Multi-Layered Automultiscopic Displays

Nicola Ranieri1 Simon Heinzle2 Quinn Smithwick3 Daniel Reetz3 Lanny S. Smoot3 Wojciech Matusik4 Markus Gross1,2
1ETH Zurich 2Disney Research Zurich 3Disney Research Glendale 4MIT CSAIL.

1. Introduction
Displays that provide the illusion of three dimensions have become increasingly popular. Although the majority of current 3D displays rely on the use of special glasses, it is generally agreed that multi-view autostereoscopic displays – unencumbered by glasses and providing a large viewing range – offer significant advantages. These displays make steady technological progress in terms of resolution and perceived quality. The illusion of three dimensions is created by physically separating viewing rays originating from a display surface. However, extremely high resolution is usually required in order to satisfy the depth range of typical 3D scenes and to avoid aliasing artifacts. This problem is even more pronounced for displays that support both horizontal and vertical parallax.

In this paper we introduce multi-layered automultiscopic displays for 4D light fields. Our hybrid display model volumetrically combines multiple automultiscopic layers and supports horizontal and vertical parallax, and it supports better accommodation cues than single layer elements. Furthermore, multi-layered displays are able to use the available display bandwidth more efficiently. The combined bandwidth of \(n \) layers only requires \(\frac{1}{n} \) of the total ray count of a single layer display to show the same diffuse scene content with approximated occlusions. An efficient algorithm can be used to decompose an input light field for such multi-layered configurations. For synthetic scenes, we propose a very simple extension to existing ray tracers that supports spatial and angular anti-aliasing using super-sampling. In order to show the effectiveness of our approach, we simulate different configurations of multi-layered automultiscopic displays. We also present two physical prototypes implementing our display model. The first prototype uses two parallax-based color displays that are superimposed onto the same optical path using a beam-splitter. The second prototype uses a varifocal mirror to optically replicate one integral imaging-based monochrome display onto multiple depth planes using temporal multiplexing, supporting up to 24 layers of depth.

2. Related Work
Parallax barriers. Parallax barrier displays employ modulated blocking patterns to provide different viewing rays for different viewing angles. This concept was introduced by Frederic Ives using static parallax stereograms [Ive03]. Enabled by the advent of LCD technology, Isozono et al. [IYS93] proposed dynamic parallax barrier displays for autostereoscopic content. Jacobs et al. [JMW∗03] later developed a parallax barrier display able to switch between a high-resolution 2D display and a lower resolution autostereoscopic display. Kim et al. [KKK∗07] then extended this concept to time-multiplexed parallax barriers to improve the perceived spatial sampling resolution for automultiscopic displays. Instead of increasing the sampling resolution, Perlin et al. [PPK00] and Peterka et al. [PKS∗08] tracked the viewer’s...
location to adapt stereoscopic content. More recently, Lam
man et al. [LHKR10] introduced content-adaptive parallax
displays that dynamically optimize the barriers based on fac-
tored light field data.

Integral imaging. In 1908, Lippmann [Lip08] published
his seminal paper on integral imaging. He proposed using
small lenticular lenses to provide different viewing rays for
different angles, similar to parallax barriers but at higher
brightness. Many improvements to Lippmann’s basic lentic-
ular array idea have been proposed, and a thorough overview
of recent advances is given in [KHL10]. For instance, appar-
ent resolution can be enhanced by using slanted lenticular
sheets arranged with respect to LCD subpixels [Ber99] or by
spatio-temporal multiplexing [JJ02]. Fuchs et al. [FRSL08]
present a display system based on regular lenticulars which,
in contrast to prior work, relies additionally on the incident
illumination angles to support ambient lighting-depen
dent effects. Kao et al. [KHY*09] present a display
that changes the focal length of all lenses simultaneously in
order to adapt to the viewer’s distance.

Volumetric displays. Instead of multiplexing light rays
for different directions, volumetric displays create a vol-
ume of individually controlled light sources. Tamura and Tanaka
[TT82] employed beam-splitters to superimpose multiple 2D displays onto a single optical path. In contrast
to a multi-layer approach, Buzak [Buz85] developed a field-
sequential display using a set of electrically switchable bi-
state mirrors that reflect or transmit the light dynamically
to change the apparent distance to the display plane. Le-
ung et al. [LIE98] proposed using a light panel followed by
a stack of light absorbing LCD panels to achieve a depth
volume, similar to the multi-layered displays of PureDepth
Inc. [BCP*08]. Gold and Freeman [GF98] developed a field-
sequential display system using a projector in conjunction
with set of bi-state optical shutters able to switch between
transparent and translucent state. The DepthCube system
by Sullivan [Sul04] extended this concept by employing a high-speed projector and 20 shutter screens. Suyama et
al. [STU+S,SSH*04] built systems that approximate depth
by interpolating between two different depth planes, and more recently, Uehira [Ueh07] studied the ability of the hu-
man visual system to fuse two different autostereoscopic dis-
plays positioned at different depth planes. Traub [Tra67]
presented a volumetric display based on a vibrating varifocal
mirror to extrude a display surface into space, thus creating
multiple display layers. For a more comprehensive overview
of previous volumetric displays, we refer to Favalora’s sur-
vey article [Fav05]. Unfortunately, all of these volumetric
displays cannot represent occlusion or view-dependent ef-
facts.

There are a few notable volumetric displays capable of
providing occlusion. The static multi-layer display presented
by Holroyd et al. [HBLM11] uses display layers printed on
transparencies embedded between acrylic plates. The closely
related displays by Cossairt et al. [CNH*07] and Jones et
al. [JMY*07] effectively display a 360 degree light field of a
scene within the working volume. Although called vol-
metric, these displays are, in fact, quite similar to parallax
barriers. Instead of using blocking patterns to provide differ-
tent viewing rays for different viewing angles, they employ
time multiplexing with a high-speed projector and a rotating
vertical anisotropic mirror to attain the same effect. Finally,
the display system by Akeley et al. [AWGB04] supports true
autostereoscopic viewing with occlusion and better accom-
modation cues, but for one fixed viewpoint only.

Multi-layer displays. Gotoda [Got10] presented a novel
display device by stacking multiple LCD panels on the top
of a uniform light source. His display uses volumetric at-
tenuation to display autostereoscopic content. Wetzstein et
al. [WLHR11] extended the idea and employed tomographic
reconstruction techniques to create this light-attenuating vol-
due to display 4D light field images. Their thorough band-
width analysis showed that the available bandwidth can be
used more efficiently compared to single-layer automulti-
coscopic displays, at a moderate field of view. Lamnan et
al. [LWH*11] adapt this technique by reformulating the
problem to switching LCDs instead of modulating layers,
and show a real-time prototype using multiple stacked LCD
screens. Most recently, Wetzstein et al. [WLHR12] extended
this concept to multiple stacked LCD screens combined with
temporal multiplexing and directional backlighting to en-
hance the field of view and display quality of attenuation-
based multi-layer displays.

Multi-layered automultiscopic displays. Similar to pre-
vious work, our display prototype also consist of multiple
layers: however, instead of attenuating light, our display ad-
ditively combines multiple parallax based displays to in-
crease the effective bandwidth usage. In contrast to previous
volumetric displays based on multiple layers, our display is
a hybrid volumetric display with view dependent pixels, and
our display is therefore able to support with occlusion in add-
tion to relatively wide viewing angles and parallax.

3. Multi-Layered Automultiscopic Displays

In this paper we introduce multi-layered automultiscopic
displays, a hybrid display model that combines the bene-
fits of volumetric and parallax-based displays. The idea is
very simple: multiple translucent display layers at different
depths are combined onto the same optical path. In contrast
to previous volumetric displays, each of the layers is com-
prised of an automultiscopic layer to emit true view depen-
dent rays. Our display model is therefore very similar to vol-
umetric displays, however, capable of view-dependent oc-
cclusion.

Figure 1 illustrates this concept for a dual-layer config-
uration. Each automultiscopic layer consists of two planes.
Rays are generated on the *emissive back plane* with angular
Automultiscopic layer 1
[72x479]rated into view-dependent rays, using pinholes on the
2012 The Eurographics Association and Blackwell Publishing Ltd.
© 2012 The Author(s)
light field distribution.
3.1. Light Field Distribution
For a given display configuration, the input light field \(\ell_{IN}(x, y, u, v) \) needs to be distributed to the individual display layers \(\text{Layer}_i \). In principle, our distribution algorithm is very simple. For each output light field \(\ell_{OUT} \), assign each ray from \(\ell_{IN} \) to the display layer \(\text{Layer}_i \) closest to the ray origin.

Due to the nature of our display, front layers cannot block incoming light from the back layers. Such occlusions can implicitly be handled by the light field distribution: occlusions are represented as rays with zero luminance in the respective output light fields \(\ell_{OUT} \). Intuitively, these occlusions correspond to a shadow that is cast by an occluder on all the following display planes. Note, that rays generated outside the depth range of the layers (including object shadows) can lead to aliasing. In order to avoid such aliasing, the output light fields need to be filtered accordingly, e.g. using a method similar to [ZMDP06]. Algorithm 1 summarizes the light field distribution.

3.2. Ray Tracing Algorithm
Algorithm 1 assumes known depth information for the input light field. For synthetic scenes, this information is already given, and the algorithm can be reformulated as simple modification to any given ray tracing framework. For each layer, the respective depth range is determined. Then, ray tracing is performed within this depth range only. To achieve anti-aliasing comparable to [ZMDP06], we employ spatial-angular multi-sampling: instead of casting one ray only, we stochastically sample the original \((x, y, u, v)\) sampling locations. Algorithm 2 summarizes our extension, note that the depth range of the outermost layers is extended to \(\pm \infty\), in order to capture the whole scene.

4. Bandwidth Analysis
In this section we will evaluate the effective bandwidth usage of multi-layered automultiscopic displays. We will start by introducing the bandwidth of a single layer, and will show that much of the available display bandwidth for 4D light fields is unused. We will then show that multiple layers can represent the same frequency content using less overall bandwidth.

Without loss of generality, we will assume a display with uniform spatial sampling \(\Delta x = \Delta y\) and uniform angular sampling \(\Delta u = \Delta v\) as well as unit spacing \(d_0 = 1\) between the \((x, y)\) and \((u, v)\) planes for this derivation.

4.1. Bandwidth of Single Layer
The bandwidth of an automultiscopic display is defined as the range of all possible frequencies that can be represented by the display. As noted by Zwicker et al. [ZMDP06], the maximum spatial and angular frequencies are delimited by \(\frac{\pi}{\Delta x}\) and \(\frac{\pi}{\Delta u}\). The bandwidth of a display is then defined as

\[
H(\omega_x, \omega_y, \omega_u, \omega_v) = \begin{cases}
1, & \text{for } |\omega_x| \leq \frac{\pi}{\Delta x}, |\omega_y| \leq \frac{\pi}{\Delta y}, \\
0, & \text{otherwise}.
\end{cases}
\]

The bandwidth corresponds to a 4D hyperbox with volume \((2\pi/\Delta x)^2 \cdot (2\pi/\Delta u)^2\), see Figure 2 for an illustration using a 2D cut. As also noted by Zwicker et al. [ZMDP06], much of the available bandwidth will be unused.

According to [CTCS00, LD10], the light field \(\ell\) of a Lambertian plane parallel to the display plane will only exhibit frequency entries on a 2D plane. Therefore, the

\[
\text{Algorithm 1: Light field distribution overview}
\]

\[
\begin{align*}
\text{for all rays of input light field } \ell_{IN} & \\
\text{Find closest display } \text{Layer}_i \text{ to ray origin} & \\
\text{Assign ray to output light field } \ell_{OUT}_i & \\
\text{Algorithm 2: Ray tracing algorithm for multi-layers} & \\
\ell_{OUT}_i = \text{prefilter}(\ell_{OUT}) & \\
\end{align*}
\]
In the following we will assume layer independence: more specifically, we will assume that each layer can block light incoming light from any back layer. We will first show the bandwidth usage of two automultiscopic layers. Assume that each layer has a quarter of the overall angular sampling $\Delta \theta' = 2\Delta \theta$ and $\Delta \nu' = 2\Delta \nu$ of a single layer display, and the spatial sampling remains constant. Therefore, the maximum depth that can be displayed without aliasing on a single layer reduces to $z_{\max} = \pm (\Delta x/2\Delta \theta)$. In order to cover the same depth range compared to the single layer display, the two layers need to be positioned at $\pm z_{\max}$ respectively.

The bandwidth of these two layers is smaller than the bandwidth of the single layer display, although it is able to represent the same content within z_{\max}. More specifically, the angular sampling is reduced by $\frac{1}{4}$ in both u and v direction for both display layers. Therefore, the bandwidth of the system reduces to $2 \cdot (2\pi/\Delta x)^2 \cdot (\pi/\Delta u)^2 = \frac{1}{4} \cdot (2\pi/\Delta x)^2 \cdot (2\pi/\Delta u)^2$. As a consequence, two layers can display the same diffuse scene content compared to a single layer, but using only half the number of rays.

By the same geometric construction, the overall bandwidth and ray count for n display layers reduces to $\frac{1}{n}$ compared to a single layer configuration. The maximum depth z_{\max} that can be displayed at full spatial resolution remains identical to the single layer configuration. The maximum displayable spatial frequency at a distance z from one individual layer $\phi_\theta(u,v)$ (positioned at z_1) reduces to $\phi_\theta^{(1)}(z) = \pm \min(\frac{\pi}{(n\Delta u)}, \frac{\pi}{\Delta x})$. Each layer therefore has its own range of displayable frequencies. All layers are additively superimposed, and therefore the individual layers do not influence each other. Due to the overlap of the bandwidth boxes, however, some of frequencies can be displayed on both layers and therefore do not add additional information, see Figure 2. The maximum displayable frequencies of the combined depth of fields can then be described by using the outer layer:

$$\phi_\theta^{(n)}(z) = \pm \min(\frac{\pi}{(n\Delta u)}, \frac{\pi}{\Delta x})$$

As long as the light field content is within $\pm z_{\max}$, our multiple layer approach can display the same light field content for diffuse scenes. Outside this depth of field, the possible frequencies are reduced compared to the single layer configuration.

Note, that in the limit ($n \to \infty$), each layer would only emit one angular sample, and the multi-layered automultiscopic display would resemble to a volumetric display. In this limit case, view dependent effects cannot be supported. Furthermore, our prototypes do not support the blocking of
incoming light. In order to implicitly support occlusions for purely additive layers, occlusions need to be represented as black objects which can lead to aliasing. See Section 7 for more discussion.

If the frequency spectrum is much sparser, the overall bandwidth could be optimized even further for a given scene. For example, a scene could be comprised of a foreground object and a background object separated by a large distance. Then, the display layers could be separated by the same distance in order to optimally use the respective bandwidths. If the scene or the depth separation changes, however, the displays would have to be reconfigured.

5. Software Framework

We implemented our light field distribution algorithm for ray tracing within Optix [PBD’10], a framework for general purpose ray tracing on the GPU. Our implementation performs ray tracing for all layers in parallel, and all rays are generated according to the ray sampling of the layers. Anti-aliasing is achieved by stochastic super-sampling around the original sampling locations, and all samples are interpolated using a box filter. Our ray tracer supports only basic ray-casting only but it could easily be extended for more realistic image generation.

Layer borders. The layer distribution can introduce high frequencies, especially when continuous surfaces are separated by two layers. In order to avoid noisy artifacts, a high number of multi-samples would be necessary. We mitigate these issues using a different strategy. Instead of using binary cuts, our implementation employs ‘fuzzy’ layer borders: we slightly overlap neighboring depth of fields, and we linearly weight the corresponding samples that fall within the overlapping region, with respect to the actual layer borders. This strategy greatly reduces these artifacts without the need for very high sampling densities.

Optimized field of view. Using regular sampling, many rays will fall outside the field of view for close viewing positions. In order to increase the effective ray utilization for a given viewing position, the emitted view rays can be sheared along the angular direction \(u' = u + sx \) and \(v' = v + sy' \), where \(s \) is dependent on the display parameters and viewing distance. In our implementation, we round the sheared rays to the nearest sampling location determined by the pixel grid.

Display simulation. The simulated results have been generated using a custom ray tracer implemented within the Optix framework. Each display layer is represented by two planes. The emitting plane is assigned a luminance texture corresponding to the generated pattern from the light field distribution. The modulating plane is assigned a transmission texture corresponding to the spatial sampling. For the simulation, we apply super-sampling of the viewing rays to approximate cross-talk.

6. Hardware Setups

We evaluate the effectiveness of our algorithm using two hardware prototypes. The first prototype uses two automultiscopic layers superimposed onto the same optical path using a beam-splitter with high resolution, while the second prototype allows us to demonstrate our technique with up to 24 depth planes, but at lower resolution.

6.1. Beam-Splitter Prototype

The setup of the first prototype consists of two automultiscopic layers which are combined onto the same optical path using a beam-splitter, as illustrated in Figure 3. Our custom automultiscopic layers are constructed using two LCD layers stacked on top of each other. The back emissive layer is comprised of a regular LCD display with backlight. The front modulating layer consists of a disassembled and modified LCD panel from a regular LCD display. The diffusing front polarizer and the back polarizer have been replaced and replaced with non-diffusing and matching polarizers, rotated by 90 degrees. In order to reduce Moire patterns, an additional diffuser with a small point spread function of approximately one pixel is placed in front of the back LCD. Both LCDs are then stacked on top of each other and physically separated using a layer of acrylic glass. The assembly of one individual layer is very similar to [LHKR10], with the following differences. In their setup, the diffuser exhibits a much larger point spread function, effectively reducing their available display resolution. Furthermore, their modulating LCD features only a front polarizer but no back polarizer. Unfortunately, the diffuser to reduce the Moire pattern destroys much of the polarization from the emissive layer, and using a front polarizer only would not result in sufficient contrast. The LCD panels have been taken from a Acer HN274H display (27”, 1920x1080, 120Hz). The panels are driven from a dual-head NVIDIA GTX 580 graphics card.

In order to increase the perceived spatial resolution, we employ time-multiplexing of the parallax barriers similar to Kim et al. [KKK’07]. Synchronization for one automultiscopic layer is performed implicitly by the graphics board. Synchronization between the two automultiscopic layers would require higher end graphics boards, and thus displaying dynamic scenes is not possible with the current prototype. The alignment of the stacked LCDs as well as the automultiscopic layers is currently performed using careful manual adjustment, and could be improved using more advanced assembly setups and by using automated calibration techniques.

6.2. Varifocal Multi-Plane Display

For the second verification of our algorithm we use a setup similar to a recently presented volumetric display [SSR12]. In its original form, a 60Hz display is used in conjunction with a high-speed DLP projector used as back-light.
Figure 3: We demonstrate our approach using two different hardware prototypes. The first hardware implementation uses a beam splitter to superimpose two custom-built parallax barrier color displays. The second hardware implementation uses a varifocal beam splitter setup: the central beam splitter is vibrated to virtually position a lenticular-based automultiscopic monochrome display onto many depth planes. Both displays support horizontal and vertical parallax, wide viewing angles and better accommodation cues as single layer displays.

The depth extrusion is achieved using a large vibrating beam-splitter, which is comprised of a metalized Mylar polyester film membrane stretched over a circular hoop. Three equidistant transducers are mounted to the edge of the hoop in order to vibrate the beam-splitter axially. The beam-splitter surface tension is tuned to vibrate at an eigen frequency of 30Hz with a high Q-factor, and as such, its surface becomes alternatively convex and concave. The display surface is relayed by the vibrating beam-splitter towards a fixed concave mirror. The returning light passes through the beamsplitter and forms a real 2.5D stack of 2D images in front of the apparatus. In its current setup, the system is able to create a layered volume of up to 16.7 × 12.5 × 18.8 cm, without support for occlusions.

In our setup (shown in Figure 3), we exchanged the 2D display with an integral imaging-display by substituting the LCD with a rear-projected emissive screen in conjunction with a micro-lens array placed on top. Our display is therefore able to support volumetric layers with occlusion effects, in contrast to [SSR12]. A high-speed DLP projector (Light Commander from Logic PD) provides monochrome images that are synchronized to the vibration of the mirror. Using the projector’s monochrome mode, we are able to achieve up to 24 images per stroke of the mirror at an aggregate frame rate of 1440 frames per second, forming up to 24 image planes at 60 Hz. The microlens array is comprised of staggered 2D fly’s eye lenslets in a close-packed hexagonal format, in order to support both horizontal and vertical ray separation of the underlying image. The Light Commander’s image size (at a resolution of 1024×768 pixels) is chosen to provide 13 pixels horizontally and 11.3 pixels vertically under each lenslet. The field of view of the lenslets (41°) exceeds the field of view of the volumetric display (19°). We therefore pad the outer viewing rays to reduce light transmission through the seams between the individual lenses, which leads to effects similar to cross-talk. A total number of 6×6 rays are used per lenslet.

Figure 4: Simulated display results. The overall depth of field increases when using multiple layers, supporting large parallax movement.
Figure 5: Results from our prototypes. The top part shows results from the dual layer beamsplitter. The car and the bust model are shown on single layer configuration with 100% bandwidth (top row), and on a dual-layer configuration with 200% bandwidth (bottom row). The dragon model is shown on a single layer configuration with 100% bandwidth (top row), and a dual layer configuration with 50% bandwidth (bottom row). Note the increased sharpness around edges and high-frequency textures. We employ 9 time-multiplexing steps to increase the spatial resolution. Photos of the dual-layer prototype are taken with a Canon Eos 1D Mark III, ISO 3200 and $\frac{1}{4}$s exposure time. The bottom part shows results from the varifocal display. Using 24 layers, we can achieve a very wide depth of field of approximately 19 cm at wide viewing angles. Note that the layer spacing exceeds the depth resolution of human eyes, and our system therefore provides much better accommodation cues than single layer displays. Photos of the varifocal results are taken with a small hand-held PowerShot camera.

7. Results and Discussion

We evaluate the effectiveness of our approach using simulated results and results from both prototypes. The simulation results (Figure 4) show the effect of adding additional layers. With every additional layer, the depth of field increases leading to much sharper images for the outer depth ranges. In our simulation, we employed 36 time-multiplexing steps to show the results in full spatial resolution. Note, although a high number of multiplexing steps is extremely difficult to achieve with current display technology, we intend to demonstrate the effect of the increased depth of field without distracting resolution artifacts.

Figure 5 shows results captured with our beam-splitter prototype. Although using only two layers, the depth of field is already noticeably enhanced when using more bandwidth than a single layer display. The results also show that the same depth of field of a single layer display can be reproduced by two displays using only half of the overall ray count.

The results of the varifocal display prototype are shown in Figure 5. The possible depth of field (18.8cm) at wide viewing angles of 18° is huge compared to existing displays. Furthermore, by using up to 24 layers, the layer spacing exceeds the limits of human depth resolution, see [AWGB04] for more details. Therefore, our varifocal display prototype can provide nearly correct accommodation cues for content close to the display volume. Although the prototype is able to support monochrome images only, the resulting parallax movement is visible in the accompanying video.

Our display model shares the same trade-off between spatial and angular resolution as all automultiscopic displays. When increasing the number of layers, the effective angular resolution can be reduced up to one angular sample for diffuse scenes. In order to support view-dependent effects (such as glossy materials) and our occlusion approximation, however, more angular samples are needed.

For a next prototype version, we plan to use smaller lenses with higher image resolutions. While using a parallax barrier
approach reduces the brightness considerably, using lenticular arrays avoids this brightness loss at the cost of increased crosstalk. In addition, both prototypes employ optical stacking of multiple primitives which leads to a brightness reduction of $\frac{1}{2}$ for each individual layer, compared to using one layer only. Due to the stacking of multiple layers, our displays inherently do not support view repetitions that are commonly found in parallax barrier or integral imaging displays.

The varifocal mirror prototype only supports monochrome images and we hope to extend the system to a gray scale version using, for example, temporal super-sampling. Combining multiple pixels into one luminance value could be another option, by using higher resolution projectors in conjunction with diffusers that support respective polarizers. High speed color images might become possible in the future, for example by combining multiple DLP chips into one optical system.

In our prototypes, the individual layers cannot block incoming light from other layers and therefore occlusions cannot be handled correctly. Using the implicit occlusion handling of our light field distribution algorithm, the resulting filtered object shadows will be blurred out. This can lead to noticeable black halos/shadows around the occluder, which becomes more pronounced for stronger parallax (i.e., for larger layer spacings). In our experiments, however, the shadow is barely noticeable due to the anti-alias filtering of the occluded regions. The varifocal mirror system only supports monochrome images, and unfortunately no such filtering strategies can be applied unless multiple luminance values would be supported.

Both display prototypes exhibit a substantial amount of cross-talk, which results in additional blur. The customized LCD layers furthermore exhibit a slight color difference, and low contrast, which is most likely due to imprecise the alignment of the emissive and modulating planes, as well as some slight shifts between the respective polarizers. Furthermore, alignment of the individual layers is performed manually at the moment, and some object seams are visible due to the imperfect alignment. Using calibration techniques, this issue could be mitigated.

8. Conclusion

In this paper, we introduced a hybrid display model that combines the advantages of volumetric and parallax-based displays. These multi-layered automultiscopic displays are able to show a wide depth of field for horizontal and vertical parallax, large viewing angles, and better accommodation cues that have been difficult to achieve by other displays. We presented a corresponding bandwidth analysis, and showed that multiple layers can reproduce the same content for diffuse scenes using a smaller ray count compared to a single layer. A simple and efficient algorithm can be used to distribute an input light field onto multiple layers, and we demonstrated a light-weight extension to existing ray tracing frameworks in order to support synthetic scenes. We evaluated the effectiveness of our display model using simulations and two physical hardware prototypes. The prototypes show promising results, which we hope to improve as display technology advances. In addition to extensions listed in the previous section, our work could possibly be extended by employing content-adaptive barrier techniques such as [LHKR10] or by shiftable lenslet techniques such as [JJ02]. In its current formulation, the light-field distribution algorithm requires known scene depth, but general input light fields could be supported by solving a constrained linear system, similar to [WLHR11, LWH*11].

References

Ranieri et al. / Multi-Layered Automultiscopic Displays

