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Abstract

This paper introduces the Instructed Glacier Model (IGM) – a model that simulates ice dynamics,
mass balance and its coupling to predict the evolution of glaciers, icefields or ice sheets. The nov-
elty of IGM is that it models the ice flow by a Convolutional Neural Network, which is trained
from data generated with hybrid SIA + SSA or Stokes ice flow models. By doing so, the most com-
putationally demanding model component is substituted by a cheap emulator. Once trained with
representative data, we demonstrate that IGM permits to model mountain glaciers up to 1000 ×
faster than Stokes ones on Central Processing Units (CPU) with fidelity levels above 90% in terms
of ice flow solutions leading to nearly identical transient thickness evolution. Switching to the
GPU often permits additional significant speed-ups, especially when emulating Stokes dynamics
or/and modelling at high spatial resolution. IGM is an open-source Python code which deals with
two-dimensional (2-D) gridded input and output data. Together with a companion library of
trained ice flow emulators, IGM permits user-friendly, highly efficient and mechanically state-
of-the-art glacier and icefields simulations.

Introduction

Glacier and ice-sheet models are valuable tools to assess their future evolution and the result-
ing sea-level rise under climate warming (Pattyn, 2018). In the past two decades, tremendous
efforts have been made by the glaciological community to develop models to account for the
most relevant underlying physical processes such as ice flow, thermodynamics, subglacial
hydrology and their coupling with the atmosphere (e.g. climate-driven surface mass balance),
the lithosphere, and the ocean (e.g. iceberg calving or subaquatic melt). However, the added
complexity of these models comes with increasing computational cost, which cannot be offset
entirely by recent advances in scalable numerical methods and increasing computing power.

Since the 1950s, ice is commonly treated as a viscous, non-Newtonian fluid (Glen, 1953)
best described by the Stokes equations, which are computationally expensive to solve.
Although numerical simulations of real small glaciers have been possible since the late
1990s (e.g. Gudmundsson, 1999), the simulation of large icefields and ice sheets at high spatial
resolution and/or over multi-millennial time scales remains challenging with today’s available
computational resources, with a few exceptions: Seddik and others (2012) performed a
100-year simulation of the entire Greenland Ice Sheet while Cohen and others (2018) modelled
a few millennia of the former Rhone Glacier at the Last Glacial Maximum with Elmer/Ice
(Gagliardini and others, 2013). As a consequence, most models frequently solve computation-
ally less expensive approximations to the Stokes equations.

The Shallow Ice Approximation (SIA; Hutter, 1983), a zeroth-order approximation to the
Stokes equations, remains a reference model for many applications (e.g. Maussion and others,
2019; Višnjević and others, 2020), despite strongly-simplifying mechanical assumptions and
applicability limited to areas where ice flow is dominated by vertical shearing (Greve and
Blatter, 2009). As a compromise between mechanical accuracy and computational costs, a fam-
ily of models of intermediate complexity has emerged such as the hybrid SIA + SSA (Shallow
Shelf Approximation) (Bueler and Brown, 2009) implemented in the Parallel Ice Sheet Model
(PISM) (Khroulev and the PISM Authors, 2020). This class of approximations reduces the
stress balance to at most 2-D equations, thus facilitating simulations over time scales of glacial
cycles (Seguinot and others, 2018). With the exception of sub-glacial hydrology models
(Werder and others, 2013), the costs associated with the other glacier-related model compo-
nents (e.g.mass balance, ice energy, lithospheric displacement, calving) remain computation-
ally low. Well-established and state-of-the-art simulation tools such as PISM or Elmer/Ice
already use efficient and scalable numerical solvers, thus limiting the potential for further
improvements in computational efficiency. Yet computational efficiency in high-order ice
flow modelling is crucial to (i) explore a large variety of model parameters, (ii) model long
time scales in paleo applications, (iii) refine the spatial resolution when dealing with complex
topography, and (iv) to reduce model biases where SIA-like models are used today due to com-
putational constraints.
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In recent years, Graphics Processing Units (GPU), which fea-
ture more but slower cores compared to Central Processing Units
(CPU), have gained interest in ice flow modelling to overcome the
aforementioned limitations, and to obtain significant speed-ups
(Räss and others, 2020). The key for using GPUs efficiently is
to implement numerical schemes that can be divided into several
thousand parallel tasks; a challenge regarding the viscous behav-
iour of ice, and the underlying diffusion equations that describe
its motion. To our knowledge, two approaches have been
attempted to achieve this high level of parallelization. The first
consisted of solving SIA (Višnjević and others, 2020) or Second
Order SIA (Brædstrup and others, 2014), explicitly in time,
while the second consisted of solving the Stokes equations using
finite differences to take advantage of numerical stencil-based
techniques (Räss and others, 2020). The first approach permitted
a large ensemble or long time scales simulations with applications
to invert climatic parameters from observed glacial extents at the
last glacial maximum (Višnjević and others, 2020) and to model
glacial erosion and landscape evolution over glacial cycle time
scales (Egholm and others, 2017). The necessity of coding in a
dedicated programming language (e.g. CUDA) has probably hin-
dered the use of GPUs. However, the emergence of user-friendly
Python libraries such as TensorFlow and PyTorch, which allow
running relatively simple code on GPUs, will certainly contribute
to popularize it in the coming years.

Compared to physic-based numerical models (referred here as
instructor models), statistical emulators (or surrogate models),
which mimic the behaviour of the simulator as closely as possible,
are computationally cheap to evaluate. Surrogate models are solely
constructed from intelligently chosen input-output data of the
instructor model without any knowledge of its inner working.
The arrival of machine learning has led to the development of
deep learning-based surrogate models (Reichstein and others,
2019) to accelerate computational fluid dynamics (CFD) codes
(e.g. Ladicky and others, 2015; Tompson and others, 2016; Kim
and others, 2019; Obiols-Sales and others, 2020). The main idea
is to take advantage of the large amount of modelling results
(data) that a CFD solver can produce to train a neural network
emulator delivering high fidelity solutions at much lower compu-
tational cost. The fidelity of the emulated solution, relative to the
instructor model, is directly dictated by the emulator complexity
and the quality of the training dataset, which must be representa-
tive of all dynamical states. This approach can therefore be seen as
a way to compress a large number of model realizations (Kim and
others, 2019), and to take benefit of this information for new
model runs that are fairly close to the runs already performed
in generating the training dataset. With the exception of
Brinkerhoff and others (2021), this idea has never been exploited
in ice flow modelling. Yet – from a CFD point of view – the most
accurate and most expensive ice flow model, the Stokes model,
shows no major difficulties for its numerical solving: it is a purely
diffusive (although non-linear) non-advective, time-independent
problem, and its solution solely depends on the geometry, and
given fields such as the ice hardness or the basal sliding coeffi-
cient. Furthermore, the same solver often recomputes states
which are close to those which were computed before for param-
eter studies (Aschwanden and others, 2019) or multi-glacial cycle
applications (Sutter and others, 2019). In such cases, the strategy
described above can be very beneficial to use previously computed
ice flow modelled states and save this information to emulate a
cheap model trained by deep learning. This paper intends to
explore the potential of constructing ice flow model emulators.

In the machine learning paradigm, Artificial Neural Networks
(ANNs) have been increasingly used in recent years to deal with
various kinds of problems such as image classification (Simonyan
and Zisserman, 2015), segmentation (Ronneberger and others,

2015) and domain transfer (Isola and others, 2017), whenever a
large-scale training dataset is available (LeCun and others,
2015). Classical examples of classifiers are email filtering to iden-
tify spam (Dada and others, 2019), handwriting recognition
(Cireşan and others, 2010)or image segmentation for biomedical
applications (Yang and others, 2017). In the case of image ana-
lysis, a breakthrough occurred in the early 2010s (LeCun and
others, 2015) thanks to successful Convolutional Neural
Networks (CNN) that are today widely used in image recognition
or classification. CNNs are especially good at recognizing image
features or spatial patterns due to convolution operations, and
their optimization is computationally tractable owing to a strategy
of shared weights to reduce the number of tuning parameters.

In glaciology, ANNs have been used for estimating bed topog-
raphy (Clarke and others, 2009; Leong and Horgan, 2020;
Monnier and Zhu, 2021), to infer basal conditions at the bedrock
(Brinkerhoff and others, 2021; Riel and others, 2021), to model
mass balance (Bolibar and others, 2020) or to identify the calving
fronts of tidewater glaciers from satellite images (Baumhoer and
others, 2019; Mohajerani and others, 2019; Zhang and others,
2019; Cheng and others, 2021). Note that the last three studies
all rely on semantic image segmentation using CNN. Recently,
Brinkerhoff and others (2021) used a neural network to emulate
an expensive coupled ice flow/subglacial hydrology model, and
infer the optimal parameters that best reproduce the observed sur-
face velocities using a Bayesian approach.

In this paper, we apply deep learning to ice flow modelling.
Our approach consists of setting up a CNN that predicts ice
flow from given topographic variables and basal sliding paramet-
rization in a generic manner. By contrast, Brinkerhoff and
others (2021) emulated a coupled ice flow-hydrology model for
a specific glacier from a small-size ensemble of relevant para-
meters. Our neural network emulator is trained from a large data-
set, which is generated from ice flow simulations obtained from
two state-of-the-art models – the PISM (Khroulev and the
PISM Authors, 2020) and CfsFlow (Jouvet and others, 2008,
2009) – equipped with two different mechanics (hybrid SIA +
SSA and Stokes) and at two different spatial resolutions (2 km
and 100 m). We integrate mass balance and mass conservation
with our ice flow emulator to obtain a time evolution model,
the ‘Instructed Glacier Model’ (IGM) written in Python, which
permits highly efficient, and mechanically state-of-the-art ice
flow simulations.

In the following, we first describe the IGM model with its
neural network-based emulator and the generation of the
training dataset. Then, we present our results in terms of fidelity
and computational performance of the emulated ice flow model
with respect to the instructor model, and of embedding the ice
flow emulator into a time evolution model. Last, we compare
and discuss the IGM results with state-of-the-art ice flow model
results.

Methods

IGM couples the submodels of surface mass balance, mass conser-
vation and ice dynamics as depicted in Figure 1. Specifically, IGM
models the ice flow by a CNN emulator, which is trained by PISM
and CfsFlow realizations.

From now on, we denote b(x, y), h(x, y, t) and s(x, y, t) = b(x, y)
+ h(x, y, t) bedrock elevation (assumed to be fixed in time), ice
thicknessand ice surface elevation, respectively (Fig. 2). We call
�u = (�u, �v) the vertically-averaged horizontal ice velocity field,
and SMB the Surface Mass Balance function, which consists of
yearly-average accumulation (when positive) or ablation (when
negative). Given �u and the SMB function, and ignoring basal
melt, the evolution in ice thickness h is determined by the mass
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conservation equation:

∂h
∂t

+∇ · �uh( ) = SMB, (1)

which states the balance between the change in ice thickness ∂h/
∂t, the dynamical thinning/thickening ∇ · (�uh) due to the ice flux
�uh, and the adding/removal of ice on the top surface by the SMB
(Fig. 2). Here ∇· denotes the divergence operator with respect to
horizontal variables (x, y).

We assume the horizontal model domain to be a rectangle sub-
divided by a regular 2-D grid with uniform spacing Δx in x and y –
the variables h, s, b, �u, �v, SMB being defined at the centre of each
cell. Let t0 be the initial time, {tk}k=0,1,… be a discretization of time
with variable steps Δtk+1 = tk+1− tk. We denote by hk an approxima-
tion of h at time t = tk, and similarly for all other variables. Given an
initial ice thickness h0, IGM updates the ice flow (�uk, �vk), the surface
mass balance SMBk, and the ice thickness hk sequentially as follows:

(I) Ice flow: Given the ice thickness hk and the surface slope
fields (∂sk/∂x, ∂sk/∂y), the ice flow emulator provides the
vertically-integrated ice flow (�uk+1, �vk+1).

(II) Surface mass balance: Given the ice surface elevation b + hk,
the surface mass balance SMBk is computed using two mod-
els: a simple one based on given Equilibrium Line Altitude
(ELA) or a combined accumulation-Positive Degree-Day
(PDD) model (cf. Hock, 2003) based on climate data (see
Appendices B and C for further details).

(III) Ice thickness: Given the vertically-averaged ice flow
(�uk+1, �vk+1), and the surface mass balance SMBk, update the
ice thickness hk+1 by solving the mass conservation equation
(1) using the first-order explicit upwind finite-volume scheme
on a staggered grid (e.g. Lipscomb and others, 2019), which
has the advantage to be mass-conserving. To ensure stability
of the scheme, the time step Δtmust satisfy the CFL condition:

Dt ≤ C × Dx
‖�u‖L1

, (2)

where C < 1 and Δx is the grid cell spacing. Condition (2) sim-
ply ensures that ice is never transported over more than one
cell distance in one time step. Here, one uses CFL number
C between 0.3 and 0.5. Further details about solving of (1)
is reported in Appendix A.

In the following, we focus on step (I) as it is the key innovation
of the paper; steps (II) and (III) are standard modelling practices.

Ice flow emulator

Our ice flow emulator predicts vertically averaged horizontal vel-
ocity from ice thickness, surface slope and basal sliding coefficient
c, which is defined later in Eqn. (6):

M : h,
∂s
∂x

,
∂s
∂y

, c

{ }
−� {�u, �v}

RNX×NY×4 −� RNX×NY×2

(3)

where input and output are 2-D fields, which are defined over the
discretized computational domain (or subparts) of size NX ×NY.

We approximate M by means of an ANN Mp (see Appendix
E for a digest on ANN and LeCun and others (2015) for an
in-depth review). ANNs map input to output variables using a
sequence of network layers connected by trainable linear and
non-linear operations with weights p = [ p1, …, pN], which are
adjusted (or trained) to a dataset (realizations of an instructor
model in the present case). Here we use a CNN ( Long and others,
2015), which is a special type of ANN that additionally includes
local convolution operations to extract translation-invariant
features as trainable objects and then learn spatially-variable rela-
tionships from given fields of data (LeCun and others, 2015).
CNNs are therefore suitable to learn from a high-order ice flow
model, which determines the velocity solution from topographical
variables and their spatial variations. Note that in contrast to
high-order models, the SIA determines the ice flow from the
local topography without using further spatial variability informa-
tion in the vicinity.

Our CNN consists of Nlay 2-D convolutional layers between
the input and output data (Fig. 3). Passing from one to the next
layer consists of a sequence of linear and non-linear operations:

(1) Convolutional operations multiply input matrix with a
trainable kernel matrix (or feature map) of size Nker ×Nker

to produce an output matrix (Fig. 4). A padding is used to
conserve the frame size through the convolution operation.
Convolutional operations are repeated using a sliding window
with one stride across the input frame, and for Nfeat the num-
ber of feature maps.

(2) As a non-linear activation function, we use leaky Rectified
Linear Units (Maas and others, 2013), which was found
more robust than the standard ReLU.

Only for the last convolutional layer, we instead use a linear acti-
vation function. Various combinations of (Nlay, Nfeat, Nker) are
tested later on (Table 1), and optimal parameter sets in terms
of model fidelity to computational performance are retained.

Fig. 1. Interactions between the model components and the input data of IGM.

Fig. 2. Cross-section of a glacier with notations.
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An advantage of CNNs is that the size of the input/output may
vary as our network consists of successive convolution operations,
which are inherent to the window size. One can therefore train
and evaluate it with various sizes NX ×NY. The only requirement
is that for training, the window NX ×NY must be sufficiently large
to carry the relevant information for prediction. In this paper, we
use NX =NY = 32.

Our CNN has N trainable weights p = [ p1, …, pN], which
increases with parameters Nlay, Nfeat and Nker, and need to be
adjusted to data. This stage – called training – is performed by

minimizing a loss (or cost) function, which measures the misfit
between the predicted ice flow, �uP, and the reference ice flow,
�uR. While there are several possible choices of loss (e.g. the
mean squared error L2, the mean absolute error L1or more general
Lp errors), we opted for the error L1 loss function by simply imi-
tating existing neural networks (Kim and others, 2019; Thuerey
and others, 2020) designed for emulating CFD solutions:

‖�uP − �uR‖L1 =
1
|V|

∫
|�uP − �uR|1 dV. (4)

The loss function is minimized on GPU using a mini-batch gra-
dient descent method, namely the Adam optimizer (Kingma and
Ba, 2015) with a learning rate of 0.0001, and a batch size of 64. Let
us note that we use a norm clipping to protect against gradient
vanishing or exploding behaviour. To reach a satisfying level of
convergence, we usually iterate between 100 and 200 epochs,
which means that the optimization algorithm passes 100–200
times over the entire dataset (Appendix D).

Data generation for training and validation

To train our ice flow emulator and assess its accuracy and per-
formance, we perform an ensemble of simulations to generate
large datasets using two ice flow models of variable complexity:
the PISM (Khroulev and the PISM Authors, 2020), and
CfsFlow (Jouvet and others, 2008). The goal is to construct diverse
states to obtain a heterogeneous dataset that a large variety of pos-
sible glaciers (large/narrow, thin/thick, flat/steep, long/small, fast/
slow, straight/curved glaciers, …) that can be met in future mod-
elling. For simplicity, we assume the ice to be always at the pres-
sure melting point to focus on the dynamics in this study.

PISM and CfsFlow simulate the evolution of the ice thickness
combining ice flow and mass-balance models for given basal top-
ography, initial conditions and climate forcing as depicted in
Figure 1. In both models, the ice deformation is modelled by
Glen’s flow law (Glen, 1953):

Ḋ = Atn, (5)
where Ḋ is the strain rate tensor, τ is the deviatoric stress tensor, A
= 78 MPa−3 a−1 is the rate factor for temperate ice (Cuffey and
Paterson, 2010), and n is Glen’s exponent, which is taken equal
to 3. Basal sliding is modelled with a non-linear sliding law –
known as Weertman’s law (Weertman, 1957):

ub = ct1/mb , (6)

Fig. 3. The function we aim to emulate by learning from hybrid SIA + SSA or Stokes
realizations maps geometrical fields (thickness and surface slopes) and basal sliding
parametrization to ice flow fields.

Fig. 4. Illustration of one convolution operation between two layers: the elements of
the input matrix and the kernel matrix are multiplied and summed to construct the
output entry. The operation is repeated with a one stride sliding window to fill the
output layer. The frame size is conserved using a padding, which consists of aug-
menting the input matrix by zeros on the border (not shown).

Table 1. Fidelity and performance results of our neural network trained from the icefield (PISM) and glacier (CfsFlow) simulations for different network parameters.
The L1 validation loss (m a−1) is the mean absolute discrepancy between the neural network and the reference velocity solutions. For convenience, we also provide
the L1 misfit relative (in %) defined by Eqn. (7). Selected (optimal) models used in the remainder of the paper are marked with bold numbers and tagged in the
leftmost column. The performance consists of the average time to compute an entire ice flow field using GPU (NVIDIA Quadro P3200 GPU card with 1792 1.3 GHz
cores) and CPU (Intel(R) Core(TM) i7-8850H CPU with 6 2.6 GHz cores)

Icefields/PISM Glaciers/CfsFlow

Neural network parameters Fidelity Performance Fidelity Performance

Selected models for # trainable weights N Nfeat Nker Nlay L1 valid. loss (m a−1 (%)) GPU (sec) CPU (sec) L1 valid. loss (m a−1 (%)) GPU (sec) CPU (sec)

9000 8 3 16 5.4 (17) 0.033 0.094 7.6 (19) 0.006 0.014
35000 16 3 16 3.3 (12) 0.039 0.142 4.5 (11) 0.007 0.018
140000 32 3 16 2.6 (8) 0.055 0.366 3.2 (8) 0.008 0.030
556000 64 3 16 2.4 (7) 0.105 1.082 2.7 (7) 0.012 0.090
140000 32 3 16 2.6 (8) 0.055 0.366 3.2 (8) 0.008 0.0306
386000 32 5 16 3.1 (9) 0.139 0.803 3.0 (8) 0.017 0.072
28000 32 3 4 3.3 (12) 0.030 0.086 8.4 (20) 0.005 0.010

Icefields ↠ 65000 32 3 8 2.7 (9) 0.038 0.176 4.9 (12) 0.007 0.016
Glaciers ↠ 140000 32 3 16 2.6 (8) 0.055 0.366 3.2 (8) 0.008 0.030

288000 32 3 32 2.8 (9) 0.089 0.713 3.4 (8) 0.012 0.058
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where ub is the norm of the basal velocity, τb is the magnitude of
the basal shear stress, m = 1/3 is a constant parameter and c is the
sliding coefficient. The main difference between CfsFlow PISM
simulations concerns the solving of the momentum balance.
While CfsFlow solves the full set of equations, PISM uses a linear
combination of the SIA for the vertical shearing and the SSA for
the longitudinal ice extension. This low-order hybrid approach is
a trade-off between mechanical accuracy and computational cost
that permits the model to run over long time scales (e.g. glacial
cycles Seguinot and others, 2018) – a task not achievable with
the more mechanically complete CfsFlow.

We perform two types of simulations – icefield-scale with
PISM and individual glaciers with CfsFlow. In both cases, the
models are initialized with ice-free conditions, and the mass bal-
ance is chosen to produce a glacier advance followed by retreat to
span over a wide panel of glacier shapes:

(1) Icefields with PISM: We simulate the time evolution of five
synthetic icefields inspired by the geometry of today’s Alaska
icefields (Ziemen and others, 2016). As bedrock topography,
we take five 1024 km × 1024 km tiles of existing mountainous
range worldwide (Table 5 and Fig. 5). Basal sliding is modelled
with law (6) with fixed parameter c = 70 km MPa−3 a−1. For
each tile, we run PISM at 2 km resolution with a combined
accumulation-PDD model (cf. Hock, 2003) and initialize it
with present-day climate. Then we gradually reduce air
temperatures (up to 12–20°C) for ≈1000–2000 years to obtain
sufficiently large glaciers, and then warm it again until all
glaciers disappear. As a result, our five simulations produce
a large number of different glacier shapes from very small
individual glaciers to large ice caps during time scales of
3 millennia (Fig. 5). The dynamical and topographical results
are recorded each 20 years, providing a representation of
many states relevant for training IGM. In total, they consist
of ≈ 5 × 150 snapshots of grid size 512 × 512 of glaciated
mountain ranges. Further modelling details are given in
Appendix B.

(2) Valley glaciers with CfsFlow: We simulate 200 years time
evolution of 41 glaciers that are artificially built on existing
topographies. For that purpose, we take valleys from the
European Alps and New Zealand, that are today ice-free
but were likely covered by ice during the last glaciation. For
each valley, we run CfsFlow at 100 m horizontal resolution
and force equilibrium line altitudes in a simple mass-balance

model to simulate a 100-year-long advance followed by a
100-year-long retreat. The results are recorded every 2 years
to provide a wide range of dynamical states roughly represen-
tative of real-world temperate glacier behaviour since the
Little Ice Age, consisting of ≈ 41 × 100 snapshots. Then, for
a chosen subset of ten glaciers (Fig. 6 and Section ‘Data selec-
tion’) among the 41 glaciers, we carry the same simulation
varying parameter c in {0, 6, 12, 25, 70} km MPa−3 a−1 to
explore different basal sliding conditions. We additionally
carry out two further simulations of existing glaciers – Aletsch
and Rhone glaciers (Switzerland) – for 250 and 200 years,
respectively, that we use for assessing the method accuracy.
Further modelling details are given in Appendix C.

In all simulations, the fields of ice thickness, ice surface, sliding
coefficient and depth-average velocity, covering various domains
are recorded on a structured grid at different times. The trans-
formation of raw modelling data to be usable for training our
neural network emulator (Eqn. (3)) consists of the following
three steps (the two last are illustrated in Fig. 7):

(1) First, the data are normalized to fit the interval [− 1, 1] by
dividing by a typical value over the entire dataset for each
variable independently. Such a normalization is widespread
in deep learning to deal with different ranges of data and
homogenize their values prior learning (Raschka and
Mirjalili, 2017).

(2) Second, patches of dimension NX ×NY are randomly
extracted from all slices of the dataset. The motivation to
work patch-wise instead of the entire domain is that (i) ice
flow at a given location is only determined by predictors
within a certain neighbourhood, it is therefore unnecessary
to carry irrelevant distant information for model prediction,
(ii) it gives higher flexibility to exclude ice-free patches,
which do not carry any relevant information for training,
(iii) to apply data augmentation (see next item). Here we
found that a NX ×NY = 32 × 32 patch size was suitable for
all applications, and we therefore always used this value.

(3) Last, data augmentation (Raschka and Mirjalili, 2017) is
applied after patching. For that purpose, we randomly
apply 90°, 180°, 270° rotations, as well as vertical and hori-
zontal flipping to the patches shortly after being picked in
the dataset. This augmentation increases the amount of data
and permits to regularize the underlying optimizing problem,

Fig. 5. Topographies of the fives 1024 km × 1024 km selected tiles of mountain ranges (upper panel) used to produce icefield simulations with PISM and simulated
maximal state (bottom panel).
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and is supported by the fact that the process we wish to cap-
ture – the ice flow – is invariant to these transformations.

Data selection

To reduce redundant data generated by CfsFlow and explore a
variety of sliding parameters c, we have applied a strategy to select
a pool of glaciers that are the most relevant for training (Figs 8
and 6). For that purpose, we first consider the 41 glacier simula-
tions obtained with a constant sliding parameter c = 0. We sort the
41 glaciers by ice volume from the most to the least voluminous
one at its maximum state. The selection worked as follows: We
train the emulator on the first glacier and use the second one
for testing. If the test loss is greater than the training loss, it
means these data have some added value and we include it to
the training pool, otherwise we exclude it. Then we apply the
same strategy to the third and loop over the entire set of all avail-
able glacier runs. This iterative selection proved to be efficient to
minimize the size of data while keeping it heterogeneous (Fig. 8),
and to be relatively insensitive to the choice of c = 0 (not shown).
As a result, only ten glaciers are kept from the 41 original ones
(Fig. 8), allowing further simulations to be carried out with vary-
ing parameters c. Note that this is mostly the largest/thickest gla-
ciers (or the leftmost in Fig. 8) that were kept as they naturally
carry more information. Indeed, a small glacier is similar to a
large glacier in an early state of advance or a late state of retreat,
explaining why it naturally brings little added value to the dataset,

and justifying our choice of starting from the most voluminous
glaciers.

Implementation

IGM is implemented in Python with the Tensorflow (Abadi and
others, 2015) library to evaluate the neural network emulator,
solve the mass balance and the mass conservation equation (1)
in parallel on CPU or GPU. The training of the neural network
emulator was performed separately on GPU using the Keras
library (Chollet and others, 2015) with a Tensorflow backend.
The Python code as well as some ice flow emulators are publicly
available at https://github.com/jouvetg/igm.

Results

In this section, we demonstrate that our trained neural network can
generate ice flow solutions with high fidelity and at cheaper
computational cost compared to instructors. We then show the
same features prevail with the time evolution model (referred as
‘Instructed Glacier Model’ or IGM) that combines the trained
neural network as ice flow model emulator and mass conservation.

Ice flow field

We conducted several experiments with various network para-
meters to seek for the optimal parameters in terms of model
accuracy versus model evaluation costs. For that purpose, we
split our dataset in two parts: one for training and one for

Fig. 6. The ten selected glaciers used for individual glacier simulations with CfsFlow at 100 m resolution used to train IGM’s ice flow emulator with various sliding
coefficients c. The horizontal bar represents 5 km to give the scale of each glacier.

Fig. 7. Illustration of data preparation steps to train IGM including patch extraction
and data augmentation.

Fig. 8. Evolution of the training and test/validation losses during the iterative selec-
tion procedure. Only glaciers with greater validation than training loss were kept in
the pool (large dots). The maximum ice thickness of the ten selected glaciers is
depicted in Figure 6.
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validation. Appendix D shows the evolution of training and valid-
ation losses with respect to epochs. Unless specified differently, we
always reserved Icefield A (resp. Aletsch and Rhone glacier with c
= 12) for validation and take the others for training for icefield
(resp. glacier) simulations. Note that the validation loss is always
lower than the training loss demonstrating that our choice of val-
idation data remains safely within the hull of the training dataset
(Appendix D).

Fidelity
The fidelity is measured by taking the rescaled L1 validation loss
(Eqn. (4)) between the predicted ice flow field �uP and the refer-
ence one �uR, as well as the L1 relative error (taken only where
the L1 norm of the ice velocity is above 10 m a−1):

‖�uP − �uR‖L1,rel =
1
|V|

∫
|�uR |1.10

|�uP − �uR|1
|�uR|1

dV. (7)

Table 1 displays the fidelity results of the trained ice flow emu-
lator to reproduce the ice flow of Icefield A performed with PISM
and of Aletsch glacier (with fixed sliding parameter c = 12) per-
formed with CfsFlow varying network parameters such as the
number of layers Nlay, output filters Nfeat or kernel size Nker. It
shows that increasing the number of filters Nfeat improves the
fidelity of the solution. This is also true for the number of layers,
however, only up to Nlay = 16 layers as the fidelity deteriorates
when deepening the network. Last, increasing the kernel size
Nker from 3 (the most common value, see Fig. 4) does not improve
the solution in all cases. Opting for large Nlay, Nker and Nfeat

numbers increases the number of network parameters, and thus
the computational cost. Therefore, we selected two optimal par-
ameter sets (one for each kind of dataset) that lead to fidelity
levels above 90% while keeping low evaluation costs: (i) the par-
ameter set (Nfeat, Nker, Nlay) = (32, 3, 8) for PISM icefield data
leads to a neural network that has ≈65 k trainable parameters
(it stores into a 880 KB file), and (ii) the parameter set (Nfeat, Nker,
Nlay) = (32, 3, 16) for CfsFlow glacier data leads to a neural network
that has ≈140 k trainable parameters (it stores into a 2MB file).

Figures 9 and 10 compare the flow speeds of Icefield A and
Aletsch glacier at the maximum ice extent to the reference simu-
lations with the respective selected models. The fidelity of the
emulated solution, compared to the reference PISM or CfsFlow
solutions (which were not used in the training stage), is high
and of the same order in all cases with mean relative errors
below 9% (Table 1). This shows the neural network’s ability to
learn from data from different topographies and to apply this
knowledge to new ones, even with a relative small model size
(65 and 140 k of trainable parameters, respectively).

A closer look at the emulated ice flow field of Aletsch glacier
(Fig. 10) shows that the ice flow is well reproduced for the
three accumulation basins, however, larger discrepancies occur
on the tongue and at Konkordiaplatz where the three tributary
basins merge into a single tongue. While the training dataset gen-
erated by CfsFlow contains many examples of single channelized
flow (Fig. 6), merging ice flows of similar sizes such as at
Konkordiaplatz as well as thick ice (up to 800 m) is much less
common in the training dataset, explaining why the flow in this
region is less well reproduced than anywhere else. By contrast,
single-branch and thinner valley glaciers such as Rhone Glacier

Fig. 9. Vertically-averaged ice flow magnitude of Icefield A at its maximum state: PISM reference solution (a), IGM solution trained without (b) and with (c) the
solution, and the difference between IGM and PISM solutions (d and e).

Fig. 10. Vertically-averaged ice flow magnitude of the Aletsch glacier at its maximum state: CfsFlow reference solution (a), the IGM solution trained without (b) and
with (c) the solution, and the difference between IGM and CfsFlow solutions (d and e).
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are much more common and better represented in the training
dataset. As a result (Fig. 11) the emulated ice flow is in better
agreement with the reference CfsFlow one.

The L1 error (or loss) between a predicted and a reference ice
flow has two components, a ‘network’ component that measures
the performance of the network to compress and recover solu-
tions and a ‘data’ component that measures the error related to
the abundance/lack of relevant training data. These two compo-
nents can be distinguished by including the solution we wish to
predict to the training dataset to measure the sole ‘network’ com-
ponent (or compression error). Here we found that this error
component is �7% in both cases, which is �1−2% less than
the L1 original validation loss (�8−9%). We therefore attribute
the 7% to network errors and the remainder (�1−2%) to a lack
of representative data. The reference solution, and the predicted
solutions with or without the reference in the training are dis-
played in Figures 9 and 10. In the case of Aletsch glacier, the spa-
tial error patterns show that including the reference solution in
the training locally resolves the discrepancy at the convergence
area (Konkordiaplatz) of the three ice flow branches (Fig. 10),
confirming that this particular source of error mostly lies on
the data side (i.e. the absence of analogues in the training dataset)
unlike the remaining errors on the main glacier trunk.

Up to now, we have tested the learning of ice flow from differ-
ent geometries, but leaving the sliding coefficient c unchanged
(c = 12 km MPa−3 a−1). Table 2 gives the L1 validation loss (m a−1)
at the maximum extent of Rhone and Aletsch glacier simulations
with different sliding coefficients c, including the values used for
training {0, 6, 12, 25}, aswell as intermediate values {3, 9, 18} to assess
the interpolation accuracy. As a result, the values used for training
yield to similar fidelity levels (,9%) while intermediate values yield
to slightly deteriorated levels (,13%).

Computational performance
Along with the fidelity results, Table 1 also displays the time
needed to evaluate a single full ice flow field (after training)
with the neural network and varying parameters using both
computational resources of the same laptop (Thinkpad Lenovo
P52): a GPU (NVIDIA Quadro P3200 GPU card with 1792
1.3 GHz cores) or a CPU (Intel(R) Core(TM) i7-8850H CPU
with 6 2.6 GHz cores). For convenience, all CPU and GPU per-
formance results given in this paper relate to this hardware. As a
result, GPU and CPU show dramatically different performances.
GPU always outperforms CPU (speed-ups between 2 and 8),
however, the increasing computational cost coming from the
model size and the domain resolution (larger for icefield than
for glaciers) scales differently between GPU and CPU. While
GPU and CPU have close performance for models with few

trainable parameters and small domains, the GPU is especially
advantageous for complex models (with many weights) and
for large size domains.

While a key advantage of neural networks is their low evalu-
ation cost, their training necessarily comes with substantial
upstream computation costs, which must be invested for each
set of ice flow settings. Table 3 lists these upstream costs for gen-
erating the data from traditional models and training the model
itself. As a result, the generation of the full dataset was the most
computationally expensive task: ≈7–26 days for icefield simula-
tions with PISM and glacier simulations with CfsFlow on CPU,
respectively, while the training of the optimal models took 8–
24 h on GPU.

Icefield and glacier evolutions

We now assess the fidelity and performance of the time-evolution
model (Fig. 1) by replicating Icefield A, Aletsch and Rhone glacier
transient simulations with IGM. It must be stressed that none of
original Icefield A, Aletsch and Rhone glacier simulations were
used for training IGM.

Fidelity
Overall, IGM shows good skill at reproducing ice thickness of
Icefield A (Fig. 12), and Aletsch and Rhone glaciers at maximum
ice extent (Fig. 13). The time-integrated root-mean-square error
in terms of ice thickness is ≈20 m in all cases. IGM also repro-
duces the evolution of ice volume, ice extent and mean ice flow
speed with high fidelity (Fig. 14) although small discrepancies
arise, e.g. the ice flow of Aletsch Glacier is slightly overestimated
with IGM. In the latter case, the cumulative errors remain very
limited despite systematic errors in the ice flow (e.g. at the conver-
gence area of the three ice flow branches, Fig. 10).

Computational performance
Table 4 compares the computational times required for Icefield A
and Aletsch glacier simulations with all models on CPU and
GPU. Note that a direct comparison is only possible on CPU as
none of PISM or CfsFlow runs on GPU. Additionally, we forced
IGM to use a single core for comparison with CfsFlow as the latter
only runs in serial. It must be stressed that the given speed-up
does not include the training costs (data generation and training
itself summarized in Table 3).

Fig. 11. Vertically-averaged ice flow magnitude of the Rhone glacier at its maximum
state: CfsFlow reference solution (a), IGM/test solutions (b), and the difference
between IGM and CfsFlow solutions (c).

Table 2. L1 validation loss (m a−1) and relative misfit (in %) defined by Eqn. (7)
for Rhone and Aletsch glaciers with different sliding coefficients h including
values that have been used for training (in bold), as well as intermediate values

Sliding coeff. c Rhone Glacier Aletsch Glacier
km MPa−3 a−1 m a−1 (%) m a−1 (%)

0 2.3 (9) 3.7 (10)
3 3.1 (13) 3.8 (12)
6 2.3 (7) 3.0 (8)
9 2.7 (7) 3.3 (8)
12 2.8 (8) 3.6 (8)
18 4.8 (12) 5.0 (12)
25 4.4 (9) 5.0 (9)

Table 3. Computational costs required for the generation of all datasets on the
CPU and for the training of the emulator on the GPU

Data (CPU) Emulator (GPU)
Simulation generation training

Icefield ∼150 h ∼8 h
Glacier ∼625 h ∼24 h
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Table 4 shows that IGM outperforms PISM for the Icefield A
simulation by a factor of ∼20 on CPU, with an additional ∼ 10 ×
speed-up on GPU. Here, the high resolution of the icefield com-
putational domain (512 × 512) takes full advantage of the parallel-
ism and explains the superiority of the GPU over the CPU. Note
that while most of the time is taken by the ice flow model in gla-
cier simulations, the PDD mass-balance model (Appendix B) in
the icefield simulation requires significant aside computational
effort (even on the GPU) as it loops over each grid cell at short
time-scale intervals.

On the other hand, IGM outperforms CfsFlow for the simula-
tion of Aletsch Glacier by a factor of ∼600 on CPU (using a single
core), with an additional ∼ 10 × speed-up on GPU, but only ∼ 2 ×
when comparing to a six-core CPU run (not shown). Here, the
GPU remains superior due to the large size of the Stokes ice
flow neural network as noted before, however, the added value
is less important than before as the size of the computational
domain is much lower (185 × 121). As an additional benchmark
in Table 4, we have compared the computational time to simulate
the full retreat of Aletsch glacier for 150 years from today’s state
with another Stokes model – Elmer/Ice (Gagliardini and others,
2013) – and IGM, which was trained from Elmer/Ice simulations.

As a result, we found a ∼ 1000 × speed-up when comparing IGM
and Elmer/Ice runs on CPU (both using all six cores), with an
additional speed-up of ∼ 2 × on GPU.

Discussion

In ice flow modelling, the choice of a stress balance model is often
the result of a compromise between mechanical complexity, spa-
tial resolution and computational affordability. Shallow models
rely on simplifications to make them computationally tractable
but at the expense of mechanical loss of accuracy (e.g. Greve
and Blatter, 2009). In contrast, the Stokes model is computation-
ally expensive, and it is therefore challenging to use it for large
domains and long time scales. The transfer of these models dir-
ectly to GPUs offers promising speed-ups (Räss and others,
2020), however this usually requires a full reimplementation of
the numerical model. As an added value to traditional modelling,
our results demonstrate that substituting a well-trained neural
network emulator running on GPUs for a traditional hybrid or
Stokes solver permits to speed up by several orders of magnitude
if one excludes a minor loss in accuracy and training costs, which
are invested a single time for a given ice flow setting.

Network compression capability

We find that a relatively simple CNN composed of tens of layers is
capable of learning from realizations of two ice flow models of dif-
ferent complexity levels and of retrieving composite solutions
with high and similar fidelity (above 90%) with respect to the
instructor models. The model size in terms of trainable para-
meters (105–106) – or equivalently in terms of data storage
(1–2MB) – is very small compared to the amount of data that
was used for training (above 1 GB). The misfit between emulated
and reference solutions due to the neural network itself (i.e. the
compressibility error) is close to 7–8% for the emulation of
both CfsFlow and PISM. This is likely much smaller than data
and model uncertainties for many glaciological applications. By
contrast, the error related to the richness of the dataset to include
a large diversity of relevant dynamical states is fairly small (,2%).
This therefore demonstrates the ability to learn the relationship
between topographic and ice flow variables in a generic manner,
i.e. to translate the knowledge acquired on some glaciers to others.
Most importantly, a model as complex as the 3-D Stokes equations
can be learnt and emulated very efficiently by a neural network,
which maps 2-D fields.

Because using standard network parameters already results in
a high fidelity emulator, we have not explored further parameter
choices, thus leaving room for future improvements. For instance,
we used the L1 norm as our loss function, which is a common
choice in deep learning accelerating CFD (Kim and others,

Fig. 12. Maximum ice thickness of Icefield A modelled with PISM (a) and IGM (b), and the difference between the two (c).

Fig. 13. Ice thickness fields of Rhone (top panels) and Aletsch (bottom panels) gla-
ciers after 110 and 120 years with CfsFlow (a) and IGM (b), as well as the difference
between the two (c).
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2019; Thuerey and others, 2020), future studies could explore
other loss/misfit functions such as L2, Lp, … or other gradient-
based norms such as W1,p with p = 1 + 1/n, which is the natural
norm in which to analyse the existence and uniqueness of solu-
tions of the Stokes problem in its variational (or minimization)
form (Jouvet and Rappaz, 2011).

Optimality of the dataset

We have found that our original dataset made of arbitrarily cho-
sen glacier/valley topographies to train IGM was far from optimal
(e.g. containing redundant data). Criteria for the optimality of the
dataset (in terms of model fidelity to data size) were investigated.

First, we attempted (not shown) to use principal component ana-
lysis to preprocess and reduce the dimensionality of data while
preserving the original structure and relevant relationships (e.g.
Brinkerhoff and others, 2021). However, our iterative selection
scheme was found to be more efficient to filter non-relevant
data: the glacier dataset was reduced by ≈75% without affecting
the emulator accuracy.

Varying basal sliding conditions

Real-world glacier modelling requires the tuning of ice flow para-
meters to observational data. For that purpose, our Stokes emula-
tor can take the basal sliding coefficient as input thanks to an
exploration of this parameter in the training dataset. Our results
have shown that the interpolation errors between the training
states remain fairly low (Table 2). Note that while we used spa-
tially constant sliding coefficients for training, our emulator can
take a spatially variable sliding coefficient (e.g. resulting from sur-
face data assimilation) as input field. In such a case, it would be
desirable to assess the emulator accuracy against reference solu-
tions based on spatially sliding coefficients to evaluate whether
the training data should be augmented with such solutions.

Embedding into the time evolution model

While even a small,10% inaccuracy of the ice flow emulator could
raise concerns of cumulative errors in the time evolution model due
to the feedback between ice flow and elevation-dependent mass

Fig. 14. Modelled evolution of ice volume, glaciated area and mean velocity field for Icefield A (a) and Aletsch glacier (b) simulations performed with IGM, PISM and
CfsFlow.

Table 4. Overall computational time to achieve the simulation of Icefield A with
PISM and IGM using CPU and GPU at 2 km resolution (top table) and of Aletsch
glacier with CfsFlow and IGM using CPU and GPU (middle table). The bottom
panel compares the computational times to simulate the retreat of Aletsch
glacier for 150 years from today’s state with another Stokes model Elmer/Ice
and IGM, which was trained from Elmer/Ice simulations. The proportion of this
time taken by the ice flow and mass-balance model components is additionally
given when they are significant

Icefield A simulation (3500 years)
Model CPU GPU
# cores 6 1792

PISM (all) 36200 s –
IGM (all) 1522 s 185 s
– Ice flow component 77% 58%
– Mass-balance component 21% 37%

Aletsch glacier simulation (200 years)
Model CPU GPU
# cores 1 1792

CfsFlow (all) 49860 s –
IGM (all) 90 s 8 s
– Ice flow 98% 85%

Additional Aletsch glacier retreat simulation (150 years)
Model CPU GPU
# cores 6 1792

Elmer/ice (all) 12600 s –
IGM (all) 13 s 5 s
– Ice flow component 95% 80%

Table 5. List of tiles used to generate icefields simulations with PISM at 2 km
resolution. The longitude and the latitude correspond to the location of the
centreof each squared tiles

Icefield Lon. Lat. Geo. location

A −72.6 −14.70 Andes
B −117.5 51.0 Canada
C 44.0 42.0 Caucasus
D −75.0 5.0 Colombia
E 38.0 10.0 Ethiopia

10 Guillaume Jouvet and others

Downloaded from https://www.cambridge.org/core. 07 Jan 2022 at 08:44:38, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


balance, the good match between time evolution variables (Figs 12–
14) suggests instead that the errors compensate. Additional inves-
tigations have shown that the errors of the divergence of the ice
flux (not shown), which matters in the time-advancing scheme,
are much more unevenly distributed than ice flow errors, leading
to probable error compensation. This suggests that embedding
our neural network emulator iteratively into the mass conservation
equation is a safe operation, which keeps a high level of fidelity.

Speed-ups

The significant speed-up obtained here is the combined result of
two key ingredients: (i) neural networks (once trained) are very
cheap compared to the direct solving of non-linear diffusion
equations describing the ice flow; (ii) the evaluation of such a
neural network, as well as other expensive IGM model component
tasks (like the PDD mass balance) runs well in parallel and can
therefore take advantage of GPUs. Our performance results
demonstrated that (i) a direct speed-up of ≈20 and 600–1000
for hybrid and Stokes mechanics on our examples related to
CPUs, (ii) GPU can give another substantial speed-up, which is
harder to quantify as it depends on modelling features and
GPU performance. Indeed, GPUs outperform CPUs in general
for large computations when all GPU cores available are used.
Here, GPUs will show great advantage when the neural network
size is large (such as the one selected to emulate Stokes) or/and
when the size of the modelled domain is high. We can therefore
anticipate a great added value of GPU for emulating Stokes and/or
large size computations (e.g. the modelling of large ice sheets in
high resolution). Finally, we used here a single laptop integrated
GPU card (NVIDIA Quadro P3200 GPU), which features moder-
ate performance (<2000 1.3 GHz cores and 6 GB of memory).
There is therefore room for further speed-up by switching to
the latest available GPUs, considering that the price performance
of GPUs currently doubles roughly every two years.

Advantages and limitations of IGM

Besides the computational efficiency to obtain the ice flow solu-
tion at near Stokes accuracy, IGM has a certain number of prac-
tical advantages:

(1) Although it can be trained on 3-D ice flow models, IGM deals
with 2-D regular grids facilitating the management of input
and output data.

(2) IGM only takes gridded bedrock and surface elevations as
topographic inputs, and does not require to identify any catch-
ment or centre flow line, in contrast to flowline-based models.

(3) IGM users can directly do simulations by picking already trained
model emulators (which vary according to spatial resolution)
from a model collection library that comes along IGM’s code.

(4) Although IGM performs better on GPU, it runs across both
CPU and GPU, and switching from one to another architec-
ture is trivial.

On the other hand, IGM has the following limitations, which call
for further development:

(1) One must keep in mind that the applicability of IGM is dic-
tated by the dataset used for training the emulator. For
instance, the CfsFlow-trained emulator presented here will
not be able to model the ice flow of glaciers, whose dimensions
exceed the hull defined by the set of training glaciers (Fig. 6).

(2) The current emulator assumes isothermal ice for simplicity,
i.e. it ignores the effect of ice temperature on ice deformation
and basal sliding.

(3) In our approach, we have natural inflow and outflow condi-
tions at the border of the computational domain, and no spe-
cific other boundary conditions can be prescribed.

(4) IGM’s ice flow emulator works only with regular gridded
data, and using unstructured meshes is incompatible with
this strategy.

Perspectives

Potential for applications

The computational efficiency of IGM opens perspectives in paleo
ice flow modelling, which involves very long time scales and rela-
tively high-resolution computational domains such as: (i) the simu-
lation of large icefields for multi-glacial cycles for reconstruction
purposes (Seguinot and others, 2018) or to study glacial erosion
and landscape evolution (Egholm and others, 2017) – an applica-
tion that requires high-order mechanics to capture basal sliding,
(ii) the inference of paleo climatic patterns from geomorphological
evidence using an inverse modelling (Višnjević and others, 2020).

The ability of IGM to learn ice mechanics from an ensemble of
glaciers simulated with a state-of-the-art physical instructor model
and translate knowledge acquired from some glaciers may also be
exploited in global modelling. Indeed, today’s global models all
rely on highly simplified SIA-based models contributing to model
uncertainties. Providing a training set over a representative sample
of glaciers with a range of ice flow parameters, IGM would permit
to model a massive number of glaciers with a near Stokes accuracy.

Generalizing the emulator

It is straightforward to generalize our CNN (Fig. 3) with further
relevant spatially variable inputs (e.g. ice hardness) to emulate a
more generic ice flow model. In the same way, adding information
on buoyancy as input would permit to learn from an ice shelf
dynamical model, and then generalize the emulator to floating
ice. Instead, the main challenge here is to provide a larger ensem-
ble of training data.

Data assimilation

While the current paper focussed on emulating a cheap ice flow
emulator from a mechanical model, it does not overcome the
necessary step of calibrating ice flow parameters to observational
data. Besides their low computational evaluation costs, neural net-
works rely on automatic differentiation, which is a strong asset for
inverse modelling. The optimization of basal conditions (bedrock
location and basal sliding) from surface observations through the
inversion of an ice flow emulator such as the one we used should
be investigated.

In contrast, training a network similar to ours with real obser-
vations is a tempting alternative to directly include data assimila-
tion. However, this strategy comes with a number of challenges
that should be tackled, including (i) the availability of abundant
observational data necessary for training a deep network (especially
for the ice thickness) (ii) the embedding of possibly contradictory
observational data (explaining real ice flow requires more than ice
thicknesses and surface slopes, i.e. basal data which are hard to
observe) and (iii) the effect of the data noise due to contradictory
observational data on the iterative time evolution scheme. Future
research is therefore needed to explore this potential.

Conclusions

We have introduced a new type of glacier model, which computes
the ice flow using a deep learning emulator trained from hybrid
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SIA + SSA or Stokes mechanical models. Our strategy permits us
to compress the dynamical states produced by these models and
to use this information to substitute the expensive ice flow
model by a cheap emulator and therefore speed up the overall
time evolution model considerably. We have demonstrated that
the resulting model IGM, after appropriate training, models the
flow and evolution of large icefields over millennia and of individ-
ual mountain glaciers over centuries up to 20 and 1000 faster than
traditional hybrid and Stokes on CPUs with fidelity levels above
90%, and up to 200 and 2000 faster by switching to GPUs.
IGM has potential for application in global glacier modelling as
well as in paleo and modern ice-sheet simulations. The IGM
code and the trained ice flow emulators are publicly available at
https://github.com/jouvetg/igm.
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Appendix A: Solving mass conservation

The mass conservation equation (1) is solved using a first-order upwind
finite-volume scheme similar as the one described in Lipscomb and others
(2019). Here we use a staggered grid, i.e. the ice thickness is defined at the
centre of each grid cell, but the ice flow velocities used in the scheme are
defined at the middle of the grid edges by a simple averaging. The key advan-
tage of using such a staggered grid is that solving Eqn. (1) by finite volumes
becomes natural as mass of ice is allowed to move from cell to cell (where the
thickness is defined) from edge-defined fluxes (inferred from depth-average
velocities). The transport of mass is governed following an upwind scheme for
stability reasons. The resulting scheme is fully explicit (and therefore runs well in
parallel), however, subject to CFL condition (2). Further details about this
scheme can be found in Lipscomb and others (2019, Section 5.5.3).

Appendix B: Icefield simulations with PISM

To generate icefield simulation data, we selected five 1024 km × 1024 km tiles
of existing topographically diverse mountainous environments worldwide

(Table 5 and Fig. 5). For each tile, we extracted the publicly available NASA
Shuttle Radar Topographic Mission (SRTM, http://srtm.csi.cgiar.org/) Digital
Elevation Model (DEM), resampled at 2 km resolution to be used as basal top-
ography in PISM. Details about the ice flow and mass-balance models used in
PISM are now described in turn:

(1) Basal sliding was modelled with law (6) with parameter c =
70 km MPa−3 a−1, which was chosen so that a basal shear stress of 80
kPa corresponds to a sliding velocity of ≈35m a−1 (Pattyn and others,
2012).

(2) Surface mass balance (difference between accumulation and ablation) is
calculated from the monthly mean surface air temperature, monthly pre-
cipitation and daily variability of surface air temperature. Accumulation is
equal to solid precipitation when the temperature is below 0°C, and
decreases to zero linearly between 0 and 2°C. Ablation is computed pro-
portionally to the number of positive degree days (Hock, 2003) with fac-
tors fi = 8 mm K−1 d−1 w.e. for ice and fs = 3 mm K−1 d−1 w.e. for snow,
which are taken from the EISMINT intercomparison experiments for
Greenland (MacAyeal, 1997).

As today’s climate forcing, we took the monthly temperature and precipitation
from the WorldClim dataset (Fick and Hijmans, 2017). Starting from ice-free
conditions, we linearly decreased temperature at a rate of 1°C per century until
a large icefield covering the tile was built. Then, the cooling was reversed sym-
metrically into warming at the same rate until the ice has completely
disappeared.

Appendix C: Glacier simulations with CfsFlow

To generate glacier simulation data, we have picked 41 diverse existing valleys
from the European Alps and from New Zealand with drainage basins ranging
from 80 to 700 km2. For each one, we have extracted the publicly available
NASA Shuttle Radar Topographic Mission (SRTM, http://srtm.csi.cgiar.org/)
Digital Elevation Model (DEM) to be used as bedrock, and built a 100 m reso-
lution two-dimensional structured mesh of the DEM. A three-dimensional
mesh was then vertically extruded with 100 of 10 m thick layers. In more detail,
we use CfsFlow with the following specific settings:

(1) Basal sliding was modelled by (6) with constant coefficient c taken among
{0, 6, 12, 25, 70} km MPa−3 a−1.

(2) As mass balance, we use a simple parametrization based on given
Equilibrium Line Altitude (ELA) zELA, accumulation βacc and ablation
βabl vertical gradients, and maximum accumulation rates amax:

SMB(z) = min (bacc(z − zELA), amax), if z ≥ zELA
babl(z − zELA), otherwise.

{

with βabl = 0.009 a−1, βacc = 0.005 a−1, and amax = 2 m a−1.

We initialized the model with ice-free conditions. For the first 100 years,
the ELA was chosen constant with the 20% quantile value of the original gla-
cier top surface elevation to allow for glacier advance. For the next and last 100
years, the ELA was raised linearly until it reached the 90% quantile value of the
original glacier top surface elevation to allow for glacier retreat.

Appendix D: Learning curve

Figure 15 shows the learning curve, i.e. the evolution L1 loss/misfit function
against the number of epochs (an epoch corresponds to one pass over the
entire training dataset), during the training of the two datasets. As a result,
the convergence of the training was always found efficient and fairly smooth.
The validation loss was always found below the training loss.
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Appendix E: Digest of artificial neural networks

Artificial neural networks approximate a mathematical function that maps
input to output variables through a sequence of layers that contain nodes
(or neurons). Mathematically, the output of each neuron is computed by
some non-linear function (called activation) as the sum of its inputs.
Neurons and connections have weights that are adjusted during the training
(i.e. learning) stage. The optimal weights of the network are found by minim-
izing a certain cost function (often referred as loss function), which is most
often defined as the misfit between the ground truth of the training data
and the output of the network. As the number of weights of an effective neural
network can be very high (typical 106− 108), the availability of a large data set
is the key to determine the optimal weights and prevent against underdeter-
mined systems. The optimization (or training) of the neural network often
relies on a batch gradient descent method, which consists of sequentially
adjusting weights by computing descent directions on small subsets (called
batches) of the training data from the error between the model and data out-
puts. While the model evaluation happens sequentially from the first to the last
layer (feed forward), the training happens sequentially in the opposite direc-
tion (back propagation) from the error computed at the last stage to the
first input layer. In that case, the gradients required to optimize each weight
are computed by the simple chain rule for derivatives. We refer to LeCun
and others (2015) for an in-depth review on deep learning.

a

b

Fig. 15. Evolution of the train and the validation loss while training the ice flow emu-
lator from the data generated with PISM (top) and CfsFlow (bottom).
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