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1 KERNEL-BASED FRAME SYNTHESIS

1.1 Numerically Stable Softmax Splatting

When performingmotion compensationwith forwardwarping, also

known as splatting, each pixel in the source image is added to the

target, by using weighted averaging to handle mapping ambiguities.

Formally, the value of the splatted image I, given an optical flow

map f , for an output location 𝒚 on the image plane Ω for softmax

splatting [Niklaus and Liu 2020] can be defined as

S(I) [𝒚] =

(

∑︁

𝒙∈Ω

𝑤 (𝒙,𝒚) · I[𝒙]

)

·

(

∑︁

𝒙∈Ω

𝑤 (𝒙,𝒚) + 𝜀

)−1

(1a)

𝑤 (𝒙,𝒚) = exp(Z[𝒙]) · 𝑘 (𝒙 + f [𝒙] −𝒚) (1b)

with a given per-pixel weighting/importance map Z and kernel 𝑘 ,

centered around the displacement location 𝒙 + f [𝒙]. As in [Briedis

et al. 2021], we use a bilinear kernel.

If implemented directly as described, it has several numerical

issues when the sum of weights
∑

𝒙∈Ω𝑤 (𝒙,𝒚) is very large or

small. For large weights the output is affected by the floating point

arithmetic round off error, for small weights, e.g. when the output
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Regular SplattingExpected

Effect on next convolution output

Splatting Results

[Niklaus et al. 2023] Ours

Figure 1: A toy example showing normalized softmax splat-

ting of a single pixel. A bilinear kernel is used thus the target

spans across 4 pixels (in yellow, offset has been increased for

the visualization). Second row is showing the reconstructed

image after applying a 3x3 uniform kernel while ignoring

boundary pixels with no contributions. It can be observed

that the prior methods can introduce color shift.

location is far from any displacement center and all𝑘 (∗) << 1, in ad-

dition to the round off error, the normalization has a non-negligible

value shift from the 𝜀 factor that is used to prevent division by zero.

Such color shifts are especially troublesome for our kernel-based

synthesis method, as the darkening breaks the linearity assumption

of the splatting step.

To resolve both issues, concurrently with [Niklaus et al. 2023]

and as commonly done in deep learning frameworks for the regular

softmax normalization [Goodfellow et al. 2016], we use the transla-

tional invariance property of softmax and subtract the maximum

weight. To further improve stability due to small splatting kernel

weights, we take logarithm of the kernel and move it inside the

exponentiation. With that, we rewrite Eq. 1 as
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Table 1: Model parameters

Module NFIRC [Briedis et al. 2021] Ours

Flow network 3.895𝑀 3.895𝑀

Full feature encoder 206𝐾 73𝐾

Partial feature encoder 20𝐾 13𝐾

Weight map estimator 118𝐾 118𝐾

GridNet 3.272𝑀 2.899𝑀

Key/Query estimation - 2.528𝐾

Total 7.543𝑀 7.002𝑀

S(I) [𝒚] =

(

∑︁

𝒙∈Ω

𝑤∗ (𝒙,𝒚) · I[𝒙]

)

·

(

∑︁

𝒙∈Ω

𝑤∗ (𝒙,𝒚) + 𝜀

)−1

(2a)

𝑤∗ (𝒙,𝒚) = exp(Z[𝒙] + log(𝑘 (𝒙 + f [𝒙] −𝒚)) −m(𝒚)) (2b)

m(𝒚) = max
𝒙∈Ω

(Z[𝒙] + log(𝑘 (𝒙 + f [𝒙] −𝒚))). (2c)

By subtracting the maximum term, it ensures that

max
𝒙∈Ω

𝑤∗ (𝒙,𝒚) = 𝑒𝑥𝑝 (0) = 1 (3a)

1 ≤
∑︁

𝒙∈Ω

𝑤∗ (𝒙,𝒚) ≤ |Ω | (3b)

for every pixel𝒚 with at least a single non-zero weight contribution,

making the division stable and unaffected by the 𝜀. In practice, it can

be implemented in two passes - in the first pass m(𝒚) is estimated

for each target pixel 𝒚 by performing maximum forward warping,

and in the second pass performing shifted softmax splatting. Unlike

the method of Niklaus et al. [2023], our method is stable even for

small splatting kernel coefficients as demonstrated in Figure 1.

1.2 Model Architecture

Baseline. For our baseline model, we follow [Briedis et al. 2021]

and refer the reader to the respective article for more details. We

replace the shifted 𝐸𝐿𝑈 [Clevert et al. 2016] weighting with softmax

splatting [Niklaus and Liu 2020], and use our kernel-based frame

synthesis approach. To compensate for the increased computations

at full level scale, we reduce the output dimensions of full and

partial context encoders to 16, 32, 64 and 8, 16, 32 channels with no

noticeable decrease in quality.

Query and Scaling Estimation. For the initial estimate, we use

a GridNet [Fourure et al. 2017] as in [Niklaus and Liu 2020] with

[32, 64, 96] channels on each input, and set the output number of

channels to 16. The queries and scalings are predicted from this

initial estimate with networks that consist of 𝒓𝒄12𝒓𝒄12 and two

𝒓𝒄8𝒓𝒄1, where 𝑅 is a ReLU activation and 𝒄𝑘 is 1 × 1 convolution

with 𝑘 output channels. Keys and biases are estimated with equal

networks to queries and keys, but with separate parameters.

Model Size. In Table 1 we show the number of parameters of the

different components compared to [Briedis et al. 2021]. The compact

model size allows to interpolate 4𝐾 content even on low-memory

hardware and it takes 2.53±0.01𝑠 and < 23𝐺𝐵 to interpolate a single

3840×2160 frame on a NVIDIA RTX A6000 GPU.

1.3 Extended linear to sRGB color transform

We use the following formula to perform the linear to extended

sRGB color transform for each of the color channels 𝑥 .

{

𝑙𝑖𝑛2𝑠𝑅𝐺𝐵(𝑥) if 𝑥 ≤ 1

0.38278 · log(𝑥 − 0.12922) + 1.05296 otherwise

1.4 Ablation Study Implementation Details

In this subsection we provide implementation details of our ablation

study variants.

Dynamic Kernel Prediction Methods. We simply set 𝑎𝑖𝒚 = 1, 𝑏𝑖𝒙 =

0, or rewrite the weight computation equation as

𝑤𝑖𝒚𝒙 = (𝑎𝑖𝒚 )
2 (q𝒚 )

𝑇 k𝑖𝒙 + 𝑏𝑖𝒙 , (4)

Direct Prediction. We use [Briedis et al. 2021] trained with our

extended sRGB color transform to support HDR images.

Affinity-based Kernel Prediction. To adapt the kernel estimation

using affinity of neural features [Işık et al. 2021] to frame interpo-

lation, we concatenate all top-level splatted features, same as the

inputs to the GridNet [Fourure et al. 2017] in our approach, and

use them as the input for a UNet [Ronneberger et al. 2015] with

the same size as in the denoising approach. Instead of predicting a

single set of features/bandwidth parameters f𝑘𝑥𝑦𝑡 , 𝑎
𝑘
𝑥𝑦𝑡 , 𝑐

𝑘
𝑥𝑦𝑡 , we es-

timate two sets for each of the keyframes and use them to compute

per-splat 𝑤𝑘𝑥𝑦𝑢𝑣𝑡 . These weights are then applied for each frame,

summed, normalized with the sum of the weights, and applied with

increased dilations as in the denoising approach.

Direct Kernel Prediction. We directly predict two sets of 11 ×

11 per-pixel kernels from the output of the GridNet with two

𝒓𝒄64𝒓𝒄121 convolutional layers.

Direct Multi-Scale Kernel Prediction. Following the single scale

approach, we apply direct kernel prediction on 3 levels of scale,

using 16, 32, 48 feature outputs from GridNet as the input for kernel

estimator. Additionally, we predict weight parameter 𝛼𝑙 for each

scale 𝑙 with a 𝒓𝒄12𝒓𝒄1 layer, upsample all of the inputs and use

softmax weighting over {𝛼𝑙 } to merge all bilinearly upsampled

outputs.

1.5 Additional Results

In Figure 2 we provide a visual comparison of the method from our

ablation study, and in Figure 3 show the error distributions of these

methods as kernel density estimate plots, showing that our method

has higher density towards better scores.

In Figure 4 we show equivalent plots for the comparisons with

the best-performing prior methods.

1.6 Multi-channel interpolation with prior
methods

To interpolate channels for which NFIRC [Briedis et al. 2021] was

not trained, we estimate motion and weighting coefficients with

the original image and run the pyramid extraction, warping, and

frame synthesis on the additional channels. For the alpha channel
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w/o offset w/ dot product Affinity-based KP Direct Prediction Direct KP Direct MS KP Ours Reference

Figure 2: Visual comparison of the methods from our ablation study. © 2023 Disney, © 2023 Disney / Pixar

3× repeated values are interpolated with the mean value across

channel using as the final output.

2 ADAPTIVE INTERPOLATION

2.1 Blender Runtime Experiments

To evaluate the latency added by an additional auxiliary buffer

rendering pass, we extend Blender’s Cycles physically-based ren-

derer to record per-tile rendering time and an option to render

only feature buffers. In Table 3, we detail CPU and GPU times for

different proportions of rendered pixels. We see that the adaptive

strategy introduces a negligible overhead while achieving signifi-

cant performance improvements.

Rendering Details. We choose 3 shots from a recentmovieCharge

that are publicly accessible and have medium motion - 010_0050,

040_0040, and 060_0130. We base ourCycles adaptations on v3.5.0

pre-release commit 1a986f7e.

As the shots are not originally made for the physically-based

renderer Cycles, we apply shot modifications as described in Ta-

ble 2. When rendering the buffers pass, ray tracing is terminated at

the intersection where the renderer records denoising passes.

To compute the constant ramp up costs for loading a shot that is

present even if rendering only a single tile, we approximate it by

rendering a 1𝑠𝑝𝑝 variant of the each shot.

Adaptive Runtime Computation. To approximate the runtime for

adaptive interpolation, we rescale the runtime of each tile to sum

up to 𝑡𝑜𝑡𝑎𝑙_𝑟𝑢𝑛𝑡𝑖𝑚𝑒 − 𝑟𝑎𝑚𝑝_𝑢𝑝_𝑟𝑢𝑛𝑡𝑖𝑚𝑒 , and sum up the time it

takes to render each of the requested tiles with 𝑟𝑎𝑚𝑝_𝑢𝑝_𝑟𝑢𝑛𝑡𝑖𝑚𝑒 .

For the GPU time computation, all needed 𝛿𝑘𝑡 are stored in memory

during the processing. They are in 1/16 resolution thus for a 96-

frame sequence only 40𝑀𝐵 are used (1704 maps due to boundaries

with 51×120px at 32 bits). Input/Output costs are excluded from

the measurements and all images are expected to be stored in the

RAM.

2.2 Fixed Interval Interpolation

To obtain the fixed interval interpolation results, we compute the

minimal number of keyframes needed to obtain the chosen ratio of

Table 2: Applied Blender Shot Modifications

scene.render

resolution_x 1920

resolution_y 804

use_motion_blur False

engine CYCLES

scene.cycles

tile_size 64

device CPU

samples 1024

use_adaptive_sampling True

adaptive_min_samples 32

adaptive_threshold 0.01

use_denoising True

denoiser OPENIMAGEDENOISE

rendered pixels, and place them at evenly spaced temporal positions

in [𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑 ], rounding to the nearest integer. We then use recur-

sive interpolation, i.e. between every two consecutive keyframes,

we interpolate the middle frame, set it as a new keyframe, and

repeat the process until all frames are set as keyframes.

2.3 Implementation Details

In the Listing 1 we show the architecture of the implicit error

prediction model. On the top 3 levels (the first layer and after

pooling layers) we concatenate the inputs with the warped partial

context features and their binary masks. In the Listing 2 we show

the used residual block. In the top level we input intermediate frame

motion magnitude, divided by 256 and clampped to [0, 2].

Listing 1: Architecture of interval prediction model

S e q u e n t i a l (

Conv2d ( 2 7 , 3 2 , k e r n e l _ s i z e =3 )

ResB lock ( 3 2 , 6 4 )

MaxPool2d ( k e r n e l _ s i z e =2 , s t r i d e =2 )
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Figure 3: Distribution of the error for the different methods of our ablation study. Each column reports a different metric (PSNR,

LPIPS, VMAF). The y-axis shows the probability density estimate. The best performing method should have the distribution

more to the right towards the better scores.
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Figure 4: Distribution of the error for the different prior methods compared to our method. Each column reports a different

metric (PSNR, LPIPS, VMAF). The y-axis shows the probability density estimate. The best performing method should have the

distribution more to the right towards the better scores.



SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA Briedis et al.

Table 3: Runtime breakdown. Computed mean per 1 frame and averaged over 3 shots.

Method
Rendered

Ratio

CPU time,𝑚𝑖𝑛 GPU time,𝑚𝑖𝑛
PSNR, dB

Buffers Beauty Total
Interval

Estimation
Interpolation Total

Full Render 100% - 109.5 109.5 - - - -

Adaptive Interval

48.5% 15.7 62.5 78.2

0.09

0.03 0.12 43.78

32.6% 15.7 40.8 56.5 0.03 0.12 41.95

24.7% 15.7 30.4 46.1 0.03 0.12 40.94

19.5% 15.7 24.0 39.7 0.03 0.12 40.31

16.5% 15.7 20.1 35.8 0.03 0.12 39.81

Fixed Interval

50.8% 7.8 67.2 75.0

-

0.02 0.02 41.03

34.4% 10.2 45.8 56.1 0.02 0.02 39.79

26.1% 11.5 34.7 46.2 0.02 0.02 37.89

21.0% 12.3 27.9 40.2 0.03 0.03 37.57

18.0% 12.8 24.1 37.0 0.03 0.03 37.13

ResB lock ( 1 1 4 , 1 2 8 )

MaxPool2d ( k e r n e l _ s i z e =2 , s t r i d e =2 )

ResB lock ( 2 0 2 , 1 2 8 )

MaxPool2d ( k e r n e l _ s i z e =2 , s t r i d e =2 )

ResB lock ( 1 2 8 , 1 2 8 )

MaxPool2d ( k e r n e l _ s i z e =2 , s t r i d e =2 )

ResB lock ( 1 2 8 , 3 2 )

Conv2d ( 2 7 , 3 2 , k e r n e l _ s i z e =3 )

S igmoid ( )

)

Listing 2: Residual block architecture

ResB lock ( in , out ) (

ReLU (

S e q u e n t i a l (

Conv2d ( in , out , k e r n e l _ s i z e =3 )

ReLU ( )

Conv2d ( out , out , k e r n e l _ s i z e =3 )

) + (

i f ( i n == out )

I d e n t i t y ( )

e l s e

Conv2d ( in , out , k e r n e l _ s i z e =1 )

)

)

)

REFERENCES
Karlis Martins Briedis, Abdelaziz Djelouah, Mark Meyer, Ian McGonigal, Markus Gross,

and Christopher Schroers. 2021. Neural Frame Interpolation for Rendered Content.
ACM Trans. Graph. 40, 6, Article 239 (dec 2021), 13 pages. https://doi.org/10.1145/
3478513.3480553

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. 2016. Fast and Accurate
Deep Network Learning by Exponential Linear Units (ELUs). In 4th International
Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May

2-4, 2016, Conference Track Proceedings, Yoshua Bengio and Yann LeCun (Eds.).
http://arxiv.org/abs/1511.07289

D. Fourure, R. Emonet, E. Fromont, D. Muselet, A. Tremeau, and C. Wolf. 2017.
Residual conv-deconv grid network for semantic segmentation. arXiv preprint
arXiv:1707.07958 (2017).

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT Press.
http://www.deeplearningbook.org.

Mustafa Işık, Krishna Mullia, Matthew Fisher, Jonathan Eisenmann, and Michaël
Gharbi. 2021. Interactive Monte Carlo Denoising Using Affinity of Neural Features.
ACM Trans. Graph. 40, 4, Article 37 (jul 2021), 13 pages. https://doi.org/10.1145/
3450626.3459793

Simon Niklaus, Ping Hu, and Jiawen Chen. 2023. Splatting-Based Synthesis for Video
Frame Interpolation. In Proceedings of the IEEE/CVF Winter Conference on Applica-
tions of Computer Vision (WACV). 713ś723.

Simon Niklaus and Feng Liu. 2020. Softmax Splatting for Video Frame Interpolation.
In IEEE Conference on Computer Vision and Pattern Recognition.

O. Ronneberger, P. Fischer, and T. Brox. 2015. U-Net: Convolutional Net-
works for Biomedical Image Segmentation. In Medical Image Computing and
Computer-Assisted Intervention (MICCAI) (LNCS, Vol. 9351). Springer, 234ś241.
http://lmb.informatik.uni-freiburg.de/Publications/2015/RFB15a (available on
arXiv:1505.04597 [cs.CV]).


