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In this document we provide more details on the optical flow data

generation, describe a training data generation process that is based

on publicly available data and report its performance. We then

provide more visual comparisons and outputs of our method.

1 TRAINING DATA SAMPLES

Fig. 1. Frame samples from the training dataset. © 2021 Disney

The training dataset was sampled from 2 full-length feature an-

imation films (Moana, Ralph Breaks the Internet). Some random

sample frames that were used as part of the training are shown in

Figure 1. Note that the crops shown here are 2x larger than the ones

used in training, i.e. 896 × 512, for more visually pleasing output.

2 FLOW DATA GENERATION DETAILS

In this section, we provide more details on our dynamically gener-

ated flow training dataset. High-level psuedocode for the generation

of the flow data is provided in Algorithm 1, where f𝑎→𝑏 is the ground
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Fig. 2. Frame samples from the alternative Tungsten training dataset

ALGORITHM 1: Optical flow dataset generation

Result: f0→1, f1→0, 𝐼0, 𝐴0, 𝐼1, 𝐴1

Function GetLayer():

f𝑡→1 ← SampleRandomFlow()

f0→𝑡 ← ProjectFlow(−f𝑡→1)

f1→𝑡 ← ProjectFlow(f𝑡→1)

𝐼𝑡 , 𝐴𝑡 ← SampleStaticCGImage()

𝐼0, 𝐴0 ← Wf0→𝑡
(𝐼𝑡 ),Wf0→𝑡

(𝐴𝑡 )

𝐼1, 𝐴1 ← Wf1→𝑡
(𝐼𝑡 ),Wf1→𝑡

(𝐴𝑡 )

return f0→𝑡 , f1→𝑡 , 𝐼0, 𝐴0, 𝐼𝑡 , 𝐴𝑡 , 𝐼1, 𝐴1

f0→𝑡 , f1→𝑡 , 𝐼0, 𝐴0, 𝐼𝑡 , 𝐴𝑡 , 𝐼1, 𝐴1 ← GetLayer()

for iteration← 1 to randint(5, 15) do

f
′

0→𝑡
, f
′

1→𝑡
, 𝐼
′

0, 𝐴
′

0, 𝐼
′

𝑡
, 𝐴
′

𝑡
, 𝐼
′

1, 𝐴
′

1 ← GetLayer()

mask𝑡 ← SampleCOCOOutline()

mask0 ← Wf0→𝑡
(mask𝑡 )

mask1 ← Wf1→𝑡
(mask𝑡 )

f0→𝑡 , 𝐼0, 𝐴0 ← Merge( {f0→𝑡 , 𝐼0, 𝐴0 }, {f
′

0→𝑡
, 𝐼
′

0, 𝐴
′

0 },mask0)

𝐴𝑡 ← Merge( {𝐴𝑡 }, {𝐴
′

𝑡
},mask𝑡 )

f1→𝑡 , 𝐼1, 𝐴1 ← Merge( {f1→𝑡 , 𝐼1, 𝐴1 }, {f
′

1→𝑡
, 𝐼
′

1, 𝐴
′

1 },mask1)

end

return f0→𝑡 , f1→𝑡 , 𝐼0, 𝐴0, 𝐼𝑡 , 𝐴𝑡 , 𝐼1, 𝐴1

truth flow from temporal position 𝑎 to 𝑏, and 𝐼𝑎 - color values, 𝐴𝑎 -

set of auxiliary feature buffers, mask𝑎 - outline alpha mask for the

frame at position 𝑎. The SampleRandomFlow() returns a random

smooth flow field of size 512×384. While different approaches could

be used with similar results, in our implementation it is generated

from a uniform flow with magnitude ∼ Gamma(1.2, 25) summed

with flow fields from the following transformations:

ACM Trans. Graph., Vol. 40, No. 6, Article 239. Publication date: December 2021.
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Fig. 3. Progression of an optical flow training sample. On each iteration a sample is built in a bottom-up manner by adding a new masked layer with known

flow on the top of the flow, color, albedo, and depth buffers (not showing albedo and depth buffers at positions 𝑡 and 1). Outlines © COCO Consortium.

Textures from the Tungsten dataset.

• with 𝑝 = 1/4, zooming at a uniformly random position with

factor ∼ N(0, 0.22);

• with 𝑝 = 1/8, rotating around a uniformly random position

by angle ∼ N(0, 30);

• with 𝑝 = 1/2, generating random flow vectors of 2× 2 to 5× 5

(chosen uniformly) pixels with magnitude ∼ Gamma(1.1, 15)

and bilinearly upscaling it to the original resolution to obtain

smooth localised deformations.

The ProjectFlow() function performs normalized forward warp

and fills the warping holes by repeatedly applying Gaussian smooth-

ing with kernel size 11 and 𝜎 = 11, affecting only holes until all

image pixels have valid values. SampleStaticCGImage() returns a

randomly sampled static image from our frame interpolation train-

ing dataset with the same resolution as the flow field.

A random object outline from the MSCOCO [Lin et al. 2014] is

returned by SampleCOCOOutline(). For performance reasons, we

practically sample only up to 3 different texture images and COCO

sources and reuse multiple masks from those.

The Merge(destination, source, mask) simply puts source

pixels on top of the destination w.r.t. to the alpha of mask. For

depth, all destination values are shifted by the maximum value

of source depth plus offset ∼ U{0, 20}.

The progression of a training sample is visualized in Figure 3.

3 SYNTHETIC TRAINING DATASET

While almost all state-of-the-art frame interpolationmethods use the

publicly available Vimeo90K [Xue et al. 2019] dataset for the training

of their models, unfortunately no such large scale dataset yet exists

for rendered content. As we train our models on a proprietary

production dataset, in order to facilitate further research we train

the model on alternative publicly available scenes.

To build a large-scale publicly available training dataset, we follow

the dataset generation procedure by [Bako et al. 2017] and adapt it

for generation of sequences with motion. We use the scenes from

[Bitterli 2016] and the Tungsten renderer.

For the training set we choose scenes "Contemporary Bathroom",

"Country Kitchen", "Bedroom, "The Breakfast Room", "The Wooden

Staircase", "Japanese Classroom", and "TheWhite Room", while other

scenes can be used for building an evaluation set.

First, we generate 200 static variants of each scene by randomly

sampling camera position and look-at object, field of view, object

materials, and environmental maps. We randomly sample the emis-

sion for the existing light sources and optionally add new ones. To

make scenes even more diverse, we place new objects taken from

the available scenes1.

In order to add motion to the static scenes, we apply camera

transformations and random displacements for the newly added

objects. For the camera path we choose one of the following options:

• moving the camera while fixing look-at coordinates;

• changing only look-at coordinates;

• moving the camera and look-at equally such that the camera

direction remains constant.

The final sequence of 5 frames is obtained by linearly interpo-

lating these position between the original and transformed scene.

Assembled frames are rendered at 1280 × 780 with 1024 samples-

per-pixel and denoised with [Vogels et al. 2018]. As random camera

paths can result in crossing of object boundaries, such samples

were filtered out in a post-processing step resulting in total of 1325

quintuplets.

Samples of the final frames can be seen in Figure 2. As no volumes,

motion blur, and depth-of-field was used, it is less complex than the

1sphere; table and chair from "The Wooden Staircase"; pillow, plate, table, and vase
from "The Modern Living Room"; chair, vase, and teapot from "The Breakfast Room"

ACM Trans. Graph., Vol. 40, No. 6, Article 239. Publication date: December 2021.
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Table 1. Quantitative comparisons with prior methods and the alternative dataset

Production Blender

training

dataset

PSNR SSIM LPIPS SMAPE VMAF PSNR SSIM LPIPS SMAPE VMAF

↑ ↑ ↓ ↓ ↑ ↑ ↑ ↓ ↓ ↑

BMBC Vimeo90K 30.08 0.904 0.1071 4.868 59.26 26.65 0.872 0.1693 7.653 65.12

CAIN Vimeo90K 30.68 0.909 0.1254 4.661 60.43 27.25 0.876 0.1974 7.773 66.37

DAIN Vimeo90K 31.21 0.915 0.0754 4.189 70.28 28.00 0.885 0.1120 6.313 67.76

DAIN w/

rendered depth
Vimeo90K 31.28 0.916 0.0749 4.181 70.31 28.11 0.885 0.1114 6.325 67.89

AdaCoF Vimeo90K 30.75 0.907 0.1000 4.652 56.38 27.14 0.875 0.1583 7.502 65.31

SoftSplat* Vimeo90K 31.28 0.917 0.0650 4.049 67.33 28.06 0.886 0.0974 6.246 68.55

Ours Tungsten 37.54 0.963 0.0527 2.708 90.95 36.89 0.972 0.0261 2.666 89.13

Ours proprietary 38.49 0.967 0.0460 2.380 92.24 36.85 0.971 0.0268 2.710 87.96

Table 2. Time comparison for obtaining a single intermediate frame between traditional rendering (excluding denoising), image-based interpolation with

no additional inputs required, and our interpolation method that requires to render auxiliary feature buffers for the intermediate frame. Output quality is

measured on the Production dataset. (see text for more details)

Intermediate frame

CPU rendering time

Interpolation time Output quality

CPU GPU PSNR SSIM

Color render 2ℎ58𝑚 - - - -

Color-only interpolation - 35𝑠 0.40𝑠 31.27 0.918

Interpolation w/ auxiliary features 40𝑚 53𝑠 0.65𝑠 38.49 0.967

primary dataset that was used, but performs almost equally well as

described in the supplementary document Section 4.

4 ADDITIONAL RESULTS

In this section we provide more results of our method. In Table 1

we additionally report VMAF2 score and report results when using

the Tungsten training dataset.

The VMAF score is obtained by running VMAF v2.2.0 on frame

triplets, where for one of the sequences the middle frame has been

interpolated, and by taking only the middle frame score. Due to

many outliers, where subjectively the VMAF score did properly

measure the relative quality, we report the median score over the

sequences.

Surprisingly, the model trained on Tungsten dataset marginally

outperforms the one trained with our primary proprietary dataset

on the Blender evaluation set, while being slightly worse on the

Production evaluation set, which could be explained by Blender

scenes having fewer complex effects.

In Table 2 we report the average time it took to render a single

Tungsten dataset frame in CPU core time compared to the inter-

polation approaches. We implement the option to generate only

auxiliary feature buffers by stopping the integrator once these val-

ues are recorded at each of the original 1024 sample per pixel, thus

only reducing the path length that would be needed to estimate

the global illumination. Such naive implementation already showed

significant speedup by requiring only 22% of the full render time

2https://github.com/Netflix/vmaf

(40𝑚 compared to 178𝑚). Note that in practical applications, the

sample count for feature buffers can be significantly reduced as most

regions have very little sample variance. While in theory faithful

auxiliary buffers could be estimated by rasterization on the GPU,

it would require significant implementation effort for the existing

renderers and production scenes often have memory requirements

much higher than currently available graphics cards can offer.

More visual comparisons between our method and DAIN [Bao

et al. 2019], AdaCoF [Lee et al. 2020], and our re-implementation of

SoftSplat [Niklaus and Liu 2020] are provided in Figures 6-5. More

interpolation results of our method are shown in Figures 10-18.
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Inputs Ours

Inputs DAIN AdaCoF SoftSplat* Ours Reference
PSNR | SSIM | LPIPS 35.78 dB | 0.993 | 0.0113 27.50 dB | 0.982 | 0.0233 36.89 dB | 0.994 | 0.0077 44.36 dB | 0.997 | 0.0034

Fig. 4. Visual results on a production sequence. © 2021 Disney

Inputs Ours

Inputs DAIN AdaCoF SoftSplat* Ours Reference
PSNR | SSIM | LPIPS 28.35 dB | 0.955 | 0.0329 29.06 dB | 0.957 | 0.0378 28.34 dB | 0.946 | 0.0290 36.45 dB | 0.984 | 0.0112

Fig. 5. Visual results on a production sequence. © 2021 Disney / Pixar
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Inputs Ours

Inputs DAIN AdaCoF SoftSplat* Ours Reference
PSNR | SSIM | LPIPS 28.59 dB | 0.952 | 0.0264 28.60 dB | 0.947 | 0.0366 28.45 dB | 0.951 | 0.0223 41.73 dB | 0.991 | 0.0090

Fig. 6. Visual results on a production sequence. © 2021 Disney

Inputs Ours

Inputs DAIN AdaCoF SoftSplat* Ours Reference
PSNR | SSIM | LPIPS 23.73 dB | 0.643 | 0.3407 23.48 dB | 0.640 | 0.3619 24.69 dB | 0.632 | 0.2786 28.08 dB | 0.842 | 0.2543

Fig. 7. Visual results on a production sequence. © 2021 Disney

ACM Trans. Graph., Vol. 40, No. 6, Article 239. Publication date: December 2021.
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Inputs Ours

Inputs DAIN AdaCoF SoftSplat* Ours Reference
PSNR | SSIM | LPIPS 29.83 dB | 0.878 | 0.1201 29.62 dB | 0.869 | 0.1366 29.65 dB | 0.869 | 0.1077 34.47 dB | 0.929 | 0.0639

Fig. 8. Visual results on a production sequence. © 2021 Disney

Inputs Ours

Inputs DAIN AdaCoF SoftSplat* Ours Reference
PSNR | SSIM | LPIPS 34.23 dB | 0.985 | 0.0205 34.86 dB | 0.985 | 0.0199 34.49 dB | 0.985 | 0.0199 43.15 dB | 0.993 | 0.0077

Fig. 9. Visual results on a production sequence. © 2021 Disney

ACM Trans. Graph., Vol. 40, No. 6, Article 239. Publication date: December 2021.
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Inputs Ours

Rendered MVs Interpolation w/
Rendered MVs

Estimated MVs Interpolation w/
Estimated MVs

Reference

22.34 dB | 0.2754 26.56 dB | 0.1636 PSNR | LPIPS

Fig. 10. Comparison between using rendered and estimated motion vectors

(MVs) on a challenging sequence with fluid simulation. © 2021 Disney

Inputs Ours

Rendered MVs Interpolation w/
Rendered MVs

Estimated MVs Interpolation w/
Estimated MVs

Reference

43.11 dB | 0.0085 44.36 dB | 0.0055 PSNR | LPIPS

Fig. 11. Comparison between using rendered and estimated motion vectors

(MVs) on a challenging sequence with motion blur. © 2021 Disney

Inputs Ours

Ours Reference

Fig. 12. Interpolation of a challenging sequence with motion blur. © 2021 Dis-

ney / Pixar

Inputs Ours

Ours Reference

Fig. 13. Interpolation of a challenging sequence with motion blur. © 2021 Dis-

ney / Pixar

Inputs Ours

Ours Reference

Fig. 14. Interpolation of a flame. © 2021 Disney / Pixar

Inputs Ours

Ours Reference

Fig. 15. Interpolation of a volumetric ball. © 2021 Disney
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Inputs Ours

Ours Reference

Fig. 16. Interpolation of a challenging sequence with motion blur. © 2021 Dis-

ney / Pixar

Inputs Ours

Ours Reference

Fig. 17. Interpolation of a view-dependent specular reflection. © 2021 Disney

/ Pixar

Inputs Ours

Ours Reference

Fig. 18. Interpolation of a sequence with depth of field. © 2021 Disney / Pixar
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