Physically-Based Simulation N BodyrSystemion

Group 9 Tatiana Gerth, Tamara Gini, Lucas Habersaat

Milestones

1.	Gravitational forces acting between any objects
----	---

2. Collision detection & response

3. Scenes of stable solar systems

-Drittle Fracture using FEM

Fast N-Body Simulation

5. Renderings with texture, light, env maps, sound, ...

minimal

desired

bonus

4.

Method

- Naïve Gravitation Loop: $O(n^2)$
- Fast Multipole: O(nlogn)
 - Using multi-level grid

1. Add Forces to Bild Vidson 16807/fast-multi 2 mApply to accumulated Forces

For each body and level

- Compute force that body causes
- Add force to each cell in certain vicinity

For each body and level

where body lies in

Apply forces from cell

Particle System

Meshes too expensive to render in great number

Unusable for 10k objects

1 million particles without lags

Fast Multipole Speedup

Results

100k Particles

Results

, 330 frames ores, i7 4GHz)

100s/frame

Grid Artefact

for low initial velocities

Results

Other Features

- Runtime Scene Swap
- Procedural Galaxy Generator
- Parallelization for further Speedup
- Debug Grid

Results

Questions?

