ETHzurich

Physically-Based Simulation
Final Project Presentation
Waterwheel

Group 12
Ge Cao, Xiao Wu, Mingyang Song

Introduction:

Implemented Features:

Coupling with Rigid Bodies
Iterative SESPH

Particles Visualization (OVITO)
Surface Reconstruction (splashsurf)
Particles importing & exporting
Rendering (Blender)

Dambreak Scenario

Waterwheel Scenario

Ooooooooao

Advanced Features:

0 Multithreaded program
0 Rendering with GPU

https://www.ovito.org/
https://github.com/w1th0utnam3/splashsurf

SPH Method:

0 Coupling with Rigid Bodies

Boundary Handling:

Several Layers with Uniform Boundary Samples
0 Incompressibility

Ilterative SESPH

SPH Pipeline:

Navier-Stokes equation: p% = —Vp + uV?v + forr
t

Algorithm (basic pipeline):
2[|viw |
I
B Determine pressure force Fip using state equation: p; = k(p; — py)
FP =3 m, (% + %) AT
]

l

* j 1
B Update v; by non-pressure force: v; = v; + At (i . 2 Vjj + —Fext>
m; Pj m;

Boundary Handling:

https://interactivecomputergraphics.github.io/SPH-Tutorial/slides/03 boundary handling.pdf
To compute F?, boundaries are sampled with particles:

Boundary neighbors
= m; g Wllf + m; g Wllb contribute to the density

Boundary p; =k (— — 1>
Po

Pressure at boundary samples: Mirroring

Di pl p p
af - Zlf(l PY f) VWuf m; Zlb (pl pf) VWub Pip = Pi Pip = Pi
Mirroring of

f = —m; z < plf) VWuf mlz <pl pl) VWiip pressure an.d
if plf ib pl pl density from fluid

to boundary

Contributions from fluid neighbors Contributions from boundary neighbors

o
cal
-

Incompressibility: Iterative SESPH

https://interactivecomputergraphics.github.io/SPH-Tutorial/slides/02 incompressibility.pdf

for all particle i do
find neighbors j
for all particle i do
a;’™ = vV, + g ; vi = v;(t) + Ata;

l

nonp

repeat
for all particle i do
=Y, mW;; + At Y my(vi —

=)

for all particle i do
* * 1
vi = vi — At—*Vpl
Pi
until p; — p, < 7n (or iteration>max iteration)

repeat the step 2
and step 3 in the
basic pipeline

for all particle i do

compute non-pressure acceleration & predict velocity

density from predicted position
¥

pressure from predicted density

compute pressure acceleration & refine predicted velocity

v;(t + At) = v ; x;(t + At) = x;(t) + Atv;(t + At)

Liquid with different viscosity

No viscosity can introduce a
huge instability

viscosity = 0 viscosity = 0.002 viscosity = 0.02

: cal
4

Rendering: rendered as particles

visualized in OVITO rendered as spheres in Blender

https://www.ovito.org/

Rendering: rendered with surface reconstruction

reconstructed surface smaller kernel size higher surface threshold
Surface reconstruction: splashsurf sharp drops & uneven surface reduce drops number

Rendering: Blender

https://github.com/w1th0utnam3/splashsurf

Performance:

0 Multi-threading computing
0 Using GPU-based ray-tracing engine

For each frame, it takes 4 seconds to
compute particles, 50 seconds to
render image using ray-tracing

Thanks for your attention!

Any questions?

12

	Physically-Based Simulation�Final Project Presentation�Waterwheel
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12

