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This document is supplementary material for the paper “Neural
Video Compression with Spatio-Temporal Cross-Covariance Trans-
formers.” We provide additional architectural details (Section A),
more experimental settings (Section B.1), additonal quantitative
results (Section B.2), supportive ablation studies (Section B.3) and
individual quantitative results (Section B.4).

A ARCHITECTURAL DETAILS
A.1 Details of ST-XCT
This section details the architectural decisions of our Spatio-Temporal
Cross-Covariance Transformer (ST-XCT), which was presented in
Section 3.1 of the main manuscript. As discussed there (and de-
tailed in Fig.1 from the paper), ST-XCT is composed of two main
components: Spatio-temporal Feature Generator (STFG) and 3D Feed-
Forward Gate (3FFG). In what follows, we denote an input joint
feature as F𝑗 ∈ R𝐻×𝑊 ×2×𝐶 .

As in conventional transformer strategies, the Spatio-Temporal
Feature Generator (STFG) component is designed to generate Queries (Q),
Keys (K), and Values (V). For that, we first apply two 3D convolu-
tional layers with 1 × 1 × 1 kernels and then 3 × 3 × 3 kernels. For
both layers, we use 𝐶 as the number of output channels. Once we
concatenate all attention features from each sub-head to F𝑝 , we
apply a 3D convolutional operation with 1 × 1 × 1 kernel and the
same number of output channels as 𝐶 .

In our 3D Feed-Forward Gate (3FFG) component, we use two
branches to separately generate distinct features. In each branch,
we first apply 1 × 1 × 1 3D convolutional layer with the number
of output channels as 𝐹𝐹𝐺_𝑓 𝑎𝑐𝑡𝑜𝑟 ·𝐶 . We then apply a 3 × 3 × 3
3D convolutional layer with the number of output channels as 𝐶 .
Eventually, we adopt a 1× 1× 1 3D convolutional layer with output
channel number as 𝐶 , after applying element-wise multiplication
for these two distinct features for better feature transformation.
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A.2 Details of our NVC with ST-XCT
ST-XCT instantiation. The overall architecture of our ST-XCT is

the same in the different components in our NVC framework (please
refer to Section 3.2 of the main paper for more details), but instan-
tiated with different hyper-parameters. The hyper-parameters we
configure are the number of ST-XCT blocks, the number of heads,
and 𝐹𝐹𝐺_𝑓 𝑎𝑐𝑡𝑜𝑟 in different components. The configuration de-
tails for each ST-XCT module in Fig. 3 of the main manuscript
are provided in Table S1. As discussed in what follows, we have
different variants of XC-MS-TFE and MS-TFD to operate with large
and small scale features.

#Blocks #Heads FFG_factor
MS-TFE-Large-Scale 4 2 1
MS-TFE-Small-Scale 6 2 1
MS-TFD-Large-Scale 4 2 1
MS-TFD-Small-Scale 6 2 1
THEM 16 6 3

Table S1: Instantiation details of ST-XCT modules in the
different components of our NVC framework. More details
can be found in Sections 3.2.2, 3.2.3, and 3.2.4.

Residual Blocks. As shown in Fig. 3, we used several residual
blocks in both our MS-TFE and MS-TFD components. Specifically,
we apply the residual blocks shown in Fig. S1 in our MS-TFE and
MS-TFD modules.
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Figure S1: Architecture of Residual Blocks. LeakyReLU(s)
represents LeakyReLU activation function with slope value
s, while Conv(C, K, S) means the 2D convolutional operation
with output channel as 𝐶, 𝐾 × 𝐾 kernel and stride as 𝑆 ,

A.2.1 MS-TFE. The hyper-parameters of those 2D convolutional
operations and the residual blocks of MS-TFE are:

𝐶𝑜𝑛𝑐𝑎𝑡 → 𝐶𝑜𝑛𝑣 (64, 3, 1) → 𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘 (128) →
ST-XCT-Large-Scale → 𝐶𝑜𝑛𝑣 (64, 3, 1) → 𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘 (128) →
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Figure S2: Ablation study adding the different transformer-
based components from our NVC framework.

ST-XCT-Small-Scale → 𝐶𝑜𝑛𝑣 (64, 3, 2) → 𝐶𝑜𝑛𝑣 (96, 3, 2),

where 𝐶𝑜𝑛𝑣 (𝐶,𝐾, 𝑆) denotes a 2D convolutional operation with
𝐶 output channels, a 𝐾 × 𝐾 kernel and stride 𝑆 . 𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘 (𝑁 ) rep-
resents the residual block shown in Fig S1 with 𝑁 input channel.
More details can be found in Section 3.2.2 of the main manuscript.

A.2.2 THEM.. In our work, we directly extend the hybrid entropy
model as in [4]. Hence, we use an identical network architecture as
in [4] for the Temporal Prior Encoder, Hyperprior Encoder, Hyper-
prior Decoder, and Hybrid Entropy Model in our Fig. 3 (b) of the
main manuscript. More details can be found in our Section 3.2.3
and [4].

A.2.3 MS-TFD. The hyper-parameters of the 2D-convolutional op-
eration (i.e., subconv in Fig. 3(a)) andthe residual blocks of MS-TFD
are listed as follows:

𝐶𝑜𝑛𝑣 (100, 3, 1) → Shufflex2 →
𝐶𝑜𝑛𝑣 (256, 3, 1) → Shufflex2 → ST-XCT-Small-Scale →
𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘 (128) → 𝐶𝑜𝑛𝑣 (256, 3, 1) → Shufflex2 →
ST-XCT-Large-Scale → 𝑅𝑒𝑠𝐵𝑙𝑜𝑐𝑘 (128) → 𝐶𝑜𝑛𝑣 (128, 3, 1) →
Shufflex2 → 𝐶𝑜𝑛𝑣 (96, 3, 2) → 𝐶𝑜𝑛𝑐𝑎𝑡 → U-Net,

where we simply adopt the standard shuffle operation [2] to
shuffle the features from the shape of 𝐻 ×𝑊 ×𝐶 to 2𝐻 × 2𝑊 ×𝐶/4.
We use an identical U-Net architecture as in [4]. More details can
be found in Section 3.2.4.

B EXPERIMENTS
B.1 Settings of Traditional Codecs
We compare the performance with the reference software of H.265
and H.266, which are HM-16.21 [1] and VTM-13.2 [3], respectively.
The low delay configuration with the highest compression ratio is
used for both. All videos are compressed and reconstructed in YUV
420 format and RGB frames are extracted to compute distortion
metrics. The detailed settings of HM and VTM are:
• HM

TAppEncoder -c encoder_lowdelay_main_rext.cfg [args]

• VTM
EncoderApp -c encoder_lowdelay_vtm.cfg [args]

where both codecs use the following common command line
arguments ([args]):

--InputFile={input_filename}
--BitstreamFile={bitstream_filename}
--ReconFile={reconstructed_filename}
--DecodingRefreshType=2
--InputBitDepth=8
--OutputBitDepth=8
--OutputBitDepthC=8
--InputChromaFormat=420
--FrameRate={frame_rate}
--FramesToBeEncoded=96
--SourceWidth={width}
--SourceHeight={height}
--IntraPeriod=32
--QP={quantization_parameter}
--Level=6.2

B.2 Additional Ablation Studies
Impact of the individual transformer components. To verify the effec-
tiveness of our ST-XCT module, we conducted three ablation stud-
ies and demonstrated the results in Fig. 5 of the main manuscript,
where we removed the ST-XCT modules at different components in
our pipeline. Fig. S2 shows further ablation study results in which
we add the ST-XCT modules at various stages into the baseline
method DCVC* [4] to replace its original concatenation operation.

The results indicate a noticeable enhancement in performance
when MS-TFE, THEM and MS-TFD were added, respectively re-
ducing 0.44% , 1.59% and 1.78% bitrates from our baseline DCVC*.
This further indicates the superior ability of ST-XCT for extracting
and fusing multi-scale spatio-temporal features by using the cross-
covariance attention mechanism to exploit the spatio-temporal
correlations. Our findings also indicate that we could achieve maxi-
mum effectiveness when all these three Transformer-based com-
ponents are employed. Such observations again support our claim
that it is essential to consider all components when designing an
end-to-end Transformer-based video compression framework. It
is also the main difference between our proposed framework and
previous Transformer-based methods (e.g., VCT [5]), which only
focuses on one particular component (e.g., entropy model).

B.3 Per-Sequence Quantitative Comparison
Lastly, we provide a few selected rate-distortion curves for individ-
ual sequences from each dataset (see Fig.S3 and S4). Specifically, we
provide two cases for each dataset: the best (left column) and the
worst cases (right column). The best and worst cases are defined
with regard to how our proposed NVC framework surpasses our
baseline method i.e., DCVC* [4]). It is important to highlight that
on average, for all datasets, our NVC framework is able to outper-
form the baseline and VTM methods, which is supported by the
quantitative comparison (please refer to the details in Fig. 4 and
Table. 1 of the main manuscript).
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Figure S3: Selected per-sequence rate-distortion (i.e., bitrate vs PSNR) performance comparison in HEVC datasets, showing
successful (left) and worst case (right) on the dataset.
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Figure S4: Selected per-sequence rate-distortion (i.e., bitrate vs PSNR) performance comparison of MCL-JCV and UVG datasets,
showing successful (left) and worst case (right) on the datasets.

From Fig. S3 and S4, it can be observed that for HEVC Class B,
HEVC Class D, and HEVC Class E and UVG, even in the worst
cases, our proposed NVC can still improve over (or at least not
perform worst than) the baseline. As expected, in the worst case
such improvements are less prominent than the average. Moreover,
although we improve over the baseline and VTM in most cases, it
is also interesting to see that neural methods can still be outper-
formed by H.266/VVC in specific cases (e.g., some sequences on
HEVC Class C). We plan to study in more detail such specific cases
to better understand why neural methods fail on them and how we
can improve our method at the same time that we can provide new
insights for the neural video compression community.

B.4 More Visualization
Here we provided more visualization results as shown in Fig. S5.
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Figure S5: Qualitative comparison between our NVC method, DCVC*, and VTM-13.2. The demonstrated images are labeled as
PSNR@bpp. Best viewed on screen.
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