
EUROGRAPHICS 2005 / M. Alexa and J. Marks
(Guest Editors)

Volume 24(2005), Number 3

Real-Time Ray-Casting and Advanced Shading
of Discrete Isosurfaces

Markus Hadwiger Christian Sigg∗ Henning Scharsach Katja Bühler Markus Gross∗

VRVis Research Center ∗ ETH Zürich

Figure 1: We render high-quality implicit surfaces on regular grids, e.g., distance fields or medical CT scans, in real-time
without pre-computing additional per-voxel information. Gradients with C1 continuity, second-order derivatives, and surface
curvature are computed exactly for each output pixel using tri-cubic filtering. Applications include surface interrogation and
visualizing levelset computations by color mapping curvature measures (center), and ridge and valley lines (left and right).

Abstract

This paper presents a real-time rendering pipeline for implicit surfaces defined by a regular volumetric grid
of samples. We use a ray-casting approach on current graphics hardware to perform a direct rendering of the
isosurface. A two-level hierarchical representation of the regular grid is employed to allow object-order and
image-order empty space skipping and circumvent memory limitations of graphics hardware. Adaptive sampling
and iterative refinement lead to high-quality ray/surface intersections. All shading operations are deferred to
image space, making their computational effort independent of the size of the input data. A continuous third-order
reconstruction filter allows on-the-fly evaluation of smooth normals and extrinsic curvatures at any point on the
surface without interpolating data computed at grid points. With these local shape descriptors, it is possible to
perform advanced shading using high-quality lighting and non-photorealistic effects in real-time.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation;
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism Color, shading, shadowing, and texture

1. Introduction

Rendering isosurfaces represented implicitly by a volume of
function samples is an important task in visualization, for ex-
ample in medical applications, where volume data are natu-
rally acquired directly, e.g., through CT or MRI scans, as
well as a wide spectrum of other graphics disciplines includ-
ing modeling and animation [MBWB02], and levelset simu-
lation [LKHW03]. More general, implicit models are often
specified and modified on volumetric grids such as regularly
sampled distance fields, e.g., in levelset methods. Implicit
representations naturally represent shapes of complex and

changing topology. However, a major limitation of implicits
is that the isosurface has to be extracted from the underlying
volumetric representation for display. High-quality render-
ing at interactive speeds is a major bottleneck, particularly
when the isosurface changes over time. When an implicit is
represented by a discrete set of samples, rendering involves
reconstruction of the data and the reconstruction filter is of
crucial importance for image quality, especially for gradient
reconstruction [MMK ∗98].

We present a real-time rendering pipeline for isosurfaces
of dense volumetric grids of function samples that achieves

c© The Eurographics Association and Blackwell Publishing 2005. Published by Blackwell
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.

http://www.eg.org
http://diglib.eg.org

M. Hadwiger, Ch. Sigg, H. Scharsach, K. Bühler, M. Gross / Real-Time Ray-Casting and Advanced Shading of Discrete Isosurfaces

both high rendering quality and performance on current con-
sumer graphics hardware (GPUs). Our algorithms are gen-
erally independent of specific hardware but we assume sup-
port for volumetric textures, render-to-texture and looping in
fragment programs (e.g., ShaderModel 3.0). We address sev-
eral shortcomings in existing GPU isosurface rendering ap-
proaches, particularly the lack and inefficiency of advanced
shading, and texture memory usage. Modern GPUs are able
to perform standard ray-casting of small regularly sam-
pled data sets [KW03]. However, advanced shading, e.g.,
curvature-based transfer functions [HKG00, KWTM03], is
still the domain of off-line rendering. The amount of texture
memory limits data sizes significantly. This problem is ag-
gravated by the demand of high-quality rendering for voxel
data of 16-bit precision or more and lossless compression.

As a central part of our rendering pipeline, we support
tri-cubic filtering throughout. Cubic filters allow for precise
evaluations of differential properties of the isosurface, such
as the normal and curvature, which both play a vital role
in visualization, modeling, and simulation. These shape de-
scriptors can be used for various advanced shading effects
such as accessibility shading [Mil94], visualizing implicit
surface curvature [KWTM03], and flow along curvature di-
rections [vW03]. See Figure1 for examples. In contrast to
direct volume rendering, for isosurfaces only one sample po-
sition contributes to the color of a single pixel. Therefore,

Figure 2: Michelangelo’s David extracted and shaded with
tri-cubic filtering as isosurface of a 576x352x1536 16-bit
distance field at 10 fps. The distance field is subdivided into
two levels: a fine level for empty space skipping during ray-
casting (blue) and a coarse level for texture caching (green).

our method employs a ray-casting pass only for determin-
ing ray/surface intersections, and defers the computation of
surface shape descriptors and shading to image space, where
they are evaluated once per visible surface sample only. On-
demand caching techniques are employed to dynamically
download bricks of data only when they contain parts of the
isosurface. Because only a small fraction of the grid sam-
ples contributes to the definition of an isosurface, this leads
to significant reduction of texture memory usage without the
need for lossy compression. See Figure2 for an example.
In summary, the combination of real-time performance and
high quality yields a general-purpose rendering front-end for
many powerful applications of implicit surfaces. The major
contribution is a system that integrates the following:

• Tri-cubic filtering and high-quality shading with non-
photorealistic effects using on-the-fly computation of
smooth second-order geometric surface properties.

• Object space culling and empty space skipping without
any per-sample cost during ray-casting.

• Precise ray/surface intersections without global oversam-
pling, by combining adaptive resampling and iterative re-
finement of intersections with image order complexity.

• A very simple 3D brick cache alleviates GPU memory
limitations significantly.

• Principal surface curvatures are computed in a simpler
way than in previous approaches [KWTM03].

Previous Work

Our work is related to a large amount of previous research
on volume rendering and rendering isosurfaces of volumet-
ric data such as CT or MRI scans, as well as the area of
implicit surfaces in general, especially when an implicit is
represented by a grid of function samples, e.g., in levelset
methods [MBWB02]. Although isosurfaces are often con-
verted to triangle meshes for rendering [LC87], this pro-
duces very complex models and interactive changes of the
isovalue or the volume itself are difficult to deal with. The
two major approaches for rendering isosurfaces directly are
ray-casting [Bar86,Lev88], and sampling ray-surface inter-
sections on graphics hardware via slicing [WE98]. Although
implicits are well-suited for finding guaranteed ray-surface
intersections [KB89], precise computations and high-quality
reconstruction are expensive. Hence interactive rates with
high-quality or analytic ray-surface intersections and gradi-
ents have only been achieved by implementations using mul-
tiple CPUs [PSL∗98,PPL∗99] or clusters [DPH∗03]. Differ-
ent trade-offs have been presented [NMHW02, MKW∗04].
The parallel architecture of GPUs has also been used ex-
tensively for interactive volume rendering, usually via slic-
ing [WE98, EKE01]. In addition to hybrid CPU/GPU ray-
casting [WS01], ray-casting on GPUs has been shown for
small data sets [KW03, Gre04]. Adaptive sampling rates
can be achieved by using pre-computed importance vol-
umes [RGW∗03]. Aliasing artifacts due to undersampling
during slicing can be reduced by pre-integration [EKE01],

c© The Eurographics Association and Blackwell Publishing 2005.

M. Hadwiger, Ch. Sigg, H. Scharsach, K. Bühler, M. Gross / Real-Time Ray-Casting and Advanced Shading of Discrete Isosurfaces

which also yields sharp isosurface boundaries, but assumes
piecewise linear data variation along all viewing rays in-
stead of tri-linear or higher-order reconstruction. All other
previous interactive approaches for rendering isosurfaces
of volume data are restricted to tri-linear data interpola-
tion, and usually interpolate gradients pre-computed at grid
points. If the volume data have not been scanned directly,
signed distance fields are a natural choice as input for our
rendering pipeline [WSE99]. Levelset methods change the
distance fields dynamically and have many powerful ap-
plications such as surface editing and processing opera-
tors [MBWB02], and surface deformations [TO99]. Implic-
its are also well-suited for CSG modeling. In addition to re-
constructing an isosurface, we are computing implicit sur-
face curvature [KWTM03]. The space of principal curvature
magnitudes is intuitive for shape depiction [HKG00], and
can be used for non-photorealistic volume rendering [RE01]
such as ridge and valley lines [IFP95]. Curvature directions
can be visualized effectively by advecting dense noise tex-
tures [vW03], which we do entirely in image space [LJH03]
on a per-pixel basis. The texture memory limitation for
large volumes has been tackled by various means of lossy
compression [GWGS02, SW03], which are not well suited
for high-quality rendering. Texture packing has been used
for static lossless compression [KE02], improved render-
ing performance [LMK03], and sparse levelset computa-
tions [LKHW03]. Octrees have also been used [LHJ99,
WWH∗00]. Our texture caching approach combines adap-
tive texture look-ups during rendering [KE02] with dynami-
cally updated packed data [LKHW03].

2. Pipeline Overview

This section gives a high-level overview of our rendering
pipeline, which is illustrated in Figure3. The basic input is a
regularly sampled scalar volume. The first stage (top row of
Figure3) performs ray-casting through the volume in order
to obtain a floating point image of ray/isosurface intersection
positions in volume coordinates, which drives the following
stages in image space (lower two rows of Figure3). The ray-
casting stage (Section3) is the only part of the pipeline that
has object space complexity. All other computations (such as
computing derivatives; Section4.1) and shading operations
(such as color-coding curvature; Section4.2) are deferred to
image space and thus have image space complexity [ST90].

The volume is subdivided into two regular grid levels: a
fine level to facilitate empty space skipping (Section3.1),
and a coarse level to circumvent memory limitations of
graphics hardware (Section3.4). We call the elements of
the fine subdivision levelblocks, and those of the coarse
level bricks. For each block we track min-max values of a
set of voxels. Rays are started on block bounding faces and
cast into the volume using adaptive sampling (Section3.2).
The last operation of the ray-casting stage iteratively refines
isosurface hit-points (Section3.3). This is done with a con-
stant number of steps of image space complexity and is thus

Figure 3: Overview of our rendering pipeline. The top row
operates with object space complexity until the refinement of
ray/isosurface intersection positions. The middle row stages
compute differential surface properties with image space
complexity, and the bottom row stages perform deferred
shading in image space.

the transition from object to image space. The result of hit-
point refinement is an image of high-quality ray/isosurface
intersection positions. If the whole volume does not fit into
graphics memory, rays are cast through a dynamic cache tex-
ture storing active bricks (Section3.4). The cache is updated
on-the-fly according to the current isovalue. An additional
low-resolution texture references the positions of bricks of
the volume in the cache.

The image space pipeline stages generate a series of im-
ages of differential isosurface properties, which are then
used in a final shading pass to generate an output image us-
ing a variety of shading styles. Surface properties are com-
puted at the exact positions of ray/isosurface intersections
specified by the intersection image. Computing the first and
second partial derivatives of the scalar volume yields float-
ing point images for the components of the gradient and the
Hessian matrix (Section4.1). These derivatives are then used
to compute curvature measures, which are likewise written
into floating point images. The output image is generated in
a final image space shading pass with a variety of effects that
build on the shape descriptors computed before. The gradi-
ent image can be used for all shading models that require a
surface normal, such as standard Blinn-Phong or tone shad-
ing. Curvature measures can be mapped to colors via 1D or
2D transfer functions, which is well-suited for shape depic-
tion. For example drawing ridge and valley lines without
generating actual line primitives. Pixels that correspond to
ridge or valley areas are identified on a per-pixel basis via
a curvature transfer function. Curvature directions are also
effective shape cues, and we illustrate the curvature field on
the isosurface with image space flow advection.

c© The Eurographics Association and Blackwell Publishing 2005.

M. Hadwiger, Ch. Sigg, H. Scharsach, K. Bühler, M. Gross / Real-Time Ray-Casting and Advanced Shading of Discrete Isosurfaces

3. Ray-Casting

The basic idea of GPU-based ray-casting is to store the en-
tire volume in a single 3D texture, and drive a fragment
program that casts rays into the volume. Each pixel corre-
sponds to a single rayp(t,x,y) = c+ t d(x,y) in volume
coordinates. Here, the normalized direction vectord(x,y)
can be computed from the camera positionc and the screen
space coordinates(x,y) of the pixel. The range of depths
[tstart(x,y), texit(x,y)] which has to be searched for an iso-
surface intersection is computed per frame during initializa-
tion. In the simplest case,tstart is obtained by rasterizing the
front faces of the volume bounding box with the correspond-
ing distance to the camera. Rendering the back faces of the
bounding box yields the depthstexit of each ray exiting the
volume.

In contrast to earlier approaches, we are using a single
rendering pass and looping in the fragment shader for casting
through the volume in front-to-back order instead of mul-
tiple passes [KW03], and employ object-order in addition
to image-order empty space skipping. Most importantly, we
overcome the following limitations:

• Empty space skipping overhead is reduced by using a two-
level approach. Most empty space is skipped with no cost
using modified ray segments[tstart(x,y), texit(x,y)]. Only
for a small number of samples empty space has to be
skipped on a sample-by-sample basis, which is acceler-
ated via an adaptive sampling strategy.

• The quality of ray/isosurface intersection positions is re-
fined by an iterative bisection procedure, which yields
quality identical to much higher constant sampling
rates [KW03] except at silhouette edges. A simple adap-
tive approach improves the quality of silhouette edges,
without significant book-keeping overhead [RGW∗03].

• The entire volume is not required to fit in GPU memory.
Instead of casting through the original volume, we sample
a brick cache texture storing only bricks intersected by the
isosurface. Fast culling and LRU cache brick replacement
allow changing the isovalue in real-time.

3.1. Empty Space Skipping

In order to facilitate object-order empty space skipping with-
out per-sample overhead, we maintain min-max values of
a regular subdivision of the volume into small blocks, e.g.,
with 43 or 83 voxels per block. These blocks do not actu-
ally re-arrange the volume. For each block, a min-max value
is simply stored in an additional structure for culling. If the
whole volume does not fit in GPU memory, however, a sec-
ond level of coarser bricks is maintained, which is described
in Section3.4. Whenever the isovalue changes, blocks are
culled against it using their min-max information and a range
query [CSS98], which determines their active status. See
Figure 4. The view-independent geometry of active block
bounding faces that are adjacent to inactive blocks is kept in
GPU memory for fast rendering.

Figure 4: Ray-casting with object-order empty space skip-
ping. The bounding geometry (black) between active and in-
active blocks that determines start and exit depths for the in-
tersection search along rays (white) encloses the isosurface
(yellow). Colored bricks of 2x2 blocks reference bricks in the
cache texture (Figure6). White bricks are not in the cache.
Actual ray termination points are shown in yellow and red,
respectively.

In order to obtain ray start depthststart(x,y), the front
faces of the block bounding geometry are rendered with their
corresponding distance to the camera. The front-most points
of ray intersections are retained by enabling a corresponding
depth test (e.g.,GL_LESS). For obtaining ray exit depths
texit(x,y) we rasterize the back faces with an inverted depth
test that keeps only the farthest points (e.g.,GL_GREATER).
Figure4 shows that this approach does not exclude inactive
blocks from the search range if they are enclosed by active
blocks with respect to the current viewing direction. The cor-
responding samples are skipped on a per-sample basis early
in the ray-casting loop. However, most rays hit the isosurface
soon after being started and are terminated quickly (yellow
points in Figure4, left). Only a small number of rays on the
outer side of the isosurface silhouette are traced for a larger
distance until they hit the exit position of the block bound-
ing geometry (red points in Figure4, left). The right side of
Figure4 illustrates the worst case scenario, where rays are
started close to the view point, miss the corresponding part
of the isosurface, and sample inactive blocks with image-
order empty space skipping until they enter another part of
the isosurface bounding geometry and are terminated or exit
without any intersection. In order to minimize the perfor-
mance impact when the distance from ray start to exit or ter-
mination is large, we use an adaptive strategy for adjusting
the distance between successive samples along a ray.

3.2. Adaptive Sampling

In order to find the position of intersection for each ray, the
scalar function is reconstructed at discrete sampling posi-
tions pi(x,y) = c + tid(x,y) for increasing values ofti in
[tstart, texit]. The intersection is detected when the first sam-
ple lies behind the isosurface, e.g., when the sample value is
smaller than the isovalue. Note that in general the exact inter-
section occurs somewhere between two successive samples.
Due to this discrete sampling, it is possible that an intersec-

c© The Eurographics Association and Blackwell Publishing 2005.

M. Hadwiger, Ch. Sigg, H. Scharsach, K. Bühler, M. Gross / Real-Time Ray-Casting and Advanced Shading of Discrete Isosurfaces

tion is missed entirely when the segment between two suc-
cessive samples crosses the isosurface twice. This is mainly
a problem for rays near the silhouette. Guaranteed intersec-
tions even for thin sheets are possible if the gradient length
is bounded by some valueL [KB89]. Note that for distance
fields,L is equal to 1. For some sample valuef , it is known
that the intersection at isovalueρ cannot occur for any point
closer thanh= | f −ρ|/L. Yet,hcan become arbitrarily small
near the isosurface, which would lead to an infinite number
of samples for guaranteed intersections.

We use adaptive sampling to improve intersection detec-
tion. The actual intersection position of an intersection that
has been detected is then further refined using the approach
described in Section3.3. We have found that completely
adaptive sampling rates are not well suited for implemen-
tations on graphics hardware. These architectures use mul-
tiple pipelines where small tiles of neighboring pixels are
scan-converted in parallel using the same texture cache. With
completely adaptive sampling rate, the sampling positions of
neighboring pixels diverge during parallel execution, leading
to under-utilization of the cache. Therefore, we use only two
different discrete sampling rates. Thebase sampling rate r0
is specified directly by the user where 1.0 corresponds to a
single voxel. It is the main tradeoff between speed and min-
imal sheet thickness with guaranteed intersections. In order
to improve the quality of silhouettes (see Figure5), we use
a secondmaximum sampling rate r1 as a constant multiple
of r0: r1 = nr0. We are currently usingn = 8 in our sys-
tem. However, we are not detecting silhouettes explicitly at
this stage, because it would be too costly. Instead, we au-
tomatically increase the sampling rate fromr0 to r1 when
the current sample’s value is closer to the isovalueρ by a
small thresholdδ. In our current implementation,δ is set by
the user as a quality parameter, which is especially easy for
distance fields where the gradient magnitude is 1.0 every-
where. In this case, a constantδ can be used for all data sets,
whereas for CT scans it has to be set according to the data.

3.3. Intersection Refinement

Once a ray segment containing an intersection has been de-
tected, the next stage determines an accurate intersection po-
sition using an iterative bisection procedure. In one itera-
tion, we first compute an approximate intersection position
assuming a linear field within the segment. Given the sam-
ple valuesf at positionsx for the near and far ends of the
segment, the new sample position is

xnew= (x f ar−xnear)
ρ− fnear

f f ar− fnear
+xnear (1)

Then the valuefnew is fetched at this point and compared to
the isovalueρ. Depending on the result, we update the ray
segment with either the front or the back sub-segment. If the
new point lies in front of the isosurface (e.g.fnew> ρ), we
setxnear to xnew, otherwise we setx f ar to xnew and repeat.
We have found empirically that a fixed number of four itera-
tion steps is enough for high-quality intersection positions.

Figure 5: The left image illustrates a small detail of the
asian dragon model with a sampling rate of 0.5. On the right,
adaptive sampling increases the sampling rate to 4.0 close to
the isosurface. Note that except at the silhouettes there is no
visible difference due to iterative refinement of intersections.

3.4. Brick Caching

For any possible isovalue, many of the blocks described in
Section3.1do not contain any part of the isosurface. In addi-
tion to improving rendering performance by skipping empty
blocks, this fact can also be used for reducing the effective
memory footprint of relevant parts of the volume signifi-
cantly. Whenever the isovalue changes, the corresponding
range query also determines the active status of bricks of
coarser resolution, e.g., 323 voxels. The colored squares in
Figure 4 depict these bricks with a size of 2x2 blocks per
brick for illustration purposes. In contrast to blocks, bricks
re-arrange the volume and include neighbor samples to allow
filtering without complicated look-ups at the boundaries, i.e.,
a brick of resolutionn3 is stored with size(n+1)3 [KE02].
This overhead is inversely proportional to the brick size,
which is the reason for using two levels of subdivision. Small
blocks fit the isosurface tightly for empty space skipping and
larger bricks avoid excessive storage overhead for memory
management.

In order to decouple the volume size from restrictions
imposed by GPUs on volume resolution (e.g., 5123 on
NVIDIA GeForce 6) and available video memory (e.g.,
256MB), we can perform ray-casting directly on a re-

Figure 6: A low-resolution brick reference texture (left)
stores references from volume coordinates to texture cache
bricks (right). The reference texture is sampled in the frag-
ment shader to transform volume coordinates into brick
cache texture coordinates. White bricks denotenull refer-
ences for bricks that are not resident in the cache.

c© The Eurographics Association and Blackwell Publishing 2005.

M. Hadwiger, Ch. Sigg, H. Scharsach, K. Bühler, M. Gross / Real-Time Ray-Casting and Advanced Shading of Discrete Isosurfaces

arranged brick structure. Similar to the idea of adaptive tex-
ture maps [KE02], we maintain an additional low-resolution
floating point reference texture (e.g., 163 for a 5123 volume
with 323 bricks) storing texture coordinate offsets of bricks
in a single brick cache texture that is always resident in GPU
memory (e.g., a 512x512x256 texture). However, both the
reference and the brick cache texture are maintained dynam-
ically and not generated in a pre-process [KE02]. Figure6
illustrates the use of the reference and brick cache textures.
Note that since no gradient reconstruction or shading is per-
formed during ray-casting, no complicated neighbor look-
ups are required at this stage. When the isovalue changes,
bricks that potentially contain a part of the isosurface are
downloaded into the brick cache texture. Inactive bricks are
removed with a simple LRU (least recently used) strategy
when their storage space is required for active bricks. Bricks
that are currently not resident in the cache texture are spe-
cially marked at the corresponding position in the reference
texture (shown as white squares in Figure6). During ray-
casting, samples in such bricks are simply skipped.

4. Deferred Shading

While the last section showed how to compute accurate
ray/surface intersections for each pixel, this section de-
scribes how to turn the position image into a high quality
rendering using deferred shading. All algorithms described
here have image space complexity, meaning that they are
independent of the size of the grid data. Each pass of the
deferred shading stage writes a different property of the in-
tersection position to an off-screen pixel buffer [ST90]. The
result of one pass can serve as input for successive passes by
mapping the pixel buffer as a texture. The final shading pass
uses the property images to render the shaded isosurface to
the viewport.

Figure 7: Color mapping of maximum principal curvature
magnitude using a 1D color look-up table (dragon data set
with 512x512x256 samples).

operation #passes inputs outputs
Ray-Casting 3 [3] volume pos
Gradient 3 [6] pos,volume g
Hessian 6 [12] pos,volume H
Curvature 1 [13] g,H κ1,2, e1,2
Shading 1 [14] pos,g, κ1,2, e1,2 image

Table 1: Number of image space rendering passes and re-
quired input images for differential properties and deferred
shading. Pass counts in brackets denote total number of
passes after the intersection position computation.

4.1. Differential Surface Properties

The appendix describes briefly how we quickly evaluate
cubic reconstruction filters and their partial derivatives.
See [SH05] for more details. This section shows that these
basic capabilities can be exploited to calculate differential
properties of isosurfaces from the scalar volume. In our im-
plementation on a NVIDIA GeForce 6800, each property
is calculated in one to six rendering passes, where each of
these passes renders only a single screen-aligned quad in
order to invoke the fragment shader for every output pixel.
An overview of the number and types of rendering passes is
given in Table1.

Partial derivatives. The first differential property of the
scalar volume that we need to reconstruct is its gradient
g = ∇ f , which we use as implicit surface normal and for
curvature computations. The surface normal is the normal-
ized gradient of the volume, or its negative, depending on the
notion of being inside/outside the object:n = ±g/|g|. We
computeg in three rendering passes, each of which evalu-
ates a tri-cubic B-spline convolution sum in order to compute
one of the three first-order partial derivatives via eight tex-
ture fetches from the 3D volume texture, plus three fetches
from 1D filter weight textures [SH05]. The calculated gradi-
ent is stored in a single RGB floating point image, see Fig-
ure 3(derivatives). The HessianH = ∇g, comprised of all
second partial derivatives of the volume, is calculated analo-
gously. Due to symmetry, only six unique components need
to be calculated, which is done in six rendering passes using
either eleven or fourteen texture fetches each. The six calcu-
lated coefficients ofH are stored in two RGB floating point
images.

Extrinsic curvature. The first and second principal cur-
vature magnitudes (κ1, κ2) of the isosurface can be estimated
directly from the gradientg and the HessianH [KWTM03],
whereby tri-cubic filtering in general yields high-quality re-
sults. We do this in a single rendering pass, which uses the
three partial derivative RGB floating point images generated
by previous pipeline stages as input textures. The princi-
pal curvature magnitudes amount to two eigenvalues of the
shape operatorS, defined as the tangent space projection of
the normalized Hessian:

S= PT H
|g|P, P = I − ggT

|g|2
(2)

c© The Eurographics Association and Blackwell Publishing 2005.

M. Hadwiger, Ch. Sigg, H. Scharsach, K. Bühler, M. Gross / Real-Time Ray-Casting and Advanced Shading of Discrete Isosurfaces

Figure 8: Curvature Mapping of a643 synthetic data set.
Mean curvature(κ1 + κ2)/2 (left), and Gaussian curvature
κ1κ2 (right). Our renderer is capable to reproduce images
from [KWTM03] at interactive rates. Data set and color
mapping function are courtesy of Gordon Kindlmann.

whereI denotes the identity matrix. The eigenvalue corre-
sponding to the eigenvectorg vanishes, and the other two
eigenvalues are the principal curvature magnitudes. Because
one eigenvector is known, it is possible to solve for the re-
maining two eigenvectors in the two-dimensional tangent
space without ever computingS explicitly. This results in
reduced amount of operations and improved accuracy com-
pared to the approach given in [KWTM03]. The transforma-
tion of the shape operatorS to some orthogonal basis(u,v)
of the tangent space is given by

A =
(

a11 a12
a21 a22

)
= (u,v)T H

|g| (u,v) (3)

Eigenvalues ofA can now be computed using the direct
formulas for 2x2 matrices. The two eigenvectors of the shape
operatorS corresponding to the principal curvature direc-
tions are computed by transforming the eigenvectors ofA
back to three-dimensional object space.

κ1,2 =
1
2

(
trace(A)±

√
trace(A)2−4det(A)

)
(4)

ei = κiu+(κi +a22−a11)v (5)

This amounts to a moderate number of vector and matrix
multiplications, solving a quadratic polynomial, and three
texture instructions. The curvature magnitudes and direc-
tions are rendered to two floating point targets.

4.2. Shading Effects

After the computation of differential surface properties, the
resulting floating point images can be used for deferred shad-
ing in image space. Hence, all shading is decoupled from the
volume and only calculated for actually visible pixels. This
section outlines some of the example shading modes that we
have implemented. This is only a small selection of possible
rendering modes that can be used in our pipeline.

Shading from gradient image. The simplest shading
equations depend on the normal vector of the isosurface. We
have implemented standard Blinn-Phong shading and tone
shading.

Figure 9: Asian dragon data set (512x256x256). Left: tone
shading. Right: tone shading blended with accessibility
shading, allowing better depiction of local surface details.

Curvature color mapping. The extrinsic curvature can
be visualized on the isosurface by mapping curvature mea-
sures to colors via lookup textures. First and second principal
curvatures, mean curvature(κ1+κ2)/2 and Gaussian curva-
ture κ1κ2 can be visualized using a 1D lookup texture (see
Figures7 and8) and give a good understanding of the lo-
cal shape of the isosurface. Using a two-dimensional lookup
texture for the(κ1,κ2) domain allows to highlight different
structures on the surface. Figure9 shows approximated ac-
cessibility shading [Mil94]. In this case, we have used a sim-
ple 1D curvature transfer function to darken areas with large
negative maximum curvature. A 2D curvature function could
also be employed for this purpose, giving finer control over
the appearance.

Curvature-aligned flow advection. Direct mappings of
principal curvature direction vectors to RGB colors are hard
to interpret, see Figure3(curvature directions). Instead of
showing curvature directions directly, we visualize them
with an approach based on image-based flow visualiza-

Figure 10: Dense flow advected in the direction of maximum
principal curvature (head of the David data set with5123

samples).

c© The Eurographics Association and Blackwell Publishing 2005.

M. Hadwiger, Ch. Sigg, H. Scharsach, K. Bühler, M. Gross / Real-Time Ray-Casting and Advanced Shading of Discrete Isosurfaces

tion [vW03]. In particular, we are advecting flow on the
surface entirely in image space [LJH03] by computing ad-
vection on a per-pixel basis according to the underlying
vector field of principal curvature directions. Image-based
flow advection methods can be used on surfaces without
parametrization by projecting a 3D flow field to the 2D im-
age plane and advecting entirely in the image [vW03]. We do
this by simply projecting each 3D curvature direction vec-
tor stored in the corresponding floating point image to the
image plane immediately before performing advection for a
given pixel. Image-based flow advection easily attains real-
time rates, which complements the capability of our pipeline
to generate the underlying, potentially unsteady, flow field
in real-time. See Figure10 for an example. A problem with
advecting flow along curvature directions is that their ori-
entation is not uniquely defined and thus seams in the flow
cannot be entirely avoided [vW03]. Although these seams
are visible when looking closely, we have found them to be
not very disturbing in practice. Even though the flow field
we are computing from curvature directions contains clearly
visible patches (Figure3: curvature directions), the resulting
flow has much higher quality (Figure10).

Non-photorealistic effects.Curvature information can be
used for a variety of non-photorealistic rendering modes.
We have implemented silhouette outlining taking curvature
into account in order to control thickness, and depicting
ridge and valley lines specified via colors in the(κ1,κ2) do-
main [KWTM03]. See Figures11and8. In our pipeline, ren-
dering modes such as these are simple operations that can be
carried out in a single final shading pass, usually in combina-
tion with other parts of a larger shading equation, e.g., tone
shading or solid texturing. We find the combination of cur-
vature magnitude color maps and curvature-directed flow es-
pecially powerful for visualizing surface shape, e.g., as guid-
ance during modeling.

5. Results

Volume rendering.Since the input to our rendering pipeline
is an arbitrary scalar volume, it is naturally applicable to the
rendering of isosurfaces such as the CT scan shown in Fig-
ure11. We have integrated our renderer into an existing vol-
ume rendering framework as high-quality isosurface render-
ing front-end. In particular, real-time curvature estimation
can be used to guide volume exploration, e.g., visualizing
isosurface uncertainty, as has been proposed previously for
off-line volume rendering [KWTM03].

Rendering from distance fields.For surface editing us-
ing a levelset approach, an initial implicit representation of
the surface is usually generated by computing the signed
distance to a triangle mesh. We used a variation of radially
weighted linear fields [Nie04] to compute high resolution
distance fields from triangle meshes, see Figures7 and 9 for
examples. Our rendering pipeline could easily be extended
to include on the fly evaluation of CSG operations between
multiple distance fields using min/max operations.

5.1. Rendering Performance

Table 2 gives performance numbers of our rendering
pipeline corresponding to the figures shown in this paper.
Except for very small volumes, the overall performance is
dominated by the initial volume sampling step that computes
approximate intersection positions. This fact is illustrated in
Table3. Although differential surface properties are expen-
sive to compute in general, the fact that all of these computa-
tions have image space complexity combined with fast filter-
ing decrease their impact on overall frame rate significantly.
Even more important, the time spent in these computations
is constant with respect to sampling rate and volume resolu-
tion. The same is true for intersection optimization via bisec-
tion. Table4 illustrates the performance impact of different
sampling rates. With respect to adaptive sampling, we com-
pare constant sampling rates with the same rates for the max-
imum sampling rater1 that is used close to the isosurface
(Section3.2). We observe that although the overhead intro-
duced by bricking is significant, it can be reduced via adap-
tive sampling so that overall performance is about 80-85% of
rendering without bricking and without adaptive sampling.

data set grid size figure fps
asian dragon 512x256x256 1 20.3
asian dragon 512x256x256 9 24.0
david head 512x512x512 1 15.3
david head 512x512x512 10 14.9
david 576x352x1536 2 10.3
cube 64x64x64 8 29.6
dragon 512x512x256 7 11.7

Table 2: Performance of the renderings shown in the figures.
Frame rates are given in frames per second for a 512x512
viewport. Four bisection steps have always been used, since
they do not influence overall performance significantly.

bounding differential
geometry ray-cast properties shading

1.7% 66.1% 31.0% 1.1%

Table 3: Relative performance of the different stages of the
pipeline for asian dragon rendering of Figure1. Rendering
performance is dominated by the surface intersection time.

adaptive brick sampling rate (adaptive:r1)
sampling size 0.25 0.5 1 2 4 8

no none 33.2 29.0 22.7 16.9 12.4
no 32 23.8 19.5 16.1 11.7 7.2

r1 = 8r0 none 34.6 27.4 20.3 15.2
r1 = 8r0 32 19.2 13.8 10.2 6.9

Table 4: Rendering performance in frames per second cor-
responding to different sampling rates for asian dragon ren-
dering of Figure1. Brick caching introduces an additional
texture indirection per sample (Section3.4). Adaptive sam-
pling (Section3.2; n = 8) with bricking reduces this over-
head compared to constant sampling.

c© The Eurographics Association and Blackwell Publishing 2005.

M. Hadwiger, Ch. Sigg, H. Scharsach, K. Bühler, M. Gross / Real-Time Ray-Casting and Advanced Shading of Discrete Isosurfaces

5.2. Discussion and Limitations

This section discusses some limitations of our system. A
problem that can be seen in Figure11, is that even when
cubic filters are used, the curvature computed on actual
scanned data contains visible noise. However, the quality of
cubic filters is almost indistinguishable from filters up to or-
der seven [KWTM03]. In any case it is important to use full
32-bit floating point precision for all GPU computations.

A limitation of our bisection approach for intersection is
that in comparison to an analytic root search [DPH∗03] or
isolation of exactly one intersection [MKW∗04], our dis-
crete sampling with fixed step size does not guarantee cor-
rect detection of segments with multiple intersections. Fur-
thermore, our bisection search might not find the intersection
closest to the camera in such configurations.

A disadvantage of all deferred shading pipelines in gen-
eral is the memory consumption of the image buffers. We
are maintaining up to six window-sized images consisting of
four 32-bit floating point channels each, which consumes a
significant amount of GPU memory for high rendering res-
olutions and thus decreases the maximum volume or brick
cache size.

Another consideration is whether to use an interpolating
filter, such as tri-linear interpolation or Catmull-Rom cubic
splines, or a smoothing filter such as the cubic B-spline for
reconstruction purposes. A very good combination seems to
be using an interpolating filter for value reconstruction, and
a smoothing filter for reconstructing derivatives.

6. Conclusions

We have presented a rendering pipeline for real-time ren-
dering of isosurfaces defined implicitly by regularly sam-
pled scalar volumes. Using empty space skipping techniques
and brick caching, we are able to render volumes of large
sizes that would not fit into GPU texture memory at once
at interactive rates. In comparison to volume rendering al-
gorithms which perform color integration along the viewing
ray, our method is optimized for rendering of isosurfaces.
Because only one sample position contributes to the color of
each pixel, differential surface properties can be computed
on-the-fly in image space as part of the deferred shading
stage. Due to its general nature, our pipeline is applicable
to many practical problems involving implicit surfaces, such
as volume rendering of scientific or medical data, modeling,
morphing, and surface investigation using non-photorealistic
techniques.

We would like to thank Gordon Kindlmann, Bob Laramee, Jiří
Hladuvka, and Christof Rezk-Salama for their help and valuable
contributions. The VRVis research center is funded in part by the
Austrian Kplus project. The second author has been supported by
Schlumberger Cambridge Research. The medical data sets are cour-
tesy of Tiani MedGraph. The David model is courtesy of the Digital
Michelangelo Project.

Figure 11: Contours modulated with curvature in view
direction, and ridges and valleys on an isosurface of a
512x512x333 CT scan of a human head.

References

[Bar86] BARR A. H.: Ray tracing deformed surfaces. InProc. of
SIGGRAPH ’86(1986), pp. 287 – 296.

[CSS98] CHIANG Y.-J., SILVA C. T., SCHROEDERW. J.: Inter-
active out-of-core isosurface extraction. InProc. of IEEE Visual-
ization ’98(1998), pp. 167–174.

[DPH∗03] DEMARLE D., PARKER S., HARTNER M., GRIBBLE

C., HANSEN C.: Distributed interactive ray tracing for large vol-
ume visualization. InProc. of IEEE Symposium on Parallel and
Large-Data Visualization and Graphics(2003), pp. 87–94.

[EKE01] ENGEL K., KRAUS M., ERTL T.: High-quality pre-
integrated volume rendering using hardware-accelerated pixel
shading. InProc. of Graphics Hardware 2001(2001), pp. 9–16.

[Gre04] GREEN S.: Procedural volumetric fireball effect. In
NVIDIA SDK samples(2004).

[GWGS02] GUTHE S., WAND M., GONSERJ., STRASSERW.:
Interactive rendering of large volume data sets. InProc. of IEEE
Visualization 2002(2002), pp. 53–60.

[HKG00] HLADUVKA J., KÖNIG A., GRÖLLER E.: Curvature-
based transfer functions for direct volume rendering. InProc. of
SCCG 2000(2000), pp. 58–65.

[IFP95] INTERRANTE V., FUCHS H., PIZER S.: Enhancing
transparent skin surfaces with ridge and valley lines. InProc.
of IEEE Visualization ’95(1995), pp. 52–59.

[KB89] KALRA D., BARR A. H.: Guaranteed ray intersections
with implicit surfaces. InProc. of SIGGRAPH ’89(1989),
pp. 297 – 306.

[KE02] KRAUS M., ERTL T.: Adaptive texture maps. InProc. of
Graphics Hardware 2002(2002), pp. 7–15.

c© The Eurographics Association and Blackwell Publishing 2005.

M. Hadwiger, Ch. Sigg, H. Scharsach, K. Bühler, M. Gross / Real-Time Ray-Casting and Advanced Shading of Discrete Isosurfaces

[KW03] KRÜGER J., WESTERMANN R.: Acceleration tech-
niques for GPU-based volume rendering. InProc. of IEEE Vi-
sualization 2003(2003), pp. 287–292.

[KWTM03] K INDLMANN G., WHITAKER R., TASDIZEN T.,
MÖLLER T.: Curvature-based transfer functions for direct vol-
ume rendering: Methods and applications. InProc. of IEEE Vi-
sualization 2003(2003), pp. 513–520.

[LC87] LORENSEN W. E., CLINE H. E.: Marching cubes: A
high resolution 3D surface construction algorithm. InProc. of
SIGGRAPH ’87(1987), pp. 163–169.

[Lev88] LEVOY M.: Display of surfaces from volume data.IEEE
Computer Graphics and Applications 8, 3 (1988), 29–37.

[LHJ99] LAMAR E., HAMANN B., JOY K.: Multiresolution
techniques for interactive texture-based volume visualization. In
Proc. of IEEE Visualization ’99(1999), pp. 355–361.

[LJH03] LARAMEE B., JOBARD B., HAUSER H.: Image space
based visualization of unsteady flow on surfaces. InProc. of
IEEE Visualization 2003(2003), pp. 131–138.

[LKHW03] LEFOHN A. E., KNISS J. M., HANSEN C. D.,
WHITAKER R. T.: Interactive deformation and visualization of
level set surfaces using graphics hardware. InProc. of IEEE Vi-
sualization 2003(2003), pp. 75–82.

[LMK03] L I W., MUELLER K., KAUFMAN A.: Empty space
skipping and occlusion clipping for texture-based volume render-
ing. In Proc. of IEEE Visualization 2003(2003), pp. 317–324.

[MBWB02] MUSETH K., BREEN D. E., WHITAKER R. T.,
BARR A. H.: Level set surface editing operators. InProc. of
SIGGRAPH 2002(2002), pp. 330–338.

[Mil94] M ILLER G.: Efficient algorithms for local and global ac-
cessibility shading. InProc. of SIGGRAPH ’94(1994), pp. 319–
326.

[MKW ∗04] MARMITT G., KLEER A., WALD I., FRIEDRICH H.,
SLUSALLEK P.: Fast and accurate ray-voxel intersection tech-
niques for iso-surface ray tracing. InProc. of Vision, Modeling,
and Visualization(2004), pp. 429–435.

[MMK ∗98] MÖLLER T., MÜLLER K., KURZION Y., MACHI-
RAJU R., YAGEL R.: Design of accurate and smooth filters for
function and derivative reconstruction. InProc. of IEEE VolVis
’98 (1998), pp. 143–151.

[Nie04] NIELSON G.: Radial hermite operators for scattered point
cloud data with normal vectors and applications to implicitiz-
ing polygon mesh surfaces for generalized CSG operations and
smoothing. InProc. of IEEE Vis. 2004(2004), pp. 203–210.

[NMHW02] NEUBAUER A., MROZ L., HAUSER H., WE-
GENKITTL R.: Cell-based first-hit ray casting. InProc. of VisSym
2002(2002), pp. 77–86.

[PPL∗99] PARKER S., PARKER M., L IVNAT Y., SLOAN P.-P.,
HANSEN C., SHIRLEY P.: Interactive ray tracing for volume
visualization.IEEE Transactions on Visualization and Computer
Graphics 5, 3 (1999), 238–250.

[PSL∗98] PARKER S., SHIRLEY P., LIVNAT Y., HANSEN C.,
SLOAN P.-P.: Interactive ray tracing for isosurface rendering.
In Proc. of IEEE Visualization ’98(1998), pp. 233–238.

[RE01] RHEINGANS P., EBERT D.: Volume illustration: Non-
photorealistic rendering of volume models. InProc. of IEEE Vi-
sualization 2001(2001), pp. 253–264.

[RGW∗03] RÖTTGER S., GUTHE S., WEISKOPF D., ERTL T.,
STRASSERW.: Smart hardware-accelerated volume rendering.
In Proc. of VisSym 2003(2003), pp. 231–238.

[SH05] SIGG C., HADWIGER M.: Fast third-order texture filter-
ing. In GPU Gems 2, Matt Pharr (ed.)(2005), Addison-Wesley,
pp. 313–329.

[ST90] SAITO T., TAKAHASHI T.: Comprehensible rendering of
3D shapes. InProc. of SIGGRAPH ’90(1990), pp. 197–206.

[SW03] SCHNEIDER J., WESTERMANN R.: Compression do-
main volume rendering. InProc. of IEEE Visualization 2003
(2003), pp. 293–300.

[TO99] TURK G., O’BRIEN J. F.: Shape transformation using
variational implicit functions. InProc. of SIGGRAPH ’99(1999),
pp. 335–342.

[vW03] VAN WIJK J.: Image based flow visualization for curved
surfaces. InProc. of IEEE Visualization 2003(2003), pp. 745 –
754.

[WE98] WESTERMANN R., ERTL T.: Efficiently using graph-
ics hardware in volume rendering applications. InProc. of SIG-
GRAPH ’98(1998), pp. 169–177.

[WS01] WESTERMANN R., SEVENICH B.: Accelerated volume
ray-casting using texture mapping. InProc. of IEEE Visualization
2001(2001), pp. 271–278.

[WSE99] WESTERMANN R., SOMMER O., ERTL T.: Decou-
pling polygon rendering from geometry using rasterization hard-
ware. InProc. of Eurographics Workshop on Rendering(1999),
pp. 45–56.

[WWH∗00] WEILER M., WESTERMANN R., HANSEN C., ZIM -
MERMAN K., ERTL T.: Level-of-detail volume rendering via 3D
textures. InProc. of IEEE VolVis 2000(2000), pp. 7–13.

Appendix: Fast tri-cubic interpolation
To reconstruct a texture with a cubic B-spline filter at texture coor-
dinatex, the convolution sum

f (x) = w0(x) fi−1 +w1(x) fi +w2(x) fi+1 +w3(x) fi+2 (6)

of four weighted neighboring texelsfi has to be evaluated. Note that
the weights are periodic in the sample positions of the input texture.
The number of texture fetches is reduced by employing the linear
filtering capability of GPU texture units. Instead of fetching all four
neighbors independently, we fetch two consecutive samples at the
same time using linear interpolation and perform a single weighted
sum.

f (x) = g0(x) fbxc−h0(x) +g1(x) fbxc+h1(x) (7)

The weight functionsgi and offset functionshi are pre-computed
and stored in a lookup texture.

g0(x) = w0(x)+w1(x), h0(x) = 1−
w1(x)

w0(x)+w1(x)
(8)

g1(x) = w2(x)+w3(x), h1(x) = 1+
w3(x)

w2(x)+w3(x)
(9)

The extension to three dimensional textures is straight-forward due
to separability of tensor-product B-splines, and it is possible to eval-
uate a tri-cubic filter with 64 summands using just eight tri-linear
texture fetches. In order to compute partial derivatives, the functions
gi andhi are computed using the appropriate derivatives ofwi . More
details can be found in [SH05].

c© The Eurographics Association and Blackwell Publishing 2005.

