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Figure 1. Our method achieves state-of-the-art results for frame interpolation. It produces sharp textures as highlighted on both live

action (left) and rendered (right [15]) content. In addition to the interpolated frame, we estimate error maps that are helpful for quality

checks in video production tools. More importantly, for rendered content it can be used to determine a subset of patches to render for the

middle frame, which are then leveraged by our model to achieve production quality level results for a fraction of the rendering cost.

Abstract

Video frame interpolation has seen important progress

in recent years, thanks to developments in several direc-

tions. Some works leverage better optical flow meth-

ods with improved splatting strategies or additional cues

from depth, while others have investigated alternative ap-

proaches through direct predictions or transformers. Still,

the problem remains unsolved in more challenging condi-

tions such as complex lighting or large motion.

In this work, we are bridging the gap towards video pro-

duction with a novel transformer-based interpolation net-

work architecture capable of estimating the expected er-

ror together with the interpolated frame. This offers sev-
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eral advantages that are of key importance for frame inter-

polation usage: First, we obtained improved visual qual-

ity over several datasets. The improvement in terms of

quality is also clearly demonstrated through a user study.

Second, our method estimates error maps for the interpo-

lated frame, which are essential for real-life applications

on longer video sequences where problematic frames need

to be flagged. Finally, for rendered content a partial render-

ing pass of the intermediate frame, guided by the predicted

error, can be utilized during the interpolation to generate a

new frame of superior quality. Through this error estima-

tion, our method can produce even higher-quality interme-

diate frames using only a fraction of the time compared to

a full rendering.



1. Introduction

Video frame interpolation (VFI) is a classical video pro-

cessing problem where the aim is to restore an intermedi-

ate frame in a given video sequence. This temporal inbe-

tweening enables many practical applications, such as video

editing [38], novel-view synthesis [26], video retiming, and

slow motion generation [25]. Recent advances in VFI meth-

ods [13,24,28,30,37,48,53,55] have been continuously im-

proving the interpolation quality, but the problem remains

open due to complex lighting effects and large motion that

are ubiquitous in real-life videos and can introduce severe

artifacts for the existing methods.

We propose a transformer-based VFI architecture that

processes both source and target frames in a unified frame-

work and compensates motion through a tightly integrated

optical flow estimation and cross-backward warping. Our

model improves over the current state-of-the-art as sup-

ported by our extensive quantitative experiments and a user

study.

Besides the improvements in terms of results, our model

also predicts the interpolation uncertainty similar to ap-

proaches for artifact detection [4, 49] and adaptive sam-

pling [29, 60]. This is of key importance for usage in a

production context, where working with long sequences re-

quires a way to automatically identify problematic frames.

Uncertainty estimation also benefits Computer Graphics

(CG) applications, as we use it to determine which frame

patches do not have sufficient quality and optionally mark

them for rendering. Thanks to our novel transformer-based

model, the rendered patches from the middle frame nat-

urally fit in the same unified VFI framework, achieving

high quality levels at the fraction of the cost of rendering

the full middle frame. Our paradigm is more compatible

with current production renderers than CG specialized VFI

works [5, 21, 66] which require the generation of specific

G-buffers for the keyframes and the intermediate frame.

In summary, our contributions are as follows.

• We introduce a novel motion-based VFI method, that

treats input and target frames in the same manner

through a transformer-based architecture using masks.

• Our model achieves state-of-the-art performance as

shown both in quantitative experiments and a user

study.

• We perform output’s uncertainty estimation subtask,

which can be particularly beneficial for rendered con-

tent to achieve even better quality results.

2. Related work

While classical approaches to frame interpolation relied

on optical flow and image warping [2, 52, 62], they have

been surpassed by learning-based methods. We start our

discussion with a short review of direct, phase and kernel

based prediction methods, before going into more details

with approaches using motion or transformers.

Direct methods were proposed using purely convolu-

tional architectures [27, 36] or combining channel attention

with a deep residual network [13]. Alternatively, Meyer et

al. [40] show a phase-based method based on the idea that

phase-shifts can be used to represent motion, and later ex-

tended with a learning-based component [39].

Kernel-based methods, as originally introduced by

Niklaus et al. [44], aim to predict kernels for all pixels

that are applied in a convolutional layer. Offset prediction

has been used [9, 30] to reduce the necessary kernel size

to handle large motion, making those methods conceptu-

ally more similar to motion-based ones. Various other ex-

tensions have been proposed, including prediction of sep-

arable kernels [45, 46], time input for arbitrary frame in-

terpolation [10], a multi-scale architecture including cost

volumes [8], multi-stage networks [20], different back-

bones [16, 54], and improving performance [50].

Most motion-based methods build on the work of op-

tical flow estimation methods [18, 57, 61]. Some methods

use the estimated motion between the input frames to for-

ward splat them [23, 42, 43], while others aim to find the

flow from the intermediate frame to the reference frames,

allowing for an easy backward warping, either by estimat-

ing the flows directly [24, 28, 47, 48, 53], through other

means [3, 25, 31, 41, 55], or combine both forward and

backward warping approaches [17]. While most methods

assume linear motion between the keyframes, others es-

timate non-linear motion by using more than two input

frames [12, 19, 33, 34, 63] or with a learned prior [48].

Various other approaches have been proposed to im-

prove estimation of large motion by treating small and large

motion with equal priority [53], dynamically adapting the

flow estimation to the motion magnitude and image reso-

lution [55], or better strategies for feature propagation [1].

We adopt equal motion treatment by extending the scale-

agnostic feature extraction [53, 58]. Most recently, CG spe-

cific frame interpolation algorithms have been introduced

for 2D animation [56] and 3D rendering [5].

Error estimation of the optical flow is used by Chi et

al. [11] for specific treatment, proposing predefined fixed

models for the various error levels. This is different from

our method, that learns to predict perceptual and L2-based

error maps for final interpolation result.

With the introduction of the transformer [59] and its

adaptation to vision tasks [22], several transformer-based

frame interpolation approaches have been proposed. Liu et

al. [35] use a transformer architecture that incorporates

convolutions inside attention layers, but does not include

any motion compensation. VFIformer [37] uses cross-scale
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Figure 2. After extracting a feature pyramid {F l
t} (Deep Feature Extraction) for each of the three frames (left) we pass a latent

representation Wt along with a forward flow estimate Ft for each frame t through multiple levels of our reconstruction (center). At each

level, after merging with the extracted features (Feature Merging), we update the latent representation using the initial flow estimate

(Transformer Fusion I), followed by an update of the flow estimate and context vector from the new features (Flow/Context Residual)

and another latent representation update using the new features and flows (Transformer Fusion II) before upsampling flow and features

for the next level (Upsampling). Finally, we compute the interpolated Frame Î1 and an estimate of the error Ê1 (top right).

window attention after warping the feature representations

and TTVFI [32] uses an inconsistent region map inside a

trajectory aware attention module. Both methods, however,

cannot handle inputs of the middle frame and require an ex-

tra training of the upstream flow network, whereas our flow

estimation is tightly integrated with the transformer fusion

and trained end-to-end.

3. Method

The goal of our method is to interpolate two keyframes

I0, I2 and find the intermediate frame Î1 along with an es-

timate of the error Ê1. Subsequently, we analyze the er-

ror map and check if certain areas of the frame need to

be rendered as we expect them to have insufficient qual-

ity. We then pass those additional masked inputs I1 to the

network along with the keyframes to get a final interpolated

frame. Note that our method is well equipped to handle the

common problem of two-frame interpolation without any

changes to the architecture or training and that the addi-

tional inputs are entirely optional, i.e. we simply set I1 = 0.

3.1. Interpolation network

Motivated by our goal to be able to handle arbitrary

inputs, the overall architecture of our network is inspired

by transformer architectures. This means that, opposed

to common two-frame interpolation methods, there is little

distinction within the network between the keyframes and

the target frame. Instead, we equip each frame with a binary

mask Mt indicating valid inputs to guide the interpolation.

An overview of our method is given in Fig. 2.

We first extract a feature pyramid representation

{F l
t}l∈0,...,6 for each of the inputs and process them in

a coarse-to-fine manner with the same update blocks that

share weights for the bottom 5 resolutions.

In each of the levels, we first merge the latent feature

representations W l,i
t with the respective input feature pyra-

mid level. After that, they are updated in two transformer

fusion blocks and a flow/context residual block in between

that additionally updates the running flow estimates F
l,i
t ,

denoting the optical flow from t to t+ 1. Finally, the latent

feature representations and flows are upsampled for pro-

cessing in the next level.

In order to reduce the memory and compute costs, the

processing of the topmost level is treated differently and

consists of two convolutional layers.

Deep feature extraction. Our feature extraction is in-

spired by that of Reda et al. [53] to enable weight sharing

on the lower levels of the reconstruction. We expand their

idea by using a U-Net architecture instead of the original

top-down approach. The reasoning behind this choice is

that it more easily enables the network to capture semanti-

cally meaningful features on the upper levels of the pyramid

without the need for many convolutional layers with large

kernels or dilation.

First, we build image I lt and mask M l
t pyramids, where

image/mask l is downsampled by a factor of 2 to obtain

level l + 1. We concatenate both and pass them through a

U-Net as illustrated in Fig. 3, keeping the last three layers

as features. Finally, we concatenate all input and feature

tensors of the same spatial resolution to build input feature

pyramids {F l
t}l∈0,...,6 for t ∈ {0, 1, 2}. Note that all fea-

tures from level two onward will be semantically similar
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Figure 3. Illustration of our deep feature extraction module. The

same U-Net is used to process the original inputs and all down-

sampled images/masks.

and thus we can use weight sharing for all following mod-

ules on those levels.

Initialization and feature merging. On the lowest level

we initialize the optical flows F
6,0
t as 0 and set the latent

feature representations W6,0
t to a learned vector that is spa-

tially repeated.

As the first step on each level, the upsampled pixel-

wise features of the previous level, or the initial values,

W l,0
t ∈ R

Dl are merged with their respective feature pyra-

mid features F l
t ∈ R

Cl , where C0 := 52, C1 := 148,

Ci∈{2..6} := 340, and Dl := Cl + 15. Therefore, we only

merge the first Cl channels of W l,0
t with F l

t while keeping

the remaining 15 channels unaffected:

W l,1
t =

[

M l
tF

l
t + (1−M l

t)
[

W l,0
t

]

0..Cl−1
[

W l,0
t

]

Cl..Dl−1

]

(1)

The purpose of the directly passed through channels is

similar to explicit occlusion maps employed by other meth-

ods, but we leave the choice on how to best use those addi-

tional channels to be learned by the network.

Transformer fusion. To update the latent feature rep-

resentation of each frame t0 ∈ {0, 1, 2}, we use cross-

backward warping to align the features of all other frames

ti 6= t0 by rescaling the current flow estimate at stage s as

W l,s
ti→t0

(x, y) = W l,s
ti

((t0 − ti)F
l,s
ti

(x, y)) (2)

for spatial indices (x, y) and using bilinear interpola-

tion for non-integer coordinates. We treat W l,s
t0

(x, y),
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1→2

Wl,s
2
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Figure 4. The transformer fusion module consists of two MACE

blocks applied to all triplets after the cross backward warping.

W l,s
t1→t0

(x, y), and W l,s
t2→t0

(x, y) as tokens processed by

the multihead attention module. Specifically, for each head

i the per-pixel query, key and value tensors are computed as

Qi =W
Q
i W

l,s
t0

(3)

Ki =W
K
i

[

W l,s
t1→t0

,W l,s
t2→t0

]

(4)

Vi =W
V
i

[

W l,s
t1→t0

,W l,s
t2→t0

]

(5)

and the softmax of the query/key multiplication and the

residual update from the weighted sum of the values are

computed as in the original transformer [59].

Since our latent feature representations have an inher-

ent spatial structure, we opt to replace the linear layers of

the standard transformer with convolutional residual layers.

We use two convolutions with kernel size 3, a dropout layer

before and after the second convolution and a GELU ac-

tivation after the first. In addition, we use layer normal-

ization after the multihead attention and the convolutional

layers, as is common in transformer architectures. We dub

those modules multihead-attention convolutional encoders

(MACE) and stack two of them for all transformer fusion

modules as shown in Fig. 4 except for the second module

on the second layer, which uses four MACE modules.

Flow residual. Initial tests suggested that a transformer

module, as used for the feature updates, is a poor choice for

updating the current flow estimate. Instead, we use a convo-

lutional module for this task. After cross-backward warping

the updated features to the reference frame, we pass each

pair (W l,s
t ,W l,s

v→t) through a series of convolutions. The

output contains the following tensors (stacked in channel

dimension): Weight αv , flow offset ∆F
v , and context resid-

ual ∆W
v (We drop the level, time, and step indices of those
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Figure 5. Visual comparison with other methods on rendered movie samples from [6, 7, 14, 15] using only keyframe inputs and no extra

rendered patch.

for ease of notation). We apply softmax on the weights and

update the flows and context features as

F
l,3
t = F

l,2
t +

∑

v e
αv 1

v−t
∆F

v
∑

v e
αv

(6)

[

W l,3
t

]

Cl..Dl−1
=

[

W l,2
t

]

Cl..Dl−1
+

∑

v e
αv∆W

v
∑

v e
αv

. (7)

Note how ∆F
v needs to be rescaled to a forward flow for the

update of F
l,3
t .

Miscellaneous. For the upsampling of the flows we use

parameter-free bilinear interpolation by a scaling factor of

two (Denoted by · ↑2x) as

F
l,0
t = 2F l+1,4

t ↑2x. (8)

The feature maps are passed through a resize convolu-

tion same as [53] to avoid checkerboard artifacts, i.e. a

nearest-neighbor upsampling followed by a convolutional

layer with kernel size 2 and Dl output feature channels.

For the final output, we pass the latent representations

W0
t together with the extracted features F0

t through two

convolutional layers with kernel sizes 3 and 1 respectively.

The final output has five channels of which the first three

form the color image Ît and the others correspond to the

color error Êc
t and the perceptual error Ê

p
t .

3.2. Uncertainty estimation

To train the error outputs Ê of the network we compute

the target error maps as follows. Let IGT
t be the ground

truth frame at time t. We compute the error targets or

‘ground truth’ as

Ec
t = ‖IGT

t − Ît‖2 (9)

where ‖·‖2 denotes the L2 norm along the channel dimen-

sion. The perceptual error E
p
t follows the computation of

LPIPS [65] without the spatial averaging. In order to pre-

vent a detrimental influence of the error loss computations,

we do not propagate gradients from the error map computa-

tions to the color output and only allow gradient flow to the

error prediction of the network.

We want to use the error estimates Ê to find regions of

the target frame that are expected to have insufficient qual-

ity, so we can render those areas and pass them to the net-

work in a second pass to improve the quality. Assuming

that most common renderers should be able to operate on

a subset of rectangular tiles without a significant overhead,

we average the error estimates for those tiles for which we

chose a size of 16×16 pixels. Given a fixed budget for each

frame, we simply select the tiles with the highest expected

error and use them in the second interpolation pass.

3.3. Implementation and training

We follow common practice and train our network on

triplets from the training set of Vimeo-90K [64]. Of the

51313 triplets of resolution 448× 256 we set aside 802 for

validation. For data augmentation we randomly crop win-

dows of size 256, apply random spatial and temporal flip-

ping and rotations in multiples of 90◦. We use empty mid-



dle frames for 50% of the training samples (i.e. I1 = 0)

and otherwise retain between 1

480
and 1

4
of 16 × 16 tiles as

additional input (random at first and based on the predicted

error for fine-tuning).

We train our L1 variant for 2.1M iterations with batch

size 4 using the Adam optimizer and L1 loss for the color

output with weight 1.0 and for both error estimates with

weight 0.01 each. We start with a learning rate of 5× 10−5

and reduce it every 0.75M iterations by a factor of 0.464.

For our perceptual variant (LS), we follow the same

schedule, but add VGG and Style loss from [53] after 1.9M

iterations, at which point we set the weights of the color,

VGG and style loss as 10.0, 0.25 and 40. All losses are

computed only for the center frame outputs, as we assume

the keyframes are given and complete.

4. Experiments

We evaluate the performance of our method on the stan-

dard interpolation task (Sec. 4.1) and the efficiency of the

uncertainty guidance (Sec. 4.2). We close with an ablation

study (Sec. 4.3) and a discussion of limitations (Sec. 4.4).

Metrics. We measure our results using the common eval-

uation metrics peak signal-to-noise ratio (PSNR), structural

similarity (SSIM) and the perceptual LPIPS [65]. In addi-

tion, we perform a user study for a qualitative evaluation.

Methods. We compare our method against ABME [48],

AdaCoF [30], CAIN [13], FILM (L1 and LS) [53], IFRNet

(Large) [28], RIFE [24], VFIformer [37], and XVFI [55].

Datasets. For the evaluation on traditional frame inter-

polation we use Vimeo90K [64], DAVIS [51], and SNU-

FILM [13]. In addition, we evaluate on samples taken

from the publicly available animated short films Big Buck

Bunny [14], Cosmos Laundromat [7], Elephants Dream [6],

and Sintel [15]. See supplementary material for more de-

tails and instructions to reproduce those datasets.

4.1. Traditional frame interpolation

We quantitatively evaluate our method on common

datasets in Tab. 1 against the state of the art. Our L1 variant

shows the best PSNR and SSIM performance on all diffi-

culty levels of SNU-FILM with a PSNR improvement of

up to 0.21 dB in the hard category and a competitive per-

formance on Vimeo90k and DAVIS. Our LS version out-

performs all others in terms of LPIPS on all datasets except

DAVIS and demonstrates excellent PSNR and SSIM scores

within its category. We show the performance on the ani-

mated short films in Tab. 2 where each variant outperforms

all others within its category with respect to all metrics and

on all datasets except Cosmos Laundromat, where both nev-

ertheless yield good results.
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Figure 6. User study on the animated short film datasets. On av-

erage, users had a normal/strong preference for our method for

48/34% of all votes. For each of the short films, we use a repre-

sentative subset of 30 samples and collected a total of 3158 AB

comparisons from 69 participants, most of whom are computer

graphics/vision students and graduates.

Input I0 Input I2 E
p
1 (measured)

Initial Î1 Final Î1 Ê
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1 (predicted)
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Figure 7. The closing of the eyes proves difficult to interpolate,

but the expected perceptual error Ê
p
1 closely matches the true er-

ror E
p
1 . Passing the part of the middle frame indicated by the

white box to the network we get a significantly improved interpo-

lation. Numbers below are PSNR/LPIPS. Sample is from [15].
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Method Vimeo90k DAVIS
SNU-FILM Rank

Easy Medium Hard Extreme Count

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS 1st 2nd

ABME ’21 36.22 0.9808 0.0217 26.47 0.8601 0.1481 39.74 0.9904 0.0228 35.85 0.9792 0.0380 30.62 0.9367 0.0668 25.44 0.8642 0.1271 0 1

AdaCoF ’20 34.38 0.9717 0.0309 25.10 0.8221 0.1550 38.85 0.9902 0.0202 35.07 0.9757 0.0372 29.47 0.9246 0.0764 24.31 0.8442 0.1493 0 0

FILM L1 ’22 36.06 0.9804 0.0201 27.31 0.8784 0.0846 40.20 0.9909 0.0186 36.01 0.9795 0.0321 30.49 0.9359 0.0578 25.20 0.8601 0.1071 3 4

IFRNet ’22 36.20 0.9808 0.0193 27.46 0.8797 0.0926 40.10 0.9906 0.0210 36.12 0.9797 0.0328 30.63 0.9368 0.0570 25.26 0.8609 0.1138 2 1

RIFE ’22 35.61 0.9780 0.0227 26.70 0.8616 0.1126 40.06 0.9907 0.0188 35.72 0.9789 0.0325 30.09 0.9331 0.0665 24.84 0.8537 0.1395 0 0

VFIformer ’22 36.50 0.9816 0.0202 27.60 0.8829 0.0939 40.13 0.9907 0.0181 36.09 0.9799 0.0333 30.67 0.9378 0.0612 25.43 0.8643 0.1190 4 5

XVFI ’21 35.06 0.9758 0.0234 25.71 0.8409 0.1365 39.99 0.9905 0.0177 35.36 0.9779 0.0322 29.56 0.9271 0.0752 24.14 0.8446 0.1551 1 1

Ours L1 36.34 0.9814 0.0204 27.46 0.8803 0.0923 40.25 0.9909 0.0202 36.29 0.9803 0.0344 30.88 0.9386 0.0604 25.61 0.8655 0.1130 8 6

CAIN ’20 34.67 0.9733 0.0311 26.03 0.8415 0.1787 39.96 0.9903 0.0204 35.64 0.9779 0.0385 29.91 0.9295 0.0898 24.78 0.8510 0.1803 0 0

FILM LS ’22 35.87 0.9790 0.0132 27.00 0.8709 0.0679 40.15 0.9906 0.0121 35.90 0.9786 0.0215 30.33 0.9333 0.0434 25.07 0.8552 0.0899 3 15

Ours LS 36.08 0.9799 0.0126 27.03 0.8712 0.0706 40.10 0.9905 0.0118 36.07 0.9790 0.0209 30.61 0.9351 0.0420 25.35 0.8594 0.0864 15 3

Table 1. Live action VFI results. We list perceptually trained methods separately below the other methods. All metrics were obtained by

running the implementations provided by the authors.

Method Big Buck Bunny Cosmos Laundromat Elephants Dream Sintel Rank #

PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS 1st 2nd

ABME ’21 35.60 0.9790 0.0323 34.47 0.9400 0.0823 34.80 0.9647 0.0453 36.83 0.9673 0.0495 0 0

AdaCoF ’20 34.17 0.9740 0.0413 33.83 0.9328 0.0877 33.52 0.9551 0.0560 34.73 0.9550 0.0703 0 0

FILM L1 ’22 35.50 0.9795 0.0282 34.42 0.9397 0.0678 34.70 0.9652 0.0390 36.71 0.9672 0.0395 0 4

IFRNet ’22 35.46 0.9810 0.0292 34.25 0.9399 0.0674 34.58 0.9659 0.0419 36.27 0.9683 0.0462 1 0

RIFE ’22 35.05 0.9767 0.0354 34.32 0.9379 0.0808 34.54 0.9615 0.0484 36.33 0.9638 0.0521 0 0

VFIformer ’22 35.97 0.9811 0.0365 34.56 0.9415 0.0750 35.06 0.9675 0.0406 36.94 0.9694 0.0432 2 6

XVFI ’21 34.64 0.9757 0.0371 34.09 0.9356 0.0774 34.00 0.9595 0.0503 35.51 0.9605 0.0585 0 0

Ours L1 35.98 0.9815 0.0262 34.55 0.9407 0.0762 35.25 0.9680 0.0372 37.25 0.9697 0.0393 9 2

CAIN ’20 33.38 0.9733 0.0414 33.92 0.9369 0.0982 33.57 0.9571 0.0577 35.18 0.9586 0.0727 1 0

FILM LS ’22 35.31 0.9787 0.0239 34.20 0.9361 0.0389 34.67 0.9643 0.0314 36.65 0.9661 0.0316 1 11

Ours LS 35.73 0.9805 0.0218 34.08 0.9348 0.0347 35.05 0.9666 0.0295 37.01 0.9678 0.0302 10 1

Table 2. Animated short film VFI results. We list perceptually trained methods separately below the other methods. All metrics were

obtained by running the implementations provided by the authors. Only keyframes were used and no extra rendered patches.

To further support our claim that our method performs

well in terms of visual quality, we conduct an extensive user

study. We roughly follow the approach of [42] and asked

users to compare methods side by side, but included an op-

tion for a strong preference. We show one sample of each

film in Fig. 5 and give the results in Fig. 6. We refer to the

supplementary material for more details and results.

4.2. Uncertainty guided interpolation

We will demonstrate the advantages of our uncertainty

guidance in two experiments by analyzing the ability of our

error prediction to select appropriate patches in the inter-

polated image first, and secondly showing the quality im-

provement by passing additional patches to the network.

In Fig. 8 we demonstrate the PSNR improvement when

we use our error estimation to replace a fraction of 16×16

tiles of the interpolated output by the corresponding ground

truth. For comparison, we show the effect of random re-

placement as a baseline and a replacement of the tiles with

the highest measured error as the optimal strategy. Replac-

ing a quarter of the tiles, we achieve a PSNR improvement

between 6.99 and 9.98 dB, whereas random replacement

yields at most 1.27 dB.

Next we want to study the effect of additional inputs

on the network output in separation from the error predic-

tion. Therefore, we select tiles based on the true error and

pass them into the network. We also compute the metrics

when simply replacing the tiles in the interpolated output

for our own method as a baseline and a selection of others

for comparison. We plot the results in Fig. 9 which show

that the perceptual quality is improved beyond the baseline

approach.

We give a visual example of the full uncertainty guid-

ance approach in Fig. 7, which shows how the correct re-

gion with high error is identified and the interpolation is

improved by the additional inputs and refer to the supple-

mentary material for additional results.
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Figure 9. We show that the perceptual quality of the interpola-

tion achieved by passing additional inputs to our method is better

than the baseline approach of replacing the worst patches of the

interpolation based on color error. For reference, we also show

the curves when replacing the outputs of FILM LS and IFRNet,

the two follow up methods in terms of perceptual performance.

4.3. Ablation study

For an ablation study, we train different versions of our

network to show the effect of the error estimation, the deep

feature extraction and the shared frame processing. We use

the same training procedure and color based loss for all vari-

ants as described in Sec. 3.3. The variants without error es-

timation differ only in the last convolutional layer (3 instead

of 5 outputs) and do not use the error losses. The deep fea-

ture representation is replaced by the feature representation

proposed by Reda et al. [53] and versions without shared

frame processing only update the center frame in the trans-

former fusion and flow/context residual modules. The re-

sults are presented in Tab. 3 and highlight the advantages of

the deep feature extraction and the shared frame processing

for the interpolation quality.

4.4. Limitations

Very large motion or drastic visual changes can be

missed by the error prediction and are hence not recovered

through a second rendering pass. We show an example of

this in the supplementary material. While the shared frame

processing of the network through its transformer architec-

Erro
r Est.

Dee
p Fea

tures

Share
d Fram

es

Vimeo90k

PSNR SSIM

Animated

PSNR SSIM
✔ ✔ ✔ 36.34 0.9814 35.75 0.9650

✔ ✘ ✔ 36.28 0.9812 35.06 0.9633

✘ ✔ ✔ 36.31 0.9813 35.71 0.9652

✘ ✔ ✘ 35.82 0.9796 35.28 0.9634

✘ ✘ ✘ 35.76 0.9793 35.14 0.9629

Table 3. Ablation study of our network design. We averaged the

results of all animated films into a single score for each metric.

We can see that the shared frame processing boosts the perfor-

mance significantly, and the deep feature extraction adds a mod-

erate improvement from the baseline, but is essential when in-

terpolating animated content with the error estimation. The lat-

ter yields only a minor improvement, but its advantages demon-

strated in Sec. 4.2 are significant.

ture should in theory be capable of recognizing missing ob-

jects that are unlikely to be occluded, we surmise that the

current training dataset lacks sufficient examples to learn

such behavior.

Lastly, the current network is relatively slow and big.

E.g. VFIformer is on average 44.2% faster on Vimeo90k

and needs about 27.6% fewer parameters. This makes train-

ing with more than two input frames challenging, even

though the architecture supports it without any changes. We

hope to improve this in the future, which could allow for

better results through e.g. nonlinear flow estimates, or en-

able using our proposed architecture for other video pro-

cessing tasks such as deblurring and super-resolution.

5. Conclusion

In this work, we proposed a VFI method that incorpo-

rates optical flow motion compensation, deep feature ex-

traction, error estimation, and shared frame processing in

a transformer-based architecture. This enables our novel

uncertainty-guided approach for animated content produc-

tion, which can be used to greatly reduce the cost of ren-

dering while maintaining a high visual quality as we have

shown in our experiments. At the same time, our method

achieves state-of-the-art results for traditional frame inter-

polation as demonstrated on multiple common benchmarks,

and a superior visual quality confirmed by an extensive user

study. Since our training procedure using masked inputs is

similar to those of masked language models, a study of its

properties remains an interesting direction for future work.
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