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Introduction:

Implemented Features:

Coupling with Rigid Bodies
Iterative SESPH

Particles Visualization (OVITO)
Surface Reconstruction (splashsurf)
Particles importing & exporting
Rendering (Blender)

Dambreak Scenario

Waterwheel Scenario
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Advanced Features:

0 Multithreaded program
0 Rendering with GPU



https://www.ovito.org/
https://github.com/w1th0utnam3/splashsurf




SPH Method:

0 Coupling with Rigid Bodies

Boundary Handling:

Several Layers with Uniform Boundary Samples
0 Incompressibility

Ilterative SESPH




SPH Pipeline:

Navier-Stokes equation: p% = —Vp + uV?v + forr
t

Algorithm (basic pipeline):
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Boundary Handling:

https://interactivecomputergraphics.github.io/SPH-Tutorial/slides/03 boundary handling.pdf
To compute F?, boundaries are sampled with particles:
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Incompressibility: Iterative SESPH

https://interactivecomputergraphics.github.io/SPH-Tutorial/slides/02 incompressibility.pdf

for all particle i do
find neighbors j
for all particle i do
a;’™ = vV, + g ; vi = v;(t) + Ata;
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for all particle i do
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Pi
until p; — p, < 7n (or iteration>max iteration)

repeat the step 2
and step 3 in the
basic pipeline

for all particle i do

compute non-pressure acceleration & predict velocity

density from predicted position
¥

pressure from predicted density

compute pressure acceleration & refine predicted velocity

v;(t + At) = v ; x;(t + At) = x;(t) + Atv;(t + At)




Liquid with different viscosity

No viscosity can introduce a
huge instability

viscosity = 0 viscosity = 0.002 viscosity = 0.02
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Rendering: rendered as particles

visualized in OVITO rendered as spheres in Blender



https://www.ovito.org/

Rendering: rendered with surface reconstruction

reconstructed surface smaller kernel size higher surface threshold
Surface reconstruction: splashsurf sharp drops & uneven surface reduce drops number

Rendering: Blender



https://github.com/w1th0utnam3/splashsurf

Performance:

0 Multi-threading computing
0 Using GPU-based ray-tracing engine

For each frame, it takes 4 seconds to
compute particles, 50 seconds to
render image using ray-tracing




Thanks for your attention!

Any questions?
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