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Abstract

In the following paper we describe a new generic method to find an approximate solution for the volume
rendering equation using hierarchical, orthonormal wavelet basis functions. The approach is based on th
idea that an initial volume data set can be decomposed into a pyramidal representation by means of a 3
wavelet transform. Once the wavelet function is described analytitad possible to approximate the
volume density function. Moreokenhen employing piecewise polynomial spline functions, as in our
method, the rendering integral can also be approximated and gradient functions or related features of th
data can be computed immediately from the approximation. Due to the localization properies of the wave-
let transform both in space and in frequency on the one side and due to the pyramidal subband codin
scheme on the other side, this technique allows additionally for the control of the local quality of the recon-
struction and provides elegantly for level-of—detail operations.

Aside from the solution of the rendering equation itself, isosurfaces of the data can also be computed witt
either standard techniques, like marching cubes, or by more sophisticated algorithms that render the bas
functions. All these additional rendering techniques can be embedded in a hybrid surface/volume render
ing scheme. In our papeave elucidate this new concept and show its capabilitiesfterett examples.




1 Introduction

Volumetric rendering has become one of the mainstream research lines in Computer Graphics, since mar
applications require a true 3D insight into the data rather than to provide visualizations of surfaces onl
For this end, many algorithms have been developed in the past to get realistic images from an initial vol-
ume data set. Application areas reach from medical imaging [10], [19] through to new material analysis
and quantum physics [13] up to the simulation of fog and clouds [25]. Most of these approaches use a ra;
casting process along with a back to front sampling to get the final pixel intensity and colo

The basic goal of volume rendering is to find a good approximation of the low albedo volume rendering
integral [2], fl1] that expresses the relation between the volume intensity and opacity function and the
intensity in the image plane. Itis stressed by several authors, that the volume rendering problem goes bac
to a basic transport equation that regulates the interaction of light and matter in a particle model. Most of
the standard volume rendering algorithms therefore approximate an integral equation with the ray parame
ter t of the type

t

o - I a(s)ds
| = J Che o dt (1)

t
where C(t) stands for a volume intensity function and includes emitted, scattered and reflectedt)ight.
is the opacity function of the data and can be used to encode data features to be enhanced in the fin
images. Hence, the inner integral includes the self—occlusion of the volume.

The most common way to get a numeric solution of eq. (1) employs a zero—order quadrature of the innel
integral along with a first—order approximation of the exponential. The outer integral is also solved by a
finite sum of uniform sampledVe yield

M k—1
k=1 i=1

whereay are the opacity samples along the ray@nalre the local color values derived from the illumina-
tion model. Note thathas to be computed for each spectral sampieostly in R,G,B.

A good mathematical analysis of the problem and error bounds of numeric quadrature is provided in [23].
The illumination of the volume has to follow an estimation of the surface normal in each voxel by means
of the volume density gradient. Isosurfaces are usually provided either by modulation of the opacity func-
tion, where the opaque volume elements represent the required isosurface, or by polygon approximation
as the marching cubes [17]. [5] proposed a probabilistic method to get the voxel colors associated to a spe
cific tissue or material to avoid aliasing artifacts. Finally it can be stated that a good volume renderer has
in particular to find a good approximation of the volume rendering integral. Due to the huge data sets to
be handled, [15] proposed an hierarchical splatting of the volume with scalable basis functions based or




an octree data structure. Another interesting way was described by [22], who extended his initial methoc
to approximate isosurfaces [20] taking advantage of wavelet basis functions. However this approach wa:
limited to isosurface rendering and uses a very expensive scheme to ray—trace an implicit function tha
included the wavelet expansions.

But in spite of these shortcomings, once a hierarchical, compact and continuous approximation of the vol-
ume intensity function is found, it is straightforward to get the intensity function alongyti@campute

the respective gradients and normals and to adjust the quality of the reconstuction locally to interesting
data features. Moreokestressing the wavelet concept as mathematically formulated in [4], [18] or [9],
the data set can be expanded by a set of orthonormal, self-similar basis functions derived from each othe
by scaling and shifting. Since the wavelet transform is both located in space and in fyeitpemades

an elegant way to control locally the level of detail, as well as to get features that describe the local datz
properties. Therefore, wavelets have widely been used in image processing for texture feature extractior
As we knav [6],[8], the segmentation of the initial volume data set is, howawesry important prepro-
cessing step in the rendering process, and many researchers address ttifereith automatic [5] and
semiautomatic[10] techniques. The properties of the wavelet transfégmaaconcept, that integrates

both volume rendering and volume data analysis.

The following paper descibes a new method to approximate the volume rendering equation using wavele
transforms. For this purpose, the initial volume data set is transformed into wavelet space using separabl
3D extensions of orthonormal wavelet types. Since some wavelets, as the Daubechies one, are not give
in a closed form solution we approximate the basis

functions with piecewise polynomial splines. This allows a continuous hierarchical approximation of the
3D data set. Due to the local support of the wavelet bases, we can cihiciesitly the level-of—detail

inthe data. This enables the emphasizing of local features of interest. Once this continuous piecewise poly
nomial approximation is computed, the volume intensity function along the ray can easily be formulated
and a linear approximation of the exponential absorption term provides a polynomial approximation of
the entire rendering integral. This finally leads to an analytic solution.

Our paper is @anized as follows: First of all, we elucidate the mathematical basics of the wavelet—trans-
form, describe the tferent properties of the employed wavelets and show how to get separable 3D exten-
sions. The second chapter sheds light on the continuous approximation of the data with wavelet bases ar
provides our approximation of the volume rendering integral for the ray—casting process. The third chapter
explains how to getisosurfaces in wavelet spaces and compares results obtained freii RKainathod

to the marching cubes [17] reconstruction techniques. Finally we outline a concept for embedding volume
data analysis into the rendering process.




2 Mathematical Foundations

2.1 Formulation of the Wavelet Transform

The wavelet-transform (WT) is an integral transform of any finiteggrfeinctionf(x)€ L4R) using a
set of self-similar basis functioggp(x). Its generic continuous form description is provided as the fol-
lowing inner product:

[e'e]

WT, (&, b) = (f,ya) = f Ppf(dx  ab R (3)
The single basis functions are derived from each other by scaling and shifting one prototypeyunction
controlled by the parametesisandb respectively [9].

o) = Ev(25Y @

One required property of the orthonormal bases is their band—pass behavior that is defined as
¥Y.,(0) =0, ¥ (w) : Fourier Transfom of ¢ (X) 5

As any other type of linear transform the WT enables the decomposition and the expansion of the initial
functionf(x) by superimposing the basis functions.

In order to handle this method with a compLités necessary to set up a discrete version. A dyadic scaling
of the bases with = 2 and a unit shifih = 1 yields:

Ymr(X) 1= 2_5"1/)(2‘”‘)( -n) , Wmn) e, bass of vectorspae Up (6)
In most cases, the bases are furthermore supposed to be orthonormal to each other [4]
WmnYmq) = j YDy madt = 0 5P i (7)
_ 1 ifi=]
with 9 := 0 else

Thus the transform with discrete orthonormal wavelets can be mathematically described as

[e¢]

DWT; ,(m.n) = 272 j Y@ Mx —n) f(x) dx me Z (8)
Mallat [18] stresses this concept by defining a set of multiresolution function Sgatest render an
approximation of alf(x) € LXR). The space of resolution is derived from the higher resolution step
by a tensor product with the orthonormal complentgnt

Vo1 = Vm® Un (9)




It can be proofed that the self-similar so—called scaling functipns€ L%R) with
Omn(X) = 2‘%1¢(2‘mx — n) provide orthonomal bases of the vectorsp&ggan each resolution step. The

so—called wavelgp € LR) with yme(X) = 2‘"51/}(2‘”‘)( — n) however is prooved to be a basis of the
orthonormal complemendy,.

The statements explained abo¥kepan iterated decomposition scheme, where an intial discrete function
can successively be approximated for a given iteration dépising the scaling function and wavelets
in each orthonormal complement spake

VO:VM®UM®...®UO (10)
Hence, we obtain:

0= > () = > clpy() + > dlypy0  f(0 €V, (12)
j ,- j
M
= 2.9 + 2, > vy
j k=1]

2.2 3D-Extensions and Implementation

So fa, the definitions were restricted to the one—dimensional case. For multidimensional signal proces-
sing, as image analysis or volume rendering, it is necessary to extend the method to multiple dimensions
Beside of the non—trivial nonseparable case [26] there is a straightforward way to accomplish this by
means of tensor products of the one—dimensional representatives of the function spaces and of their base

Onee Vi, is given, we can define a 3D vensiv’3, by

Vﬁw:Vm@Vm@Vm

12
V?’n= (Vm+1®um+1>®(vm+l®Um+1)®<vm+1®um+l) (12)
3 _ \/3 3,1 3,2 3,7
Vin= Vi UG O UL, @ UL,

Equation (12) shows, that at each decomposition step, the space is broken up into 7 orthonormal comple
ments that account for the principal orientations of the data, respgciikelcorresponding 3D versions
of the wavelets and of the scaling function can easily be derived from their one—dimensional relatives, as

Phoal%Y,2) 1= 2726(27™ — Pp(2TY — Q)p(2"z )
PRy 2) 1= 27292 — P2y — (22 ) (13)
P2 XY, 2) 1= 27292 — P2y — Qp(2 Mz 1)

P33xY.2) 1= 27292 — P2y — (22 ~ 1)




PAxy.2) 1= 27792 ™ - P2y — Q)p(2 Mz —T)
P33 xY.2) 1= 272X — P2y — Qy(2 ™z )
Y38.xY.2) 1= 272 ™ — P2y — P2z )

YaEa YD) = 25X — P27y — (22 — 1)
Unfortunatey, some of the wavelet types to be explained later are not defined in a closed form solution
and consequently the convolution products of eq. (3) cannot be computed eyplibieémplementation
of orthonormal wavelet transforms employs so—called quadrature mirror pair filters (QMFs). The basic
scheme of this filter bank is illustrated in fig. 1 for a decomposition of volume data. The initial data set
is filtered along the x— y— and z— axis and subsampled by the factor 2 using the two filters

H'(w) = Z h(=n)e" ard G'(w) = € “H'(w + x) with h(n) : = 273 f ¢(x — n)dx respec-
nN=-—o
tively. The result from this process are 7 detail sigbd}f, - - - , D3/f that account for the oriented wave-

lets in this channel and a low pass slghaf that is decomposed furthd@ his iterated scheme corresponds
to a dyadic subband coding of the data.
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Fig. 1  Quadrature mirror pair filter pyramid to implement the 3D
wavelet transform

The resulting data pyramid is illustrated in fig. 2. In each branch of this treéférenli signal components
are emphasized, that were extracted from the corresponding oriented wavelet function. This method al




lows the éficient implementation of the WT without an explicit definition of the basis function. The prob-
lem reduces to the finding of the filter mail’ (w) ard G'(w).
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Fig. 2 Iterated decomposition of the initial volume data by the wavelet transform

2.3 Wauvelet Basis Functions

The elucidations above do not further restrict the mathematical properties of the wavelet bases and ther
have been dlierent types proposed in literature depending on smoothness, strict local support and other
criteria. This section briefly introduces the most important wavelets we employ for our rendering method.

The authors also used them successfully for texture analysis [8].

Haar Wavelets

A very simple, but discontinuous basis is given with the Haar wavelet, whose scaling function and corre-
sponding wavelet is defined by

1 for0<sx=<1 1 for0=sx=<1/2
= X =
P00 [0 otherwise Yoy = q -1 for J/Z.S x<1 (14)
0 otherwise

The Fourier transform of these functions (eq. (15))\shizat these expressions have optimal localization
properties in the spatial domain on the one hand

i, Sin%(w/2)
w/2

but a rather bad localization in frequency on the other hand.

—iw SIN@)

- (15)

PQ20) = e WY(2w) = ie”

DaubechiesMavelets

In order to obtain better localization in frequency along with a minimal local support in space and smooth-
er basis functions, Daubechies [4] proposes wavelet types as follows: the smoothness can be measurt
by the regularity, (of any functim ¢) which is defined as the maximumro$uch that

-_ Cc +
Pl = 1+ )t cen (16)




This relation also describes the continuitysgx), whee ¢(x) € C'(R)with i < r.The regularity of the
Daubechies wavelets is proportional to the number of vanishing momMese$ined by

f t"y(X)dx = 0 n € {0,...,N]| (17)

The functiong is only constraint by eq. (18).

[e'e}

J p(x)dx = 1 (18)
Note, that these wavelets are given by their corresponding QMF—pairs.
Coiflet — Bases

Restricting further the scaling function to a fixed number of vanishing moments following eq. (19).

[ee]

J t"p(X)dx = 0 n € {1,...,N} (19
results in a dferent wavelet type, the so—called Coiflet wavelet [1]. Besides the Wasaelet, strict finite
support comes along in the orthonormal case with a lack of sysrAetvever there is a relationship
between the number of vanishing moments, stated eariié the symmetry of the function. Thus Coiflet
bases appear to be "more symmetric” then Daubechies ones.

Battle—LemarieNavelets

Wavelets with an infinite support can be approximated in the frequency plane. An example is given by
the equations (20) — (23) (see [18]).

P(w) 1= Wm (20)
where

o) 1= @)+ Nol) (21)

105(sin%)
with
2 2 2

Ny(w) := 5+ 30(003%)) + 30(sin%) (cos%) (22)

and
4 2 4 6
N,(o) : = Z(Sin%’) (cos%) + 70(003%) + %(sin%) (23

The resulting wavelet type is often referred to in literature as the Battle—Lemarie wavelet.

Figure 3 gives again a graphical representation of the shape of some one—dimensional wavelet basis fun
tions.We can cleary distinguish between the smooth shape of the Battle—Lemarie wavelet on the one sid




and the strict local support of the Daubechies wavelet on the other side.

Daubechies 4—tap wavelet Scaling function

1 an

Coiflet 6—tap wavelet Scaling function
/TN
- s | R N
Battle—Lemarie wavelet Scaling function

e

Fig. 3  Different wavelet types and their one—dimensional representatives

We should also note that for continuous approximations we face the competiting criteria of providing strict

compact support and smooth symmetric shapes along with orthonormality in order to achieve a perfect
reconstuction and compact coding.

3 Continuous Approximations usingWavelet Bases

3.1 The Volume Rendering Integral

From the sections above we kndhat a 3D wavelet decomposition of a volume data set results in a com-
pact pyramidal representation by the fticeents

= 1 2 qm3 4m4 qm, 6 qm, | -

¢ € {Cqu, doyr dose, dol, diul, dme, die dg‘qZ}. Letw (x,y,z) be the waveley . or scaling ba-

par
sis functio ¢y, the expansion of the volume density functiony,z) yields




_ m m m1,,m1 m,2,,m,2 m,3,,,m,3 m,4,,,m,4
fxy.2) = Z Z Z Z( CRuar + dpgrper + e + doevpee + dpar per
b q r

m,5,,,m,5 m,6,,,m,6 m,7,,,m7
dpqrwpqr + dpqr par + dpqu/}pqr )

N3

= C - Wi(xV,2
le L (24)

whereN represents the voxel resolution.

Once the basis functions are given continugues. (24) provides an continuous approximation of the
density functiorf with the constraint of perfectly reconstructing the discrete voxel values.

Due to the immense number of basis functions (foP £28Mio.) we are forced to define a significance
measure for the data to reject unimportantfi@ents. In [20] a generic significance is proposeﬁ’&éﬂ

but when carefully analyzing the scaling properties on multidimensiongd, We found that
25/2+3M/2|¢ | addresses the problem betterepresents the number of 1D scaling functions from which
the respective 3D basig(x,y,z) is composed. Even more than this, we can also compute the local signal
enegy E from the Nom || -[| . as

2
E - f J f 6 wiox .| “axay = g1 wxy.2 |2 25)

for each component [18]. Supposing the basis functions to hold

we obtain the local engy by the square of the correspondingfioents

2
E = (9) (27)
These equations allow us to estimate the error bounds of our approximation when rejecting unimportan

codficients and renders an alternate method to define a significance basetygmather than on ampli-

tude measures. Once the ffméents are filtered we obtain a modified approximatf@x, y,2) as

K
y.2) = > & Wxy2 (28)
j=1

In chapter 2 we elaborated that some wavelet types are not given in a closed form solution and propertie
of smoothness, symmetry and the keeping of the orthonormality can only be achieved by infinite support.
For this end we have to cuf gome wavelets on the one side and we have to find a generic interpolation
scheme on the other side. In order to compdferdint wavelet types to each other and to be independent

10



of the basis function, we require a generic continuous representation scheme. Furthermore, the final goz
is to find an approximate and analytic solution for the ray intensity function. Thus the discrete values of
the wavelet functions obtained by iteration [4] are interpolated by piecewise polynomials using cubic

splines in each interdal C R3.

3.2 A Ray-Casting Method inWavelet Space
The separability of the bas;u?/j allows us to write eq. (28) as
R K
i(xy.2) = > ¢ blx) bAy) b’ (29)
j=1

where tie b; represent the X,y and z—components of the basis functions.

The image generation with ray casting turns out to be a parametrization of the ray as

X axt + fBx T T,
()-8l ol = psa) @

a andp are the viewing direction and the eyepoint respegtivel

We obtain the intensity function along the ray with

R faxt + Bx K
azt + IBZ j=1

This scheme is illustrated in fig. 4. The ray intensity function is provided by projecting the single basis
functions onto the ray and by superimposing them. It is accomplished by scalingandiby translating
withS. Due to the piecewise spline interpolation we get now a continuous approximation of the ray intensi-

ty function. In each interva[ltjn, tjn+1] and for each component of the resulting vector the polynomials
b}'”(t) are given for each waveles; as

Grad(bjiv”)
biN(t) = > &t (32
k=0

and their cofficients 4" as

G rad(bj? )

HEEDY (l_'k)aijj“'a B (33
k

| =
a:'”: Spline cofficients in intervall {,, th+1]

Thus we can write

11



Grad(bj!v”) Grad(b]?v”)

LR IS INELIPEVIE TRVIR TR B

k=0 I=k

The final expression fofA(t) is obtained by

K rGrad(bjl) (Grad(b?)
A R [ _
=>¢ S| > (l_k)all,n a k- p ek
j=1 [ k=0 [ I=k
[(Grad(b?)(Grad(b?)
I _ | ¢l
Z z (|—k)alz'n ayk : ﬁyl KX te b,
k=0 | I=k J
(Grad(b?)((Grad(b?) 1 ) (35)

S e

k=0 =k

" - < J

—

ray density function f(t)

spline intervalls for
one wavelet

image pixel

scan line

discrete volume

A

eye point

image plane

Fig. 4  lllustration of the rendering process

Eq. (35) stresses that we have a polynomial representation that can be integrated straightfoni@rd|
tunately the rendering equation incorporates an exponential absorption term.

Now, depending on the application we focus at, there &iereint ways to get the image intendityn
this simple case, we do not consider self—occlusion, and eq. (1) simplifies to

| = f f() dt (36)

12



We obtain a piecewise analytic solution for each inter[ﬂé}lltin N 1] by the piecewise primitive functions

W) = f bjl(t) : bj?(t) : bj3(t) dt, with

K K, L=l . . L numbe of spline intervalls
= . = A. J — J
I Z l Z N Z[WPGM ) Win(tn) for wavelg w;
j=1 j=1 n=0
Note, that the size of the intervalls depend either on how the viewing ray intersects the wavelet and on the
step sizem of the pyramids. In the case of a close form representatioe W¥i{h) it simplifies to

K
= > [ Wit) - Wity (38)
j=1 j=1

In order to include a self-occlusion term and to evaluate the inner integral, we set for instance the functior

a(s) = f(s) and obtain the following expression:

— | fod K PO . (39)
Jfoe 24 > [, )-we)] Vi t=t,
th =t
Li(t)
Due to the local support of the WMwve have only to account a subset of wavelets along yhA tmear
approximation of the exponential function aligned to the spline intervalls yields

. - t!f(s)ds ) Jl:[léj L:lt):[_ol (1 ) [WP(tJr]+1) ) an(tjn)]) (40)

Again, it has to be noted that a closed form representation provides a compact approximatiomdyut a la
linearization erro

- Jf(s)ds K
e v =]]g (1 - [we) - wew)) (1)

The final discrete solution of the rendering equation depends on the shading model, but we can follow the
principles of eq. (2):

13



k  Liw-1

M
= > e e [ (1 -[we, ) -we])
k=1

j=1 n=0

(42)

Equation (42) provides then an approximate, analytic solution of the inner product. Thetgri{ggn)
that is required for shading can be computed easily from
: S d d
o (§) = D6 (b1 - 570) - 5 B0 - b0 - b

1
b9 - B) - 0%

j

(43)

We have to mention here, that the implementation of these equations is not straightforeward. Although
the picewise spline interpolation of the basis functions has only to be performed for the 1D—prototypes
of ¥ andg, the calculation of the spline intervallstiare computationally very expensive.

The problem of getting isosurfaces in the images will be treated separately and discussed in the next set
tion. The pictures in this paper were based on eq. (36).

3.3 Examples

The pictures in fig. 5 and fig. 6 show tHéeets of continuous wavelet—based approximations for volume
rendering and allow one to compare the influence of the shape of the basis function with the final image
quality. In fig. 5 the surface of a simple voxelized model obtained ffigrdnt basis functions is repre-
sented. The results are perfect reconstructions of the initial binarized volume intensities using only basis
functions of the iteratiom=0. We can cleary identify how the final approximation of the volume surface

is influenced by the smoothness of the wavelet. The respective filtéiceres are given in appendix

A.

Fig. 5  Perfect reconstructions of a simple voxel object rendered an opaque surfacéferith di
ent wavelets of the iteration=1
a) Daubechies wavelet, 4—tap (N=2)
b) Coiflet wavelet, 6—-tap
b) Battle—Lemarie wavelet

In fig. 6 a Gaussian density distribution was voxelized at a resolutior ah8endered with tferent
numbers of cdéicients and iteration depths. The isosurface was setQd and surrounding it, the inten-

sities below that threshold are represented as a bluish trangludénshould note that symmetry and
shape of the wavelet strongly influence the shape of the isosurface. Assymetric and fractallike functions,
as for instance the Daubechies wavelet, generate artifacts, such as rips or modulations of the tyanslucenc
Itis interesting to compare them to the shapes obtained by a standard marching cubes on the initial volum
data set.

14



Fig. 6 Images obtained from a Gaussian density distribution 8fv8gels:
(a) Isosurface at= 0.5 with a marching cubes algorithm

b,c,d) Isosurfaces and translucent hull obtained from a Battle—Lemarie wavelet with
(b) 151
(c) 345
(d) 961 coféficients

e.f,g) Isosurfaces and translucent hull obtained from a Coiflet wavelet with
(e) 82,
(f) 345
(9) 1006 cofficients

h,i,j) Isosurfaces and translucent hull obtained from a Daubechies wavelet with
(h) 206,
(i) 494
(i) 1154 cofficients
The pictures were generated with our hybrid renderer that composes the volumetric intensities with the
isosurfaces. In these examples, the isosurfaces were rendered using the implicit function approach c

chapter 4 [12]. The cdicients were filtered according to the significance measures in section 3.1.

4 Rendering of Isosurfaces inVavelet Spaces

4.1 Implicit Function App roach versus Maching Cubes

As we mentioned, the wavelet decomposition opens fiigreint ways to get isosurfaces from volume
data. Direct ways of volume integration to get opaque surfaces, as proposed by [5] or [16] usually base
on shading models that estimate the surface normal by means of the volume §adidrey provide
good-looking images but do not exactly solve the illumination equation. In these cases, the computatior
of the gradient follows eq. (3 section 3.2. Another way to solve the isosurface problem is proposed
by [21]. It bases on the idea, that isosurfaces of a threslsaltisfy

fxy,2 =7 = f(xy,2 —7=0 (44)

in the continuous approximation of eq. (28).

Equation (44) leads to an implicit function that can be rendered using methods as in [12]. Since we dea
with polynomials, all required terms can be computed analytieallfor instance the Lipschitz condition

15



L = mg§X ‘VfA(x, Y, z)‘

. | (45)
= Sl men o] e 0] o
1 a 3
= pma ofed] - ma G| - ma i)
1 2 3
+ [Xm%]b R Jmax bAy)] - max \d b; (z)|)
and the gradient functiag(t) along the ray
._dg
9(1) := 5;f(® (46)

The pictures of fig. 6 were generated using this method. Unfortynthiete are several shortcomings in

this approach: Due to the huge number of basis functions, Kalethod becomes extremely time con-
suming. Furthermore, the appearance of the isofurface is strongly influenced by the shape of the wavele:
that has to be represented in a continuous form. Hence, it becomes interesting to apply a simple marchin
cubes technique [17] on the back—transformed data set and to compose the polygons with the volume da
during the rendering process. In these cases, the isosurface generation is no longer performed in wavel
space, but the local data quality is still controlled by the wavelets.

4.2 Examples

Figure 7a shows the bust of Johann Strauss, as itis derived from a 3D lasersbameadel was illumi-

nated and voxelized with a resolution o824 voxels. The isosurfaces obtained from a marching cubes
are presented for a flat and for a smoothly shaded reconstruction in figs. 7b and 7c regdégives

8a,c,b show the isosurface reconstruction with Kaimeethod [12] that is accomplished immediately on
using the basis functions in wavelet space. In figure 9a,b,c the same reconstructions are presented aft
an inverse transform of the filtered data and with a marching cubes algorithm. In both cases, an increasin
number of cofficients were employed to encode the défa.can clearly recognize that the level of detail
increases as the number of wavelets is raised. In figures 8a and 9a only the low-pasntoepresent

the data and therefore the fine grain details of the surface shape included in the higher frequencies do n«
appear at al\With an increasing number of dfieients, more and more surface details become visible.

In order to compare the influence of the wavelet, the same situation is presented for Coiflet bases in fig
10 and in fig11. Similar to our Gaussians, the smoothness of the isosurface strongly depends on the shap
of the wavelet. Hence, the Coiflet wavelet renders "rougher” shapes. The local properties of the WT are
demonstrated with the pictures in fig. 12. The shapes were rendered with a spatially varying level-of—de-
tail. The top of the head is perfectly reconstructed, whereas in the lower part of the bust only the scaling
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functions were employed to encode the data. Figure 12a shows the original and 12b, c and d local recor
structions with Haar—, Coiflet and Battle—Lemarie wavelets, respactivel

Fig. 7  a) Range data of a bust of Johann Strauss
b) Voxelized volume data at a resolutior? 3264
¢) Isosurface reconstruction using a marching cubes algorithm

Fig. 8  Isosurface reconstruction using Karanethod and 3D—wavelets with0.5
a) 1180 codficients,m= 3 only
b) 2832 coficients,m= 2 only
¢) 9601 cofficients,m= 1 only

Fig. 9 Isosurface reconstruction using marching cubes methods(@th and Battle—Lema-
rie—wavelets
a) 1180 codficients,m= 3 only
b) 2832 coficients,m= 2 only
c) 9601 cofficients,m= 1 only

Fig. 10 Isosurfaces obtained from Coiflet—wavelets and Kalngethod
a) 1397 cofdicients,m= 3 only
b) 2422 coficients,m= 2 only
c) 13177 cofficients,m= 1 only

Fig. 11  Isosurfaces obtained from Coiflet—wavelets and marching cubes method
a) 1397 cofdicients,m= 3 only
b) 2422 coficients,m= 2 only
c) 13177 cofficients,m= 1 only

Fig. 12 Spatially varying reconstruction usingférent kinds of wavelets. The upper part is
perfectly reconstructed, whereas the lower was filtered by our significancedidte
scribed in 3.1. after a decomposition of daptt?

a) Original

b) Haar wavelets

c) Coiflet wavelets

d) Battle—Lemarie wavelets

Fig. 13 Isosurfaces from a volume that was decomposed, filtered and reconstructed by using a
Battle—Lemarie wavelet for flerent thresholds (2832 déemarching cubes)
a)r=0.1
b)z=0.3
c)t=0.5
d)r=0.8
Finally, fig. 13a,b,c, expresses the influence of the thresta@fined for the isosurface. Since the inverse
WT provides floating point values normalized between 0 and 1 the shape obtained from the marching
cubes depends also on the selected isosurface Vatusmall values give rise to some holes in the recon-
struction (see fig. 13a). All other pictures were rendered using intermediate vatue8 BWith respect
to the computational costs, the marching cubes method has to be favourable to the expensivestiaira

od although the latter provides the accurate solution for a particular isosurface.
5 Integration of Data Analysis andVisualization

5.1 TheVision

In the above sections most emphasis was placed on the mathematical analysis of wavelet—based volun
and isosurface rendering. The WT howetas sucessfully been used for data feature extraction as well
[28],[14],[3].[8]. In particular in the field of image processing, several approaches to texture analysis have
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been proposed sorfaMost of these techniques have been performed by using a local WT on single co-
herent texture samples. In order to overcome this restriction, we proposed a new concept for texture fea
ture extraction in images based on a global WT [8]. The features are derived from the local wéfielet coe
cients and take advantage of the localization properties of Thdkése results motivated us to extend

the segmentation scheme to 3D and to embed it into the rendering process — all that in the underlying dat
space of the W. Figure 4 illustrates again our pipeline, where one global WT is first performed on the
initial data set.

| Unique concept for data analysis and visualization in wavelet space

. = =

option
approximation of the attributes
volume density (opacity—color)

function

wavelet transform
3
KL transform
normalization
7
Kohonen Map / LVQ
segmentation/classification

input volume

e B

hybrid volume renderer in wavelet space

image

Fig. 14 Framework for integrated volume rendering and data analysis in wavelet spaces

Once the data is transformed, the segmentation pipeline associates a segmentation to all voxels in the de
set. Therefore, we first extract a wavelet stream dfictents from the wavelet pyramide for each voxel.

This vector is taken as the feature vector describing the local properties of the data surrounding the voxel
These data have to be decorrelated, because our extraction scheme renders slightly correlated feature
in spite of the orthonormality of the transform. After normalizing the features, they are feed into a neural
network [7] that accompishes clustering and classification. The result from this process is a segmentatior
map, that can be imported into the volume rendere

5.2 Including Segmentation Results

There are dferent ways to incorporate segmentation results into the rendering process. [16], for instance
used am—map to enhance local details. [5] choosed a probabilistic model and distributed the percentage
of material to each pixel.

From the pictures above we know that it is possible to render opaque voxel object surfaces using appropri
ate isosurface techniques. In particular fig. 5 corresponds to a splatting of the data with wavelet basis func
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tions. Hence we could splat the respective voxels with basis functioriteoédi iterations. The general
description of the method can be obtained as

fxy2 = >  bxy (47)

i,j,k€subvolume

where f(x,y, z) is the subvolume to be splatted. The single splatting functions are defined as shifted ver-
sions of one prototype(xy,z).

b (% y,2) 1= b(x =i,y = j,z—K) (48)
If we choose radial basis functions of the type
b(x,y,2) : = b¥(x)? + bA(y)? + b*(2)2 (49)

the single voxels will be respresented as small spherical objects. This is illustrated for an experimental
situation in fig. 15. In this picture, we employed cubic basis functions. The coherance of the resulting
shape depends on the support of the splatting function and on the threshold choosen for the isosurface

Fig. 15 Splatting of spherical basis functions to illustrate the possibility to encode local data
properties in terms of calo
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6 Conclusion

In this pape we proposed a new method to get approximate solutions of the low—albedo volume rendering
equation in wavelet spacéde proposed dierent techniques to render both isosurfaces and translucent
volumes using piecewise cubic splines to interpolate the wavelet function. The framework of the wavelet
transform dfers an elegant way to combine localisation and level—of—detail. Furthermore this method pro-
vides piecewise analytic solutions of the intensity integral, since the underlaying volume is approximated
continuously by polynomials. The quality of the results depends strongly on the types of the selected basi:
function.Yet, it turns out, that the projection of the bases onto the ray is computationally expensive. Hence
we have to find a wavelet, that is smooth, of strict finite support, orthonormal and that provides a closed-
form integral int. These properties account for both rendering and data analysis, but cannot be satisfied
in common. Thus a compromise has to be found.
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8 Appendix A

Discrete filter cofficientsh(n)

n Daubechies 4—-tag Coiflet 6-tap Battle—Lemarie
-14 0.0 0.0 —.01103739
-13 0.0 0.0 0.001882134
-12 0.0 0.0 0.002186714
-1 0.0 0.0 —.003882426
-10 0.0 0.0 —.004353840
-9 0.0 0.0 0.008201477
-8 0.0 0.0 0.008685294
-7 0.0 0.0 -.017982291
-6 0.0 0.0 -.017176331
-5 0.0 0.0 0.042068328
-4 0.0 0.0 0.032080869
-3 0.0 0.0 —.110036987
-2 0.0 0.0 —.050201753
-1 0.0 0.0 0.433923147

0 0.482962913145 —.072732619494 0.766130398

1 0.836516303738 0.337897662369 0.433923147

2 0.22414386 8042 | 0.852572019987 —.050201753

3 —.129409522551 0.384864846763 -.110036987

4 0.0 —.072732965094 0.032080869

5 0.0 —.015655728131 0.042068328

6 0.0 0.0 -.017176331

7 0.0 0.0 —.017982291

8 0.0 0.0 0.008685294

9 0.0 0.0 0.008201477
10 0.0 0.0 —.004353840
11 0.0 0.0 —.003882426
12 0.0 0.0 0.002186714
13 0.0 0.0 0.001882134
14 0.0 0.0 —.01103739

22




