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Figure 1: We propose an automatic feature selection method to find near-optimal auxiliary feature subsets that maximize the denoising
quality of neural denoisers. In this figure, we demonstrate our approach by comparing the quality obtained with our automatically selected
feature set to not using any volumetric features (KP-V18 [VRM∗18]), or to the hand-crafted feature sets proposed by the authors (DP-
H20 [HMES20]). Compared to baseline feature sets, our selected feature sets can lead to much improved results with the same underlying
neural network architecture on different types of volumetric effects. © Disney / Pixar

Abstract
We propose a method for constructing feature sets that significantly improve the quality of neural denoisers for Monte Carlo
renderings with volumetric content. Starting from a large set of hand-crafted features, we propose a feature selection process
to identify significantly pruned near-optimal subsets. While a naive approach would require training and testing a separate
denoiser for every possible feature combination, our selection process requires training of only a single probe denoiser for the
selection task. Moreover, our approximate solution has an asymptotic complexity that is quadratic to the number of features
compared to the exponential complexity of the naive approach, while also producing near-optimal solutions. We demonstrate
the usefulness of our approach on various state-of-the-art denoising methods for volumetric content. We observe improvements
in denoising quality when using our automatically selected feature sets over the hand-crafted sets proposed by the original
methods.

CCS Concepts
• Computing methodologies → Ray tracing; Feature selection; Neural networks;

1. Introduction

Volumetric effects such as fog, smoke, and clouds play an impor-
tant role in animated movies and visual effects. However, those

† xianyao.zhang@inf.ethz.ch, marios.papas@disneyresearch.com

are also among the computationally most expensive effects to
accurately render [FWKH17]. The most widely used algorithms
for production rendering rely on path tracing due to its gener-
ality and simplicity [KFF∗15]. The main drawback of path trac-
ing is its computation cost. For complex scenes—especially those
containing volumetric effects—hundreds of hours of computation
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time can be required to render a single frame at final-production
quality. If the rendering process is stopped prematurely, the im-
age will contain error that manifests as undesirable noise arti-
facts. A commonly-used remedy for reducing computation time
to reach a desired quality is denoising. Before the rendering con-
verges to a noise-free state, the process is stopped early, and a
comparatively fast denoising post-process can be applied to re-
move the noise in the intermediate image. State-of-the-art denois-
ers [VRM∗18, CKS∗17, XZW∗19, ZMV∗21, HMES20, HHCM21]
are based on training deep convolutional neural networks to pro-
duce noise-free images from noisy inputs. While training denois-
ing networks on large datasets can be very time consuming, once
trained, these networks can be used to very efficiently produce
clean images from noisy data.

One key aspect to denoising Monte Carlo renderings is that ren-
derers can be instrumented to output additional information, called
auxiliary feature maps. Passing these feature maps to the denoiser
can often help preserve scene details more accurately. There are es-
tablished sets of features that are commonly used to improve the
denoising quality of surfaces [RMZ13, VRM∗18]. However, while
various auxiliary features for denoising volumetric content have
been proposed in the past [HMES20, XSW∗20, HHCM21], there
is no established feature set for volume denoising.

Designing a set of features that yields the best denoising quality
for a given state-of-the-art volume denoising method is not a trivial
task. The main challenges are first proposing a set of good features
with a high probability of increasing denoising quality and then
identifying which feature combination will yield the highest qual-
ity. As we will later demonstrate, the contribution of each feature
to the denoising quality is dependent on which other features are
selected. This correlation between features makes it hard to predict
the impact of each feature independently without considering pos-
sible combinations with other features. Finding the optimal feature
set in a brute-force manner quickly becomes intractable even for a
handful of features since a new denoiser should be trained and eval-
uated for every feature combination. On the other hand, using many
unnecessary features can decrease the denoising quality of neural
methods and significantly increase disk storage required per frame.
The storage overhead is further amplified in large-scale production
environments by the demand to increase frame rate, frame reso-
lution, and multi-view rendering. In such scenarios, even a small
overhead can quickly become a significant and potentially pro-
hibitive cost factor. Additionally, using a smaller feature set reduces
computation overhead slightly, which can be valuable considering
the cost savings across many frames.

In this paper, we propose an algorithm to identify sets of fea-
tures that significantly improve the quality of various state-of-the-
art methods [VRM∗18, HMES20, HHCM21] that can be used for
volume denoising. We progressively expand our selection of fea-
tures from a more extensive hand-crafted set to identify features
that will yield the best improvement in the denoising quality. We
predict the impact of each feature combination on the denoising
quality by evaluating our proposed probe denoiser on different fea-
ture sets and measuring their quality difference. Our probe denoiser
shares the same network architecture as the baseline denoiser, but
we train it with random feature dropout to simulate the process of

feature selection. After a once-off training, the probe denoiser be-
comes a capable oracle for predicting the quality benefit of differ-
ent feature sets. We then propose a progressive construction process
for feature selection, which incrementally builds a feature set based
on predictions from the probe denoiser and runs in quadratic time
with respect to the number of features. After feature selection, the
denoiser can be retrained using the selected feature sets, yielding
results with improved quality.

We provide feature sets obtained by our method for a selec-
tion of state-of-the-art interactive and offline denoisers for vol-
umes [VRM∗18, HMES20, HHCM21]. We demonstrate that these
sets improve the denoising quality compared to the hand-selected
feature sets initially proposed by the authors of the respective meth-
ods. Our evaluation reveals that the proposed selection process can
account for redundancies between features, allowing for significant
pruning without denoising quality degradation over the complete
hand-crafted feature set. We provide a series of ablation studies
analyzing the impact of our design choices on the accuracy and
stability of our selection method. We further validate our findings
by evaluating denoising quality improvements due to the resulting
feature sets on a diverse set of volumetric scenes involving homo-
geneous and heterogeneous volumes in different lighting scenarios.
We provide a visual comparison of the denoising quality improve-
ments with our selected feature sets for state-of-the-art architec-
tures in Figure 1.

In summary, our main contributions are the following:

• a specially trained probe denoiser that is capable of predicting
the impact of different feature sets on the denoising quality,

• a feature selection algorithm that uses a greedy optimization and
a probe denoiser to compute near-optimal sets of features in
quadratic time without requiring re-training during the selection
process, and

• an extensive set of hand-crafted volumetric features along with
near-optimal feature sets for various state-of-the-art denoising
architectures.

2. Related work

Our method builds on existing work in physically based volume
rendering, Monte Carlo denoising, and feature selection, all of
which are active research areas. In this section we provide a re-
view of the most relevant literature to our work in each of these
fields.

Volume rendering The prevalent algorithm to render volumetric
effects for production purposes is volumetric path tracing based
on radiative transfer equation [Cha13], where the light paths are
scattered and absorbed inside of participating media. Rendering
scenes with volumetric effects can result in a much larger num-
ber of scattering events per path than when rendering scenes with
only surface interactions, leading to excessive noise or prolonged
rendering time. Therefore, various attempts have been made to
accelerate volumetric rendering, e.g., through various types of
photon mapping [BJ17], improvements of the free flight distance
sampling [NSJ14], transmittance estimation [dN21], path guid-
ing [HZE∗19] or modelling higher-order scattering effect with neu-
ral networks [KMM∗17]. For a thorough overview of the available
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volume rendering techniques, we refer the interested reader to sur-
veys by Cerezo et al. [CPP∗05] and Novák et al. [NGHJ18].

In this work, we adopt the basic volumetric path tracing algo-
rithm with next event estimation [PJH16] because of its generality
and popularity in production [FWKH17].

Monte Carlo Denoising Denoising can often reduce the ren-
der time needed to reach a desired quality by orders of magni-
tude [FHH∗19]. We refer the readers to the survey from Zwicker
et al. [ZJL∗15] for an overview of traditional denoising and recon-
struction methods. In particular, Rousselle et al. [RMZ13], He et al.
[HST13] and Moon et al. [MJL∗13] propose the use of various aux-
iliary feature buffers for the denoising task. Recent years saw the
rise of deep learning approaches that leverage information in large
datasets. Our method is specifically tailored to improve the qual-
ity of such deep-learning-based denoisers. Bako et al. [BVM∗17]
use a kernel-predicting convolution network (KPCN) to predict
per-pixel filtering kernels from the noisy image and auxiliary fea-
ture buffers, achieving significant improvement over traditional ap-
proaches. Vogels et al. [VRM∗18] extend KPCN by reusing tempo-
ral information and suggest a multi-scale reconstruction approach
with U-Nets [RFB15] as the backbone. Zhang et al. [ZMV∗21] fur-
ther extend this approach by learning decompositions of the noisy
color and per-component auxiliary features before denoising. Tak-
ing a different route, Xu et al. [XZW∗19] train models with adver-
sarial losses that directly predict the denoised pixel values (with-
out relying on filter kernel), and Back et al. [BHHM20] combine
unbiased and biased estimates for better final reconstruction qual-
ity. Finally, sample-based denoisers have been recently proposed
that exploit additional information contained in individual radiance
samples [GLA∗19,MH20,CHY21, IFME21] for the purpose of in-
teractive or even real-time frame rates. To the best of our knowl-
edge, we are the first to use a systematic approach to select the
best auxiliary features from a large feature set for Monte Carlo de-
noising, as previous work focused on manually creating good fea-
tures [RMZ13,MJL∗13] or improving the neural network architec-
ture [BVM∗17, ZMV∗21, XZW∗19].

Volume Denoising The success of the aforementioned denoising
methods is demonstrated mainly in scenes with predominantly sur-
face interactions. Recently, the task of denoising renderings with
volumetric effects has also been studied. Hofmann et al. [HMES20]
introduce a denoiser specialized for scenes with volumes stemming
from medical data but with simplified light transport. The auxil-
iary features for denoising volumetric effects used in this work in-
spired our proposed features, and we include them in our hand-
crafted set. Subsequently, a pipeline for interactive volume render-
ing was proposed [HHCM21] which includes a lightweight neu-
ral denoiser that uses a different set of auxiliary features. In the
context of gradient-domain volumetric photon density estimation,
Xu et al. [XSW∗20] proposed a method using auxiliary volume-
specific feature buffers like transmittance and photon density to de-
noise global homogeneous volumes. Among the more traditional
methods, Iglesias-Guitian et al. [IGMM20] propose a real-time de-
noising pipeline for volumetric renderings using a history buffer.
Vicini et al. [VAN∗19] extends the non-local means denoiser to
denoise deep images, in which each pixel contains multiple bins;
volumetric renderings are one common use case for deep images.

Feature selection Feature selection methods for machine learning
models aim at using minimal feature sets to achieve good predic-
tion accuracy, and the feature selection problem is considered NP-
hard in general, due to the combinatorial number of potential fea-
ture sets [Wel82]. It is possible to perform feature selection with-
out knowledge of the machine learning model used, which is often
termed model-agnostic feature selection [BCSMAB15]. Minimum
Redundancy and Maximum Relevance (mRMR) is a representa-
tive class of model-agnostic methods. Using a forward selection
scheme, mRMR includes one additional feature at each step to the
selected feature set when this feature provides the best relevance-
redundancy balance [DP03, ZAW19]. Here, relevance means the
similarity between a feature and the ground truth, and redundancy
is measured by the similarity between a new feature and already
selected features.

Model-aware methods are opposite to the model-agnostic meth-
ods, which incorporate the model into feature selection. Frequently
appearing in these methods is the concept of Shapley value [Sha16],
which represents the contribution of a feature while considering all
possible combinations of other features. Cohen et al. [CRD05] pro-
pose to use Shapley values for feature selection for traditional ma-
chine learning algorithms like decision trees. Castro et al. [CGT09]
propose and analyze the method to speed up Shapley values com-
putation by sampling feature permutations, but evaluating Shapley
values is still computationally expensive.

Feature selection methods have also been proposed for deep neu-
ral networks [SN20, KVSF20], and convolutional neural networks
(CNNs) [AOG19,CSWJ18,YJV19]. We adopt the commonly used
forward selection regime in our method, but the probe denoiser in
our method bears novelty compared to previous work. First, pre-
vious approaches, when applied on convolutional neural networks,
evaluate the contribution of each pixel [AOG19,CSWJ18] or patch
[YJV19] to the result. Second, though related works on network
pruning or feature ranking [WC20, GGZ∗18] have considered the
feature dropout idea, we use dropout in our probe denoiser to se-
lect entire input feature maps for a convolutional network, which is
different from previous work to the best of our knowledge.

3. Background

In this section, we revisit the fundamental concepts in volumetric
path tracing (Section 3.1) and Monte Carlo denoising with neural
networks (Section 3.2), as preparation for describing our proposed
feature selection method.

3.1. Volumetric path tracing

In this work, we follow a common parameterization of partici-
pating media to render volumetric effects [PJH16], using the spa-
tially varying scattering coefficient σs(·) and absorption coefficient
σa(·), and the phase function fp(·, ·, ·). The coefficients describe the
strength of the scattering and absorption within the volume along
an infinitesimal beam, and the phase function defines the distribu-
tion of the direction of scattered light paths. Though the current
work only considers scattering and absorption effects and assumes
no volumetric emission, our feature selection method can be natu-
rally extended to select emission-related features.
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The incident radiance Li(x, ω⃗) at point x from direction ω⃗ can
be defined by the following recursive integrals, assuming that the
closest surface along the ray is at point x0 = r(x, ω⃗) = x+ tmaxω⃗:

Li(x, ω⃗) = Tr(x0↔ x)Lo(x0,−ω⃗)︸ ︷︷ ︸
Li,surf(x,⃗ω)

+
∫ tmax

0
Tr(x+ tω⃗↔ x)Ls(x+ tω⃗,−ω⃗)dt︸ ︷︷ ︸

Li,vol(x,⃗ω)

, (1)

Ls(x, ω⃗) = σs(x)
∫

S2
fp
(
x, ω⃗, ω⃗′)Li

(
x, ω⃗′)d⃗ω

′, (2)

Lo(x, ω⃗) = Le(x, ω⃗)+
∫

H2
fr
(
x, ω⃗, ω⃗′)Li

(
x, ω⃗′)cosθ

′d⃗ω
′. (3)

Among the radiance terms, Ls(x, ω⃗) is the in-scattered radiance,
Lo(x, ω⃗) is the total outgoing radiance, and Le(x, ω⃗) is the emit-
ted radiance at location x in direction ω⃗. Additionally, Tr(x↔ y)
is the transmittance between x and y, fr

(
x, ω⃗, ω⃗′) is the bidirec-

tional scattering distribution function (BSDF) characterizing sur-
face scattering, and S2 and H2 are the unit sphere and hemisphere,
respectively. More specifically, transmittance is defined as:

Tr(x↔ y) = exp
{
−

∫ l

0
σt(x+ tω⃗0)dt

}
, (4)

with ω⃗0 = y−x
∥y−x∥2

being the unit vector pointing from x to y,
l = ∥y−x∥2 the distance between the two points, and σt(x) =
σs(x) + σa(x) the (spatially varying) extinction coefficient. One
can also define the optical thickness, τ, from the exponent in the
above equation, as τ =

∫ l
0 σt(x+ tω⃗0)dt. Volumetric path tracing

uses Monte Carlo integration to compute the recursive integral in
Equation (1). Each sample from volumetric path tracing will result
in a light path consisting of N points, represented by {x(i)}N−1

i=0 ,
with the virtual camera as the 0-th point x(0). At each point x(i)

where i > 0, we can record additional information related to either
the current point or the previous path segment x(i−1)x(i), which
can be used as auxiliary denoising features. The features are col-
lected at each path within a pixel and averaged into images that
accompany the noisy color image. We refer to these auxiliary fea-
ture images by omitting scene-space position in the expression. For
instance, the image corresponding to the scattering coefficient at
the 3rd point, σs(x(3)), is written as σs

(3).

Also, from Equation (1), we can observe that the incident radi-
ance Li(x, ω⃗) can be decomposed into a surface part Li,surf(x, ω⃗)
and a volume part Li,vol(x, ω⃗), depending on the type of the path’s
first interaction, leading to a surface–volume decomposition of the
rendered image.

Our work focuses on extracting useful auxiliary features for de-
noising the volume part, and the surface part can be denoised using
well-established features and methods [VRM∗18].

The volumetric interaction Li,vol(x, ω⃗) can be further decom-
posed into single scattering Li,ss and multiple scattering Li,ms, ac-

cording to the number of volume scattering interactions:

Li,ss(x, ω⃗) =
∫ tmax

0
Tr(x+ tω⃗↔ x)Ls,ss(x+ tω⃗,−ω⃗)dt, (5)

Ls,ss(x, ω⃗) = σs(x)
∫

S2
fp
(
x, ω⃗, ω⃗′)Tr

(
x′0↔ x

)
Le
(
x′0,−ω⃗

′)d⃗ω
′,

(6)

Li,ms(x, ω⃗) = Li,vol(x, ω⃗)−Li,ss(x, ω⃗). (7)

3.2. Neural denoising with auxiliary features

The task for a denoiser g is to predict the reference image Ī from
noisy color image I. When processing a noisy color image I, a de-
noiser g also takes auxiliary feature maps F for estimating the ref-
erence image Ī, i.e., Î = g(I,F) ≈ Ī. Neural denoisers, which are
often implemented with convolution layers, are trained on a size-
able dataset Dd of noisy–clean data pairs ([I,F], Ī) to minimize the
average denoising error ε(Î, Ī) between the reference image Ī and
the prediction Î.

Using a convolutional neural network, we can directly predict
the denoised image Î at the final convolution layer [XZW∗19,
HMES20], or alternatively use the kernel-predicting approach
[VRM∗18, ZMV∗21, HHCM21]. For the latter, the network model
predicts for every pixel p kernel weights wpq for its neighborhood
pixels q ∈N (p). Denoting the trainable parameters in the network
with θ, the value of pixel p in the predicted image Î is computed as

Îp = gp(I,F;θ) = ∑
q∈N (p)

wpq(I,F;θ)Iq.

Our work focuses on identifying auxiliary features sets for vol-
ume denoising rather than suitable volume denoising network ar-
chitectures. Therefore, we examine the effect of our proposed
feature set and the feature selection method on existing direct-
predicting [HMES20] and kernel-predicting [HHCM21, VRM∗18]
denoisers. Note that two of the three denoiser architectures
[HMES20, HHCM21] are proposed in the context of volume de-
noising, with their own sets of volumetric features. Our compar-
isons with these baselines show that with our method we can iden-
tify feature sets that achieve significant denoising quality improve-
ments compared to the author-proposed features.

4. Volume-related features

Our goal is to identify a set of features that will improve the de-
noising quality of state-of-the-art methods on volumes. To arrive at
a concise and beneficial feature set, we first hand-craft a large set
of features and then select feature subsets from those programmat-
ically; the following two sections will discuss these two steps.

Our criteria for producing this hand-crafted set are the following:
we select features that can be extracted without significant compu-
tation overhead during volumetric path tracing, exhibit structures
that correlate with the clean color image, and have lower noise
levels than the corresponding noisy color image. Table 1 lists the
complete set of 29 volumetric features.

To begin with, we select two features that correspond to path-
space decompositions of volumetric light transport. The single-
scattering feature (Li,ss, Equation (5)) corresponds to illumination
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Symbol Feature Name Range Transform

Li,ss Single scattering R+ log(|x|+1)
Li,ms Multiple scattering R+ log(|x|+1)
ρvol Volume albedo [0,1] Equation 10 from [FPWW89]
σs Scattering coefficient R+ sign(x−µ) log( |x−µ|

σ
+1)

Tr Transmittance [0,1] x
zv Volume interaction length R+

(x−µ)
σ

v Velocity direction [−1,1] x
∥v̂∥ Velocity magnitude R+ sign(x−µ) log( |x−µ|

σ
+1)

nvol Density gradient direction [−1,1] x
∥n̂vol∥ Density gradient magnitude R+ sign(x−µ) log( |x−µ|

σ
+1)

p Object-space position R x
zcam Distance to camera R+ x

τ Optical thickness R+ x
rsct Scattering ratio [0,1] x
σt Extinction coefficient R+ x

Table 1: Volumetric features used in this paper, following notation
in Section 3.1. We record all features at the first and second volume
interactions, except for Li,ss, Li,ms, and zcam, which only applies
at the first interaction location. Denoising networks receive trans-
formed features according to the rightmost column, where µ and
σ denote a feature’s mean and standard deviation over the train-
ing set, respectively. We set disabled features to a default value of
0, except for transmittance which we set to 1. For completeness,
we include the estimated standard deviation for first-bounce σt and
zcam, as proposed by Hofmann et al. [HHCM21], but do not include
variance or standard deviation for other features.

that experienced exactly one scattering interaction with the vol-
ume(s) directly visible at each pixel. The multiple-scattering fea-
ture (Li,ms, Equation (7)) corresponds to illumination that experi-
ences more than one scattering interaction with the volume(s).

The remaining 27 features correspond to quantities evaluated
during volumetric path tracing (see Section 3.1), and are collected
both at the first and second volumetric interactions unless men-
tioned otherwise. Some of the features are inspired by previous vol-
ume denoising works [HMES20, HHCM21]. We include the scat-
ter position (p), scattering albedo (ρvol = σs/σt ), scattering coef-
ficient (σs), and extinction coefficient (σt ).We also consider the
length of the path segment prior to the interaction, starting either
from the camera (zcam, only at the first interaction) or from the
volume bounding shape (zv, both first and second interactions).
Next, the estimated transmittance (Tr) and optical thickness (τ)
are obtained along the path segments, and we record the scatter-
ing ratio (rsct), which represents the ratio of scattering interactions
over the total number of paths in the pixel. In heterogeneous vol-
umes, we record the volume density gradient direction (nvol) and
magnitude (∥n̂vol∥) akin to surface normals. Finally, when avail-
able, the velocity direction (v) and magnitude (∥v̂∥) of the under-
lying physical simulation are also extracted as features. Hofmann
et al. [HHCM21] include the estimated standard deviation of z(1)cam
and σs

(1) as features, and we follow this approach to include these
two features for a fair comparison. We do not include the variance
or standard deviation estimates for other features.

ρ
(1)
vol z(2)v Color (volume only)

ε(ρ
(1)
vol)− ε(∅) ε(z(2)v )− ε(∅) ε(z(2)v ,ρ

(1)
vol)− ε(z(2)v )

Figure 2: Top row shows the 1st volume albedo ρ
(1)
vol and 2nd vol-

ume interaction length z(2)v . The bottom row shows the change in
denoising error ε when adding a new feature compared not using
that feature. Here ε = SMAPE and increases/decreases in error
are shown in red/blue. Note how both features affect ε similarly
when used in isolation compared to not using any feature. Due to
their strong correlation however, using both features improves ε

only marginally compared to using a single feature.

Each of these features can potentially improve the quality of a
denoiser. In the next section, we will propose a rigorous method
for evaluating their impact, especially in combination with other
features. Note that our feature selection method is independent of
the starting feature set, and it can be applied to different features
than the 29 mentioned above.

5. Feature selection

Using a large set of features can improve denoising quality over not
using any features, but it also incurs additional storage cost and data
loading overhead. As we will later demonstrate, some of the fea-
tures proposed in Section 4 are found to be redundant or offer little
additional useful information when combined with other features,
for which Figure 2 shows an example. This leads to diminishing
returns when adding more features as input to a neural denoiser,
and the benefit of using multiple features is not a simple sum of
the benefit of using each individual feature. In fact, we demonstrate
that a relatively small subset of the proposed feature set is suffi-
cient to reap most of the benefits in terms of denoising quality. It is,
however, challenging to identify such a subset because of the diffi-
culty to predict the effect of various input feature combinations on
denoising quality.

Given a set of features P, we seek the subset S⋆ ⊆ P that leads to
the best denoising quality. We also discuss alternative ways to for-
mulate the problem as tradeoff between denoising quality and num-
ber of features in Section 5.3. Without any assumptions about the
features nor a good oracle for predicting the quality improvement
due to different feature sets, we would have to resort to a brute-
force solution of training multiple denoisers with different feature
sets S ⊆ P as input and pick the feature set leading to a denoiser
with lowest average denoising error on a large selection dataset
Ds with denoising examples (Section 6.1). We denote a denoiser
trained with feature set S by gS. This solution quickly becomes
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infeasible even for relatively small feature sets, as the number of
subsets to consider—and thus denoisers to train—is 2|P|.

We propose an efficient solution with low approximation error,
requiring training only one denoiser for feature selection. We use
this probe denoiser as an oracle for predicting the impact of feature
combinations on the final denoising error. Additionally, we propose
a greedy feature set selection algorithm that only requires testing at
most O(|P|2) subsets with the probe denoiser, avoiding the combi-
natorial complexity at the cost of some approximation error. Our
method is performed in four steps:

1. Train a probe denoiser g̃ with the desired network architecture
to measure the quality of different combinations of feature sets
S⊆ P without retraining (Section 5.1).

2. Construct a sequence of candidate feature sets P̄ = {Si : i =
0,1, . . . , |P|} with S0 ⊂ S1 ⊂ ·· · ⊂ S|P| = P using a forward se-
lection algorithm, where feature sets of progressively increasing
sizes are evaluated with the probe denoiser g̃ (Section 5.2).

3. Select the best performing feature set S̃⋆ ⊆ P̄ that yields either
the best denoising error or the desired trade-off between denois-
ing quality and feature set size (Section 5.3).

4. Train a specialized denoiser gS̃⋆ from scratch with the resulting
feature set S̃⋆.

5.1. Probe denoiser training

Identifying good feature sets for denoising relies on an efficient
evaluation of the denoising quality impact between different fea-
ture subsets S ⊆ P. As mentioned earlier, training specialized de-
noisers for different feature sets quickly becomes impractical, and it
is thus desirable to evaluate different feature subsets with the same
trained denoiser. It is possible to evaluate the impact on the de-
noising error of a feature set S using a denoiser trained with the
full feature set P, i.e., gP, and manually turning off other features
q ∈ P\S during inference. We turn off a feature by setting it to its
default value—a constant feature map containing 0 or 1 (see Table 1
caption). With a slight abuse of notation, we write this evaluation
as gP(I,S). However, inputs [I,S] with smaller feature subsets will
inevitably be out-of-distribution for gP. This undermines the reli-
ability of the measured denoising error between different feature
subsets.

To mitigate the out-of-distribution issue, we use random fea-
ture dropout during the training of a denoiser that we will use for
feature-set probing. For each training example, each feature q ∈ P
is disabled independently with a predefined probability. We use a
probability of 50% in our experiments such that during training
each feature subset is chosen with equal probability. We refer to
a denoiser trained in this fashion as a probe denoiser. The trained
probe denoiser can more reliably predict the denoising quality ob-
tained by using smaller feature subsets as we train it on feature sets
with missing features.

Despite the difference in how a probe denoiser is trained com-
pared to a regular denoiser, we later demonstrate (Figure 4) that
its denoising error for a specific feature set correlates quite well
with the denoising error of a specialized denoiser trained only on
that set. On the other hand, the error of a denoiser trained without
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Figure 3: A schematic view of our progressive construction pro-
posed in Section 5.2. We show the construction of S1, S2 and S3
from a set P with |P| = 5. Each feature is depicted by a uniquely
colored square. Slanted squares depict disabled features and cir-
cles depict the losses ℓ(Si∪{q}) (Equation (9)) with q ∈ P\Si.

dropout does not have a good correlation with the final denoising
error, especially on smaller feature subsets.

5.2. Candidate feature set construction

To enable early termination and facilitate tradeoffs between
quality and feature set size, we progressively build a set
P̄ = {Si : i = 0,1, . . . , |P|, |Si|= i} by identifying candidate feature
sets Si of different sizes. The candidate feature set of size i yields
the minimum average denoising error ℓ of the probe denoiser g̃
among all feature sets of size i, over the selection dataset Ds, for-
mally

Si = argmin
S

ℓ(S) subject to S⊆ P and |S|= i, (8)

where

ℓ(S) := ∑
k∈Ds

ε

(
g̃
(

Ik,Sk
)
, Īk

)
/|Ds|. (9)

Here, Ik, Sk and Īk are the noisy color, auxiliary features and ref-
erence color of an example in Ds, respectively, and ε(·, ·) is the
error between the denoised image and reference image according
to some error metric, e.g., SMAPE [BVM∗17] or DSSIM which
we define as (1-SSIM) [WBSS04].

Although we can make use of a probe denoiser, finding the global
optimum of the optimization problem in Equation (8) requires eval-
uating the loss ℓ on all subsets, making it intractable even for mod-
erately sized feature sets. For example, given a probe denoiser with
an inference time of 230ms, a set of 29 features, and a selection set
with 93 denoising examples, we would need approximately 11 mil-
lion evaluations or 30 days to find the set of size 5 with the lowest
error. Feature sets with up to 6 features would need about 3 months,
and sets up to 9 features would need about a year to finish.

Therefore, we propose a greedy solution to construct the ele-
ments of P̄ in an incremental fashion, such that ∅ = S0 ⊂ S1 ⊂
...⊂ S|P| = P.

Starting from an empty feature set, we progressively construct a
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Figure 4: We show a scatter plot of the predictive loss (x-axis)
against the final specialization loss (y-axis) for a no-dropout de-
noiser (left) and our probe denoiser (right). We evaluate these
losses on various feature subsets with different sizes, and the same
feature sets are evaluated for both denoisers. Around the linear
regression trend line, we indicate the measured standard devia-
tion of the retraining noise of KP-H21 with a shaded area. Despite
the noise due to retraining, we measure a higher correlation be-
tween the predictive loss and specialization loss for the probe de-
noiser (r = 0.94) over the no-dropout denoiser (r = 0.84). More-
over, we observe abnormally high predictive loss (15− 30) for the
no-dropout denoiser when evaluated on smaller feature sets since
it was never trained with missing features.

set of features by always selecting the one feature that improves de-
noising quality the most, as measured by the probe denoiser, when
adding it to the set of already selected features. A more formal de-
scription of our feature set construction is given below:

1. Start from an empty set of selected features S0 = ∅ and set i = 0.
2. For all remaining features q∈P\Si compute ℓ(Si∪{q}) accord-

ing to Equation (9).
3. Set Si+1 = Si∪{q∗i }where q∗i = argminq ℓ(Si∪{q}), increment

i and repeat step 2 and 3 until Si+1 = P.

We provide a visual description in Figure 3 and pseudo code in
Appendix A. To facilitate the final feature set selection in Sec-
tion 5.3, we store the average denoising error of each candidate set
ℓ(Ds,Si). Note, that each added feature is always selected based on
its added benefit on top of the already selected ones. Thus, by con-
struction, the resulting candidate feature sets avoid containing re-
dundant features. We note that our method falls within the category
of forward selection methods in feature selection literature [BC-
SMAB15]. Moreover, when experimenting on a smaller set of 18
features, our greedy selection method was able to precisely match
the results of the brute force approach for up to 5 features, rein-
forcing our belief that our approximate method can produce near-
optimal feature sets for a given probe denoiser. Our construction
approach requires evaluating Equation (9) at most ∑

N−1
i=0 (|P|− i)

times, making this algorithm of quadratic complexity in the num-
ber of features.

5.3. Final selection and denoiser specialization

Once the candidate feature sets for each size are established, we
can select the feature set achieving a desired tradeoff between cost
and quality. We define this tradeoff with two constraining parame-
ters: the maximum number of affordable features 1 ≤ Nmax ≤ |P|,
and the minimal acceptable denoising quality gain ξ, relative to the
gain using the best performing candidate set compared to using no
features. Given these constraints, we can use the following simple
procedure to find the approximate optimal feature set S̃⋆. Starting
from i = 0 we check if the relative quality gain is over the user-
defined threshold

ℓ(∅)− ℓ(Si)

ℓ(∅)−mink ℓ(Sk)
≥ ξ. (10)

where ℓ is the average denoising error defined in Equation (9). We
perform this check by gradually incrementing i, until either we
reached the desired number of features i = Nmax (early termina-
tion) or when Equation (10) is satisfied; then we stop and report
the approximate optimal feature set S̃⋆ = Si. We visualize the re-
sults of our selection method in Figure 5 and we discuss them in
Section 7.3. Note that this selection procedure has almost zero over-
head, because all involved loss quantities are already computed and
stored when constructing the candidate feature sets, as mentioned
in the previous subsection.

After carrying out the selection, we need to make use of the se-
lected feature set S̃⋆. The simplest option is to directly use the probe
denoiser g̃ without modification with feature set S̃⋆. We can do this
since the probe denoiser is expected to yield reasonable results for
the feature set S̃⋆. However, in our experiments we observed that
we can achieve better denoising quality by specializing a denoiser
for S̃⋆ instead of using the general probe denoiser that works well
with any feature set. That is, we propose retraining a specialized
denoiser on S̃⋆, without feature dropout. This denoiser can then be
used to denoise images that are accompanied with the selected set
of features and the other features no longer need to be generated.

6. Experiment Setup

6.1. Data

We generate our datasets using the volpath integrator of the Mit-
suba [Jak10] renderer for both our input and reference images. The
volumetric effects present in our datasets include homogeneous
media, smoke plumes, and clouds. To introduce cases where sur-
face and geometric effects coexist, we augmented 20 publicly avail-
able scenes with effects from a set of 300 volumetric assets. To fo-
cus the experiments on volume denoising, we decompose the vol-
ume and the surface parts according to Equation (1), and apply our
methods only to the volume part.

Training, selection, and validation sets. We use three disjoint
datasets from the same random scene generator to evaluate our fea-
ture selection pipeline. First, all denoising networks, including the
probe denoiser and specialized denoisers, are trained on an exten-
sive training set (Dd). After the probe denoiser training is finished,
the feature selection method is carried out on a selection set (Ds).
Finally, a validation set (Dv) is used to assess the denoising quality
of the specialized denoisers after retraining.
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Figure 5: For the 29-feature full set (|P|= 29) and the three denoiser architectures, we show the percentage of predictive loss improvement
(left-hand side of Equation (10)) for candidate feature sets S1,S2, . . . ,S|P|. We also display the feature names that are predicted to provide
90% of the relative improvement for each of the architectures. The candidate feature sets are constructed in the order from left to right (i.e.,
darkest blue denotes the first feature and darkest red denotes the last). To the right of the 100% mark, adding more features shrinks the
predicted benefit. For all three architectures, the predicted benefit of using more features diminishes quickly with the size of the feature set,
and eventually, adding more features decreases the denoising quality.

In order to create diverse lighting effects, we randomize various
scene parameters. For volumes, we randomly sample their proper-
ties such as the extinction coefficient (σt), albedo (ρvol), and mean
cosine of the Henyey-Greenstein phase function (gHG) [HG41].
Additionally, we apply random translations and rotations to het-
erogeneous volumes and scale their density according to a random
factor. We render noisy input images and feature maps with 16, 64,
and 256 samples per pixel (spp) for each scene, and we render our
reference images with 16384 samples per pixel. In total, we gener-
ate 711 randomized scenes, from which 650 are used for training,
31 for selection, and 30 for validation. Note that the distribution of
different volumetric effects (homogeneous, smoke plumes, clouds)
is similar in these three datasets.

Test set. Eventually, the specialized denoisers will be applied to
volumetric renderings not originating from our random scene gen-
erator. To simulate this scenario, we design a test set (Dt) contain-
ing 12 handcrafted scenes, rendered at the same sampling levels as
the training set but with more than 100000 samples per pixel for
the references to ensure the reliability of our metrics. These scenes
cover a wide variety of volumetric effects and are closer to realistic
authoring scenarios than the randomly generated scenes.

6.2. Denoiser models

To validate the generality of our method, we implement three
neural denoisers from the literature and run our feature selection
pipeline on each of them. We denote the three denoisers as KP-
V18 [VRM∗18], DP-H20 [HMES20], and KP-H21 [HHCM21], re-
spectively. Below we briefly introduce the different denoiser archi-
tectures.

First, KP-V18 is a single-frame variant of the improved
kernel-predicting convolutional network (KPCN) by Vogels et al.
[VRM∗18]. We follow the authors’ suggestion to use a U-Net as
the backbone. At each of the 5 U-Net scales, we use two residual
blocks [HZRS16] on both encoder and decoder sides. The decoder
of the U-Net predicts 5×5 kernels that will be applied to the noisy

input at each scale, resulting in an effective kernel size of about 80
pixels. We combine the reconstructions between two scales using
a multi-scale combiner [VRM∗18]. In total, this model has about
16.8M trainable parameters.

Related to KP-V18 is the KP-H21 denoiser, a lightweight kernel-
predicting architecture with only 433k trainable parameters, pro-
posed in an interactive frame rate volume rendering pipeline
[HHCM21]. It also consists of a U-Net, with fewer layers for the
encoder than for the decoder. Though the U-Net has 6 scales itself,
reconstruction kernels (also 5× 5) are only predicted at the finest
three scales, and they are combined similarly to KP-V18.

Finally, DP-H20 is a direct-predicting network proposed to de-
noise medical volumetric data [HMES20]. Instead of using one U-
Net to receive all input features, the authors propose a dual-U-Net
architecture, where the first- and second-bounce features are fed
into the first and second U-Net respectively, with the second U-Net
also receiving the output of the first. The exact backbone U-Net for
DP-H20 is similar to that for KP-H21, with 6 scales, but more train-
able parameters are used for DP-H20 since it does not have a frame
rate constraint. This model has 2.22M trainable parameters in total.

6.3. Training scheme

We use the same training scheme for all three architectures, in-
cluding losses, learning rate, number of iterations, and other hyper-
parameters, to focus on the feature selection pipeline instead of dif-
ferent training schemes for different denoisers. More specifically,
our training loss is the symmetric mean sbsolute percentage error
(SMAPE) [VRM∗18] due to its stable behavior with high-dynamic-
range (HDR) images. The loss at pixel p is defined as:

ε
(
Īp, Îp

)
=

∣∣Īp− Îp
∣∣∣∣Īp

∣∣+ ∣∣Îp
∣∣+ c

, c = 10−2, (11)

and we can produce the SMAPE for an image by averaging across
all image pixels and color channels.

The denoisers are implemented in TensorFlow [AAB∗15]. We
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use the Adam [KB14] optimizer with a base learning rate of 0.0001
and set all other optimizer parameters to their default values. Dur-
ing training, each batch consists of 12 patches of size 128× 128
from the training set images. The models are trained until 1.8M it-
erations, during which the learning rate is decayed by a factor of 10
at 1.5M and 1.65M iterations.

Before passing the features to the network, we sometimes apply
a transform (see Table 1) to control the features’ range. For the spe-
cial case of albedo (ρvol), we found that converting it to reflectance
with a simple analytic model [FPWW89] improves our results by
providing increased resolution of albedo values close to 1. Even
when a feature is turned off, we apply the transform on its default
value before forwarding it to the network. We only use one empir-
ically designed transform for each feature and leave the study of
identifying useful transforms to future work.

6.4. Complete pipeline

In this section, we provide details of the complete pipeline of our
method. All experiments were performed on a machine with an
NVIDIA RTX 2080Ti (11GB) and an Intel Xeon E5-2630v4 CPU
(64GB) limited to 8 to 16 cores. Though most of the computation is
performed on the GPU, the CPU cores are responsible for the data
loading pipeline, which becomes a bottleneck with the full feature
set P.

We first train the probe denoiser on all features (P) where feature
dropout with probability 0.5 is applied on the volume features. The
approximate training time until 1.8M steps for the three denoisers
is 2 days (KP-H21), 3 days (DP-H20), and 5 days (KP-V18).

We proceed to run the candidate feature set construction algo-
rithm described in Section 5.2, with SMAPE as our error metric on
the set P with all 29 features (Table 1) and our selection set with 93
images from 31 scenes with 3 different sample count levels each.
The runtime of our progressive selection method also depends on
the inference time of the probe denoiser. Specifically for comput-
ing all candidate feature sets it requires approximately 2.5 hours for
KP-H21, 3 hours for DP-H20 and about 4 hours for KP-V18. Given
the resulting sequence of candidate feature sets (P̄) we select the
approximate optimal feature sets S̃⋆ with three values for quality
threshold ξ (Equation (10)), namely ξ ∈ {90%,99%,100%}. Fi-
nally, specialized denoisers are trained without feature dropout on
the respective selected feature sets S̃⋆, following the same training
schedule as the probe denoisers and taking a similar amount of time
as data loading is the bottleneck.

7. Results

In this section, we show the experimental justification of our pro-
posed method. We start with an evaluation of the probe denoiser,
showing its ability to predict the quality of feature sets reliably
(Section 7.1). Then we proceed to demonstrate that, with the help
of the probe denoiser, our progressive construction algorithm can
result in superior denoising quality compared to a model-agnostic
feature selection method that does not consider the denoiser (Sec-
tion 7.2). Finally, we provide qualitative and quantitative compar-
isons to demonstrate the effectiveness of our proposed volume-
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Figure 6: We evaluate the stability of our probe denoiser train-
ing and feature selection methods by repeating the probe denoiser
training and feature selection four times with different seeds. We
evaluate the predictive loss of candidate feature sets produced by
all differently trained probe denoisers on one of them (differently
oriented triangles). The best feature sets reported by this probe
denoiser is connected by the blue dashed line, and we also run a
greedy search for the worst feature sets, shown as the red dashed
line. The distance between them (gray lines) thus indicate the range
of the performance of possible feature sets at each size. Even
though the selected sets are not identical across different probe
denoisers, they lead to similar predictive losses during selection,
indicating the stability of our method under repetitions. See Sec-
tion 7.1.2 for a detailed discussion.

related feature sets on the denoising task (Section 7.3) for various
state-of-the-art denoising architectures.

7.1. Probe denoiser evaluation

We evaluate the predictive power and stability of our probe denoiser
as described in Section 5.1 with two experiments.

7.1.1. Effect of feature dropout

For a denoiser to be used as an oracle to predict the quality of dif-
ferent feature sets, its predictive loss (i.e., Equation (9)) on the se-
lection set Ds should highly correlate with the specialization loss
on the validation set Dv after retraining a denoiser using the se-
lected feature sets. We retrain multiple times specialized denoisers
(KP-H21) for these experiments on various subsets from a set with
18 features. We intentionally use a smaller feature set with 18 fea-
tures and a denoiser that trains quickly to allow more training runs
with the same compute budget. To validate that our probe denoiser
is a suitable oracle, we measure the correlation between the spe-
cialization loss and the probe denoiser’s predictive loss. We also
evaluate the predictive loss of the same feature subsets with a de-
noiser trained with all 18 features always present (no-dropout).

In Figure 4, we display a scatter plot of the predictive loss (x-
axis) against the final specialization loss (y-axis) for a denoiser that
does not use feature dropout during training (left) and our probe
denoiser (right). We evaluate these losses on the same feature sets
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for both denoisers. Despite the noise due to retraining which we
indicate by a shaded area, we can measure a higher correlation be-
tween the predictive loss and specialization loss for the probe de-
noiser (r = 0.94) over the no-dropout denoiser (r = 0.84). Also,
note how the no-dropout denoiser reports abnormally high predic-
tive loss values (15−30) on small feature sets, validating the pres-
ence of the out-of-distribution problem, which motivated our need
for the probe denoiser (Section 5.1). These findings support our de-
cision to select feature sets based on their performance on a probe
denoiser.

7.1.2. Probe denoiser and feature selection stability

In Figure 6 we demonstrate that the probe denoisers are relatively
stable to random fluctuation that can happen when training multi-
ple sibling runs, i.e., runs that only differ in the random seed. More
specifically, we train four sibling runs for the KP-H21 probe de-
noiser with a total of 18 features and construct candidate feature
sets for all sizes and probe denoisers using our feature selection
process. Even though their candidate feature sets can disagree, we
show that these feature sets yield similar predictive losses and are
equally good candidates for specialization.

We evaluate the predictive loss of candidate feature sets pro-
duced by all different probe denoiser siblings on one of them to
demonstrate the stability of the process. To provide context with
the range of the predictive loss of different feature sets, we use a
probe denoiser to greedily select the worst feature sets of each size
and mark the range from the best to worst predictive losses with a
vertical black bar. Even though different probe denoisers can con-
struct different candidate feature sets, they yield similar predictive
losses at each size. This result indicates that the probe denoiser’s
behavior is stable under repetitions.

7.2. Comparing candidate feature set construction methods

We compare our candidate feature set construction method, as de-
scribed in Section 5.2, with other feature set construction methods.

The first method is minimum redundancy maximum relevance
(mRMR) [DP03], which determines the usefulness of features by
examining the input and reference images without any knowledge
of the denoiser. MRMR ranks the feature according to redundancy
and relevance metrics, minimizing the former and maximizing the
latter. We use the linear correlation between a feature and the ref-
erence as the relevance metric and the average linear correlation
between a feature and already selected features as the redundancy
metric. Similar to our average denoising metrics, we compute the
correlation first for each image over all pixels and then average
across all images in the selection setDs. The second is independent
construction, which only considers single features’ effects without
any combinations. It essentially ranks the single features from best
to worst and constructs candidate feature sets of size i using the fea-
tures ranked top i in isolation. The third is a variation of our method
used in Section 7.1.1 that the same feature selection algorithm but
instead of a probe denoiser, it uses a denoiser trained without fea-
ture dropout. The fourth alternative method is performing a brute-
force search that evaluates all possible feature sets using our probe
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Figure 7: We show the predictive loss of their candidate feature
sets on a probe denoiser for various feature set construction meth-
ods. The no-dropout construction method (purple) uses our pro-
gressive construction algorithm on a denoiser trained without fea-
ture dropout. The independent construction method (green) uses
a probe denoiser but does not consider feature interactions. Both
methods lead to suboptimal feature sets. The mRMR (red) algo-
rithm only examines the input and reference data and starts with a
choice of features similar to the reference, but they do not improve
denoising. Our construction method (blue), which uses the probe
denoiser and a progressive construction algorithm, results in the
lowest predictive error on Ds for all feature set sizes and matches
the brute force approach (orange) up to 5 features.

denoiser. Due to this method’s excessive computation time require-
ments, we were only able to compute candidate feature sets with up
to 5 features.

From a set of 18 features, we collect the candidate feature sets
created by these methods for the KP-H21 architecture and evaluate
the predictive loss of a probe denoiser on them. We plot these re-
sults in Figure 7. Ideally, we would perform these comparisons on
specialized denoisers trained with each method’s resulting candi-
date feature sets. As also observed in Figure 4, there is significant
noise when retraining specialized denoisers. To mitigate this noise,
we would need to retrain many training runs and average their de-
noising error. Instead, based on our observations in Section 7.1 re-
garding the predictive power and stability of our probe denoiser,
we use that as our oracle to predict the final quality of feature sets
resulting from each method.

We observe a perfect match between our greedy method (blue)
and the brute force (orange) for the first five features. Our method
could compute all candidate feature sets in 50 minutes, whereas the
brute force method required 2.6 days for the first 5 features and
would require 65 days for all 18 features. Note the diminishing re-
turns as the selected feature set size increases, which indicates even
if the greedy approach not able to find the exact globally optimal
feature set after 5 features, we do not expect it to have a dramatic
impact in denoising quality.

For the other methods, mRMR (red) starts with a terrible selec-
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Metrics (×10−3)
SMAPE DSSIM

Denoiser Features |S| Dv Dt Dv Dt

KP-V18 Baseline 0 9.09 8.07 29.6 11.8
Ours (90%) 6 8.51 6.64 27.3 7.46
Ours (99%) 14 8.47 6.56 27.1 7.13
Ours (100%) 22 8.48 6.62 27.1 7.19
All 29 8.47 6.55 27.1 7.08

DP-H20 Baseline 10 9.21 7.60 29.7 9.68
Ours (90%) 4 8.97 7.34 29.2 9.15
Ours (99%) 8 8.92 7.14 29.3 9.10
Ours (100%) 13 8.94 7.13 28.9 8.77
All 29 9.11 7.64 29.3 9.60

KP-H21 Baseline 6 9.22 7.73 29.0 9.55
Ours (90%) 4 9.23 7.54 29.0 9.42
Ours (99%) 11 9.12 7.37 28.8 9.08
Ours (100%) 15 9.15 7.36 28.7 8.97
All 29 9.11 7.30 28.7 8.90

Table 2: For each of the three denoiser architectures, we report the
metrics from three specialized denoisers from our method, on the
feature sets predicted to give 90%, 99%, and 100% of the benefit
over using no features. We compare these denoisers with the ones
specialized on the baseline feature set and all-feature set, and re-
port their SMAPE and DSSIM errors averaged respectively over
the validation (Dv) and test (Dt ) datasets. Our selected feature sets
consistently improve the denoising quality over the baseline feature
sets, and lead to comparable denoising error when compared with
the all-feature denoisers while requiring a lot less features.

tion as it chooses multiple scattering and single scattering initially
as they correlate well with the reference, but as indicated by the
probe denoiser, they do not help with the denoising task. In con-
trast, the independent selection (green) manages to select the best
performing feature at the beginning but quickly falls behind as it
cannot account for redundancy between features. Finally, we also
observe the suboptimal performance of using a denoiser trained
without dropout (purple) as an oracle compared to our probe de-
noiser. Even though the discrepancy between methods diminishes
for a high relative number of features, we note that no other approx-
imate method was able to outperform our feature selection method
on this task.

7.3. Feature set selection with different architectures

For three denoiser architectures, KP-H21, DP-H20, and KP-V18, we
run our selection pipeline on the 29-feature set to identify near-
optimal feature subsets. In Figure 5, we show the feature selection
results by plotting the features’ relative gain to the predictive loss
reduction in the order of selection, where the relative quality gain
is computed according to Equation (10). We then use ξ = 90% as
the quality criterion to select a small feature set that our method
predicts to reap most of the benefit and another ξ = 99% to select
a set that is moderately sized but near to the predicted optimal set.
The figure shows that the feature set to reach 90% relative quality
gain contains the same 4 features for KP-H21 and DP-H20, despite
different ordering, but KP-V18 reports a different set with 6 fea-

tures. For 99% of the benefit, the three probe denoisers predict sets
with 8 (DP-H20), 11 (KP-H21) and 14 (KP-V18) features. We also
keep the candidate feature sets with the lowest predictive loss (i.e.,
ξ = 100%), which are also different for the three denoisers. This
shows the possibility to identify commonly useful features for dif-
ferent denoiser architectures, even though the selection sequence
for each architecture most likely will not be identical. Also, note
that KP-V18 reports a positive contribution to denoising error for
up to 22 features, while the other two report optimal feature sets
much earlier. This is potentially due to the difference in network
capacity (see Section 6.2), as we believe that larger capacity net-
works will be able to make use of more features.

After selecting from the candidate feature sets, we specialize
each denoiser architecture on the respective selected feature sets.
In Table 2 we compare the error of specialized denoisers on the
randomized validation set Dv and the hand-picked test set Dt .

Overall, we observe that our method’s selected volumetric fea-
ture sets yield lower errors than the baselines on both metrics for
Dt and DSSIM on Dv for all three architectures, and lead to lower
SMAPE onDv in the majority of cases. Notably, the 99% sets con-
tain less than half of the complete set of hand-crafted features and
can even slightly outperform denoisers trained on the entire set
(All) in some cases, highlighting the redundancies within the 29
features. Furthermore, with the help of our selection method, we
can identify feature sets (Ours 90%) with less than half the size
of the best-performing sets that, in most cases, are still improv-
ing over the baselines. Still interesting is the fact that, when using
all features, DP-H20 degrades significantly, while the two kernel-
predicting denoisers do not degrade as much. This could support
the choice of kernel-predicting approaches for denoising as they
seem more capable of dealing with redundant features.

We provide a selection of visual volume denoising comparisons
from our test set Dt in Figure 8. We recommend viewing these
results on a screen. These comparisons demonstrate the quality im-
provements with a set of features identified by our method over the
original volumetric features proposed by each baseline denoiser.
Overall, we observe increased volumetric details in heterogeneous
volumes (top and bottom row) both on smoke and clouds. For ho-
mogeneous volumes (middle row), the features help reconstruct
silhouettes of objects in the scene better. Accurate reconstructions
of these silhouettes are essential for preserving object edges when
composed with the surface component.

The baseline with the most significant improvement is KP-V18,
as it was originally proposed without any volumetric features. With
the addition of 14 features, we observe a significant increase in
denoising quality compared to the baseline. In our comparisons,
when augmented with our feature set, this offline denoiser yields
the highest overall denoising quality. For DP-H20 and KP-H21 we
observe a more moderate increase in the denoising quality when
using our 99% feature sets, compared to the original feature sets,
which is still visually discernible.

Finally, in Figure 9 we provide visual comparisons between de-
noisers specialized on our 99% feature sets and ones trained on all
features. Despite using less than half of all the features, denoisers
trained with our feature sets can perform on par with all-feature
denoisers.
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KP-H21 DP-H20 KP-V18
KP-V18-Ours (99%) Input Authors’ Ours (99%) Authors’ Ours (99%) Baseline Ours (99%) Reference

Smoke B
Input: 64spp

SMAPE 0.00825 0.00796 0.00840 0.00800 0.01016 0.00729
DSSIM 0.01478 0.01393 0.01543 0.01432 0.02136 0.01147

Foggy bathroom
Input: 256spp

SMAPE 0.00618 0.00615 0.00620 0.00601 0.00596 0.00580
DSSIM 0.00809 0.00765 0.00807 0.00732 0.00774 0.00695

Cloud C
Input: 64spp

SMAPE 0.00509 0.00514 0.00532 0.00496 0.00491 0.00403
DSSIM 0.01265 0.01232 0.01275 0.01134 0.01194 0.00697

Figure 8: Using our selected feature sets improves the denoising quality compared to baselines, which either use no features (KP-V18) or
author-proposed features (DP-H20) and (KP-H21). Our selected set is able to recover finer details in a variety of volumetric effects. The
exposure of some crops is adjusted to better illustrate the results. © Disney / Pixar

8. Limitations and Future Work

More advanced feature selection method. Our proposed pipeline
includes a greedy feature selection method that only observes the
effect of one additional feature at each step. The greedy construc-
tion method captures redundancies between the features, which
plays an important role in denoising quality, but in principle it could
overlook features that only perform well in combination but not in
isolation. More sophisticated feature selection approaches, such as
ones based on Shapley values [CRD05, AOG19], might be favor-
able in this situation as they consider the effect of additional feature
sets with more than one element. Note that the computation cost of
these approaches is often much higher than our greedy approach,
and random sampling might be needed [CGT09]. Nevertheless, we

are not able to identify such interactions between features in our
current feature sets, but this could be the case for other feature sets
and tasks.

Aggregation over pixels. In the course of our study, we decided to
base our feature selection on per-feature-set loss values, which are
aggregated across pixels for each image and across images in the
selection set. This approach conforms with the convention of evalu-
ating denoisers’ performance by comparing their average denoising
error over a test set [XZW∗19, IFME21]. However, this might not
always be desirable for feature selection because features can pro-
vide significant benefits in small regions but not for most of the
pixels, resulting in low average contribution. Therefore, it might
be interesting to try other aggregation methods based on peak or
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KP-H21 DP-H20 KP-V18
KP-V18-Ours (99%) Input All Ours (99%) All Ours (99%) All Ours (99%) Reference

Horizontal Smoke
Input: 16spp

SMAPE 0.00586 0.00589 0.00578 0.00577 0.00542 0.00544
DSSIM 0.00592 0.00600 0.00596 0.00602 0.00526 0.00530

Figure 9: Our method can select feature sets that result in denoising quality similar to that of denoisers trained on the full 29-feature set for
all three architectures. By employing our method, we can save more than half of the features without losing quality. The exposure of some
crops is adjusted to better illustrate the results.

worst-case performance, e.g., by using quantiles over the error dis-
tributions.

Other volumetric effects. We consider three types of volumet-
ric effects in this work, namely ambient homogeneous, smoke
plumes, and clouds, as they appear frequently in production sce-
narios [FWKH17]. There are also other volumetric effects such
as volumetric emission (e.g., fire) and subsurface scattering (e.g.,
skin) [NGHJ18]. Denoisers for renderings of medical data have
also been studied [HMES20]. Our method is not special to par-
ticular types of volumetric effects, and in principle can be used to
discover good feature sets for denoising these effects as well.

Temporal denoising for volumetric effects. In this work, we
show that our selected auxiliary features effectively reduce the de-
noising error when used for denoising static images with volumet-
ric effects. Still, in production scenarios, it is often desirable to have
denoisers that work with sequences because of the high correlation
between neighboring frames [VRM∗18,CKS∗17]. It can be that the
most important features for temporal denoising are not identical to
the best features selected in this work. For example, the velocity
field can be an excellent candidate to indicate correspondences be-
tween neighboring frames inside volume regions. We leave the ex-
ploration of temporal information to future work and believe that
our feature selection pipeline can also be applied there.

Other reconstruction tasks. Though we select the best features
targeting the denoising task on volumetric scenes, our proposed
feature set can serve as a good starting point for other rendering-
related reconstruction tasks on volumetric effects, such as super-
resolution, adaptive sampling, and frame interpolation. Moreover,
the proposed feature selection pipeline provides a principled ap-
proach to selecting the most useful features for the task and can be
employed for various tasks where auxiliary features are used. For
example, we can expand the set of auxiliary features for surfaces,
e.g., with virtual flash image [MJL∗13], or gradient-domain fea-
tures [MKD∗16]. As these features are often expensive to compute,
their computation cost could also be considered in a cost-benefit
tradeoff.

9. Conclusion

In this work, we propose volumetric feature sets that improve the
quality of various state-of-the-art denoisers on volumetric render-
ings. Improvements in the denoising quality of volumes can trans-
late to significant savings for production volume rendering sce-
narios with massive computation requirements. Moreover, we de-
signed a pipeline for selecting the most helpful set of auxiliary fea-
tures by using a probe denoiser with feature dropout to alleviate the
need for training multiple denoisers during feature selection. We
have experimentally demonstrated that our probe denoisers can be
good oracles for predicting the resulting denoising quality of vari-
ous feature sets. In addition, our proposed feature set construction
method accounts for redundancies with other features and outper-
forms other feature selection methods we tested for our task. We
demonstrate that from a broad spectrum of proposed features, our
method can identify feature sets that improve the denoising qual-
ity of state-of-the-art denoising methods compared to the original
feature sets proposed by the authors. On the other hand, for large-
scale production scenarios where the data storage is a significant
cost factor, we demonstrate that our method can help by identify-
ing significantly pruned subsets that are as effective as the entire
set. Finally, we believe that our proposed feature selection process
is not limited to volumetric features and that it opens the door for a
more principled study of the impact of features on other tasks.
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Appendix A: Pseudo code

In Algorithm 1, we provide pseudo code of our greedy candidate
feature set construction algorithm.

Algorithm 1: Greedy construction
Input: P, set of all features

Ds, selection dataset
g̃, trained probe denoiser
ε, loss function

Output: P̄ = {S0,S1, . . . ,S|P|}, candidate feature sets at
each size
L̄ = {ℓ0, ℓ1, . . . , ℓ|P|}, losses of each candidate
feature set

/* Define mean loss over selection dataset

(Eq. 9). */

ℓ(S) := 1
|Ds| ∑(I,Ī)∈Ds

ε
(
g̃(I,S), Ī

)
/* Initialize with empty feature set */

S0←∅
ℓ0← ℓ(S0)
P̄←{S0}
L̄←{ℓ0}

/* Gradually expand the candidate feature

sets */

for i← 1,2, . . . , |P| do
// Select the best one additional feature

L←{}
for p ∈ P\Si−1 do

ℓ′← ℓ(Si−1∪{p})
L.append

(
(ℓ′, p)

)
end
(ℓi, pi)←min(L)
Si← Si−1∪{pi}
P̄.append(Si)
L̄.append(ℓi)

end
return P̄, L̄
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