− 1

Pressure at boundary samples: Mirroring

𝑎𝑎𝑖𝑖𝑃𝑃 = −𝑚𝑚𝑖𝑖 ∑𝑖𝑖𝑖𝑖
𝑝𝑝𝑖𝑖
𝜌𝜌𝑖𝑖
2 +

𝑝𝑝𝑖𝑖𝑖𝑖
𝜌𝜌𝑖𝑖𝑖𝑖
2 ∇𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑚𝑚𝑖𝑖 ∑𝑖𝑖𝑖𝑖

𝑝𝑝𝑖𝑖
𝜌𝜌𝑖𝑖
2 + 𝑝𝑝𝑖𝑖𝑏𝑏

𝜌𝜌𝑖𝑖𝑏𝑏
2 ∇𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝𝑖𝑖𝑖𝑖 = 𝑝𝑝𝑖𝑖 𝜌𝜌𝑖𝑖𝑖𝑖 = 𝜌𝜌𝑖𝑖

⇒ 𝑎𝑎𝑖𝑖𝑃𝑃 = −𝑚𝑚𝑖𝑖�
𝑖𝑖𝑖𝑖

𝑝𝑝𝑖𝑖
𝜌𝜌𝑖𝑖2

+
𝑝𝑝𝑖𝑖𝑖𝑖
𝜌𝜌𝑖𝑖𝑖𝑖2

∇𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑚𝑚𝑖𝑖�
𝑖𝑖𝑖𝑖

𝑝𝑝𝑖𝑖
𝜌𝜌𝑖𝑖2

+
𝑝𝑝𝑖𝑖
𝜌𝜌𝑖𝑖2

∇𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖

Contributions from fluid neighbors Contributions from boundary neighbors

Boundary neighbors 
contribute to the density

Mirroring of 
pressure and 

density from fluid 
to boundary



7

Incompressibility: Iterative SESPH
https://interactivecomputergraphics.github.io/SPH-Tutorial/slides/02_incompressibility.pdf

for all particle i do
find neighbors j

for all particle i do
𝒂𝒂𝑖𝑖
𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 = 𝜈𝜈𝛻𝛻2𝒗𝒗𝑖𝑖 + 𝒈𝒈 ; 𝒗𝒗𝑖𝑖∗ = 𝒗𝒗𝑖𝑖 𝑡𝑡 + ∆𝑡𝑡𝒂𝒂𝑖𝑖

𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏

repeat
for all particle i do

𝜌𝜌𝑖𝑖∗ = ∑𝑗𝑗𝑚𝑚𝑗𝑗𝑊𝑊𝑖𝑖𝑗𝑗 + ∆𝑡𝑡 ∑𝑗𝑗 𝑚𝑚𝑗𝑗 𝒗𝒗𝑖𝑖∗ − 𝒗𝒗𝑗𝑗∗ ∇𝑊𝑊𝑖𝑖𝑗𝑗

𝑝𝑝𝑖𝑖 = 𝑘𝑘 𝜌𝜌𝑖𝑖
∗

𝜌𝜌0
− 1

for all particle i do
𝒗𝒗𝑖𝑖∗ = 𝒗𝒗𝑖𝑖∗ − ∆𝑡𝑡 1

𝜌𝜌𝑖𝑖
∗ ∇𝑝𝑝𝑖𝑖

until 𝜌𝜌𝑖𝑖∗ − 𝜌𝜌0 < 𝜂𝜂 (or iteration>max iteration)
for all particle i do

𝒗𝒗𝑖𝑖 𝑡𝑡 + ∆𝑡𝑡 = 𝒗𝒗𝑖𝑖∗ ; 𝒙𝒙𝑖𝑖 𝑡𝑡 + ∆𝑡𝑡 = 𝒙𝒙𝑖𝑖 𝑡𝑡 + ∆𝑡𝑡𝒗𝒗𝑖𝑖 𝑡𝑡 + ∆𝑡𝑡

repeat the step 2 
and step 3 in the 
basic pipeline

compute non-pressure acceleration & predict velocity

density from predicted position

pressure from predicted density

compute pressure acceleration & refine predicted velocity



8

Liquid with different viscosity
No viscosity can introduce a 
huge instability

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑡𝑡𝑣𝑣 = 0.002 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑡𝑡𝑣𝑣 = 0.02𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑡𝑡𝑣𝑣 = 0



9

Rendering: rendered as particles

visualized in OVITO rendered as spheres in Blender

https://www.ovito.org/


10

Rendering: rendered with surface reconstruction

Surface reconstruction: splashsurf
Rendering: Blender

reconstructed surface smaller kernel size higher surface threshold

sharp drops & uneven surface reduce drops number

https://github.com/w1th0utnam3/splashsurf


11

Performance:
 Multi-threading computing
 Using GPU-based ray-tracing engine

For each frame, it takes 4 seconds to 
compute particles, 50 seconds to 
render image using ray-tracing



12

Thanks for your attention!
Any questions?


	Physically-Based Simulation�Final Project Presentation�Waterwheel
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12

