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Abstract
We present a kernel-predicting neural denoising method for path-traced deep-Z images that facilitates their usage in animation
and visual effects production. Deep-Z images provide enhanced flexibility during compositing as they contain color, opacity,
and other rendered data at multiple depth-resolved bins within each pixel. However, they are subject to noise, and rendering
until convergence is prohibitively expensive. The current state of the art in deep-Z denoising yields objectionable artifacts,
and current neural denoising methods are incapable of handling the variable number of depth bins in deep-Z images. Our
method extends kernel-predicting convolutional neural networks to address the challenges stemming from denoising deep-Z
images. We propose a hybrid reconstruction architecture that combines the depth-resolved reconstruction at each bin with the
flattened reconstruction at the pixel level. Moreover, we propose depth-aware neighbor indexing of the depth-resolved inputs
to the convolution and denoising kernel application operators, which reduces artifacts caused by depth misalignment present
in deep-Z images. We evaluate our method on a production-quality deep-Z dataset, demonstrating significant improvements
in denoising quality and performance compared to the current state-of-the-art deep-Z denoiser. By addressing the significant
challenge of the cost associated with rendering path-traced deep-Z images, we believe that our approach will pave the way for
broader adoption of deep-Z workflows in future productions.

CCS Concepts
• Computing methodologies → Ray tracing; Image processing;

1. Introduction

Compositing is an essential part of animated film and visual ef-
fects production. Through compositing operations, such as holdout,
merge, color correction, and position adjustments, different parts of
a frame can be post-processed independently to achieve the desired
look. Compared to adjusting the underlying scene and re-rendering
the frame, these effects can be achieved with significantly lower
costs via compositing.

While traditional compositing workflows are based on flat im-
ages, recent years have seen the prevalence of deep composit-
ing workflows using deep-Z images since their standardization in
OpenEXR [Ope13]. Each pixel in a deep-Z image can contain an
arbitrary number of bins, each of which stores the color value and
opacity (alpha) at the corresponding depth, along with optional
auxiliary channels. The sub-pixel depth-resolved information al-
lows overlapping parts in a frame to be stored separately during
a single rendering pass, facilitating downstream compositing op-
erations. More specifically, deep-Z images can ameliorate artifacts
when performing compositing operations that selectively affect a
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part of the visible depth range, as illustrated in Figure 1. Operating
on deep-Z images with depth-resolved color and other information
extends compositing capabilities and further reduces the need for
re-rendering. As such, deep compositing workflows are commonly
employed during the production of animated features and visual
effects [Sey14].

However, path-traced deep-Z images generated by production
renderers [Ren22, Arn23, VR23] suffer from the same problem as
flat images—noise. Noise can significantly interfere with the in-
terpretability of the rendered content and increase the difficulty of
achieving the desired effect. Due to the lack of high-quality and ef-
ficient denoisers that output deep-Z images, deep compositing has
to rely on either fully converged deep-Z renderings or “quasi-deep”
images which combine denoised flat color and converged deep-Z
depth and opacity.

While it is possible for an artist to perform deep compositing
with noisy data, flatten the result, and then apply state-of-the-art
flat image denoisers after compositing, such a workflow is undesir-
able [VAN∗19]. Denoising flat images after deep compositing with
noisy data limits the types of possible compositing operations and
introduces discrepancies with the final result. Compositing with the
noisy image can alter the noise characteristics and lead to denoising
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Figure 1: Deep compositing pipelines allow editing operations such as recoloring a part of the depth range and inserting objects at the
desired depth. They rely on deep-Z images, which store depth-resolved information at multiple bins within each pixel. Performing these
operations on deep-Z instead of flattened images avoids artifacts on anti-aliased edges and semi-transparent objects. In this illustrative
example, we start from a noisy deep-Z rendering, denoise it with our proposed denoiser and then perform a series of deep compositing
operations such as recoloring the out-of-focus flags in the foreground, adding objects in between the foreground and the background and
simulating fog within the scene. The two rightmost columns compare the deep compositing result on our denoised 64spp image with the
outcome of the same editing operations on a rendered reference with 16K samples per pixel. For each stage, we visualize the color for each
bin within a marked scanline at the corresponding depth (middle row) or bin index (bottom row). c© Disney

artifacts by introducing inter-pixel correlations unseen during the
denoiser’s training, e.g., through smearing, selective blurring, and
even plain resizing. In addition, the denoiser might introduce blur to
composited noise-free elements, such as background plate images
and text. Finally, high-quality denoisers rely on auxiliary features
such as surface normals, albedo, and statistics (e.g., color variance)
that are very difficult, if not impossible, to reasonably track through
each compositing operation. For these reasons, a high-quality deep
denoiser producing denoised deep-Z images which can directly be
used in deep compositing pipelines is important in practice.

Despite the ample practical reasons for denoising deep-Z render-
ings, it is fundamentally more challenging than denoising flat ren-
derings, and the deep-Z format causes practical issues for a direct
extension of the prevalent neural flat denoisers based on convo-
lutional neural networks (CNNs) [VRM∗18, XZW∗19, ZMV∗21,
BWM∗23]. A deep-Z denoiser, whose input and output are both
deep-Z images, aims to produce an accurate noise-free reconstruc-
tion of the color values in all bins. In contrast, a flat denoiser fo-
cuses on reconstructing only one value per pixel. A deep-Z denoiser
should additionally accurately reconstruct per-bin alpha and depth
values, which are also subject to noise during path tracing. More-
over, a bin in a noisy deep-Z image aggregates only a fraction of
the paths traced for the associated pixel and is likely to exhibit a
higher amount of noise than the pixel value which aggregates all
path samples. The deep-Z format, unlike the 2-D image format,
is essentially semi-structured since each deep pixel, depending on
the complexity of the depth information, can have different num-
bers of bins at arbitrary depth positions. This can be problematic
for convolutional architectures and kernel-predicting denoising be-
cause the neighborhood of each bin is defined by the bin index,
which does not necessarily align with the neighborhood in depth
space, where neighboring bins useful for denoising are more likely
to be found. Such misalignment creates artifacts when denoising
with CNNs applied on the spatial-bin dimensions, which rely on as-
sumptions about translation invariance along all three dimensions.

In this work, we introduce a CNN-based neural deep-Z denoiser
that tackles the aforementioned issues and achieves high denois-
ing quality for deep-Z renderings. Our method uses a hybrid flat–
deep-Z architecture to improve the result on flat regions and uses
depth as a prior for aligning bin neighborhoods. On a dataset con-
sisting of production-quality deep-Z renderings, we evaluate our
method by comparing against a state-of-the-art non-neural deep-Z
denoiser [VAN∗19] and a flat kernel-predicting neural denoiser
[VRM∗18] trained on a flattened version of our dataset. Our main
contributions are listed below:

• The first neural deep-Z image denoiser that produces
state-of-the-art results while being significantly more efficient
than previous non-neural methods.
• A hybrid flat–deep-Z network architecture with flattened pixel

context and learned combination of flat and deep reconstruction.
• Light-weight depth-aware neighbor indexing of the input of con-

volutions and denoising kernels that addresses depth misalign-
ment in deep-Z data.

Next, we review the background knowledge on deep-Z render-
ings and discuss relevant previous work in the areas of denoising
path-traced flat and deep-Z images.

2. Background and related work

Deep-Z images. We follow the OpenEXR standard [Kai13b] for
defining deep-Z images. A deep-Z image can contain an arbitrary
number of bins per pixel. Each bin is associated with a depth range
and an opacity (alpha) value, and it can contain an arbitrary number
of channels.

Let p∈Z3
≥0 with components (x,y,b) be a three dimensional in-

dex vector of a bin within a deep-Z image, where (x,y) correspond
to spatial indices within the image plane and b corresponds to the
index along the bin dimension. We extract the stored data of each
bin with the help of functions such as z f (p) and zb(p) which return
the depth of the bin bounds (front and back of the bin) in scene
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units, c(p) for the color, α(p) for the over compositing alpha, n(p)
for the surface normal, ρ(p) for the surface albedo. Note that all
these quantities, with the exception of depth information, are pre-
multiplied by alpha as defined in the OpenEXR format [Kai13b].
Our current rendered deep-Z dataset only contains bins with a sin-
gle depth value

(
z f (p) = zb(p)

)
but it is also possible for a bin p to

cover a depth range with z f (p)< zb(p).

The bin layout is defined by the number of bins of all deep pixels
and is computed by the renderer, either in a pre-pass or progres-
sively during rendering. The bin layout of our path-traced produc-
tion dataset is fixed in a pre-pass [VAN∗19], which also determines
the location of each bin. All noise levels of the same scene, includ-
ing the reference, share the same bin layout.

The ability of deep-Z images to capture and preserve a richer set
of data provides enhanced flexibility and versatility in final com-
positing [Ren18]. With depth values, we can get accurate represen-
tation of spatial relationships like occlusions between different ob-
jects, which helps creating depth-based effects in the composited
image [Ope23, Fou23]. In addition, storing multiple color and al-
pha samples per pixel allows more control over object transparency
and more accurate anti-aliasing when blending multiple objects at
different depths. These depth-aware images facilitate matte extrac-
tion and object separation without relying on complex techniques
traditionally used on flat images to reduce edge artifacts [PD84],
significantly simplifying operations like re-positioning or replacing
foreground and/or background objects [HSDC11]. In film produc-
tion, compositing artists prefer the greater flexibility of manipu-
lating individual objects and channels, making fine-grained adjust-
ments, and controlling precisely over the final composited look to
achieve visually compelling images [Ren22,Ren12], which deep-Z
images are designed for.

Denoising of path-traced renderings. As an effective post-
process that can reduce the render time by orders of magnitude,
denoising techniques for rendered content have been an active
area of research [ZJL∗15, HY21]. Most denoising approaches fo-
cus on the flat image format and reconstruct a denoised pixel
as a weighted average of noisy input pixel values in the pixel’s
spatial or temporal neighborhood. Recent years saw the rise of
deep learning denoising approaches of flat renderings, which ad-
vance the state of the art in big strides by leveraging large datasets
[KBS15,CKS∗17,BVM∗17,VRM∗18]. Below, we discuss relevant
previous denoising methods on flat and deep-Z images.

Flat image denoising. Rousselle et al. [RMZ13] propose using ge-
ometry buffers, such as normal vector, albedo, and depth, in the
pixel similarity measure when computing the filter kernels for each
pixel because these auxiliary features typically contain less noise
than the color channels but reflect important discontinuities that
should be preserved. Bako et al. [BVM∗17] propose using convo-
lutional neural networks (CNNs) to predict per-pixel filtering ker-
nels from the noisy image and auxiliary feature buffers. Combined
with the diffuse and specular decomposition, their proposed de-
noiser (KPCN) can improve upon previous non-neural denoisers in
quality significantly. Building on KPCN, Vogels et al. [VRM∗18]
propose reusing temporal information to further enhance the de-
noising quality, and Zhang et al. [ZMV∗21] propose to learn a

decomposition of the noisy input into easier-to-denoise compo-
nents before applying kernel-predicting denoising to achieve even
more faithful reconstructions. Starting from single samples instead
of aggregated sample statistics at each pixel, the layer denoising
method [MH20] learns to group individual samples into layers that
are separately denoised, improving efficiency when processing the
large number of raw samples compared to previous sample-based
methods [GLA∗19] and achieves higher quality compared to pixel-
based methods at low sample count. These denoising techniques
can use either pixels or samples as input, but they all aim at produc-
ing high-quality flat images, and do not preserve depth separation
within pixels like our deep-Z denoiser.

Deformable convolutions. Deformable convolutions [DQX∗17]
are an extension of the classic convolution, where the regular grid
of a convolution kernel is replaced with a learnable offset field. This
makes them unstructured, which is advantageous for object detec-
tion and similar tasks where it is important to attend to the object
being detected rather than a conventional 2-D grid [DQX∗17]. De-
formable convolutions could also be used in deep-Z denoising to
adapt the bin neighborhood, but at triple the computation cost. Ad-
ditionally, we argue that, for our use case, depth is already a strong
prior for finding bins that belong to the same object or have simi-
lar color information. This allows us to rely on a simple heuristic
and avoid the additional parameters needed by deformable convo-
lutions.

Point cloud denoising. Irregularly spaced geometric data can be
processed with point cloud and graph neural networks (GNNs).
Recently proposed models include PointNet [QSMG17], Point-
Net++ [QYSG17], GCNConv [KW17], GraphConv [MRF∗19],
GATConv [VCC∗18], and many others [PyG23]. Point cloud pro-
cessing or GNNs are also possible techniques for solving the task,
but they pose unique challenges, such as large spatial density vari-
ation and complexity from millions of points from a single deep-Z
image. These techniques are designed for completely unstructured
data and potentially require significant adaptation and architectural
redesign to fit our specific denoising problem. Given the proven
success of CNNs in denoising structured flat images in produc-
tion [DAN19, ZZR∗23], we opted to use a CNN denoiser for the
deep-Z images. Our work leverages the structure of deep-Z images,
particularly the 2-D uniform pixel grid, and introduces depth-aware
neighborhoods to effectively denoise deep-Z images, even with ir-
regular depth structures.

Deep-Z image denoising. Denoising of deep-Z images is still rel-
atively less studied, and deep learning methods solving this prob-
lem do not exist, to the best of our knowledge. The current state of
the art in denoising deep-Z renderings [VAN∗19] extend the hand-
crafted heuristics of flat feature-guided non-local means denoising
technique [RMZ13] to deep-Z renderings. Their filter kernels are
derived for each bin based on the similarity of features between bin
pairs and the color information between the associated pixels. The
combination of pixel-level and bin-level information mitigates ar-
tifacts introduced by the excessive noise in per-bin color estimates
and inspires our neural hybrid reconstruction, which achieves much
superior denoising quality after training on sizable datasets.
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Figure 2: Visualization of the bin structure within a scanline from a rendered clean deep-Z image. On the left, we show the color of non-
empty bins, and in the middle, we remap the x-axis to the scene depth, revealing the correlation between color and depth. We compare
3×3 neighborhoods for three highlighted center bins (white), showing regular (red) and depth-aware (blue) indexing. We highlight common
neighbors in purple. Regularly indexed neighborhoods (red) contain bins with unrelated colors from the foreground (top example at [43,5]),
distant background (middle example at [31,5]), and empty bins (bottom example at [27,4]). On the right, are the neighborhoods of all center
bins, highlighting the disparity in color values between regularly indexed neighborhoods (red) and our depth-aware method.

3. Methodology

In this section, we lay out the details of our method. In order to
handle irregularly spaced depth bins, we augment the convolution
and kernel application operators to use depth-aware neighborhoods
(Section 3.1). These operators are used in a U-Net architecture
that processes the input in a multi-scale fashion. The scales are
denoised independently and combined through combiner modules
(Section 3.2). Finally, we introduce a bin–pixel hybrid denoising
approach that jointly learns a flat denoiser alongside the deep-Z
denoiser and combines the result of both as the final output (Sec-
tion 3.3).

3.1. Depth-aware neighborhoods

Neural flat denoisers utilize a CNN to identify useful neighbor-
ing pixels, and predict per-pixel filter kernels for final reconstruc-
tion [BVM∗17, VRM∗18]. These 2-D kernel-predicting CNNs are
not directly applicable for denoising deep-Z images due to the ad-
ditional bin dimension. Still, the idea of reusing information from
neighboring pixels, which motivates the use of kernel-predicting
CNNs, is valid for our task, and we propose a 3-D CNN architec-
ture that extends it along with depth-aware indexing of bin neigh-
borhoods to combat misalignment in deep-Z data. Applying convo-
lutions and denoising kernels on depth-aware bin neighborhoods is
more effective at finding relevant bins in neighboring pixels.

We define the input to our 3-D kernels as a subset of neighboring
bins selected based on depth information. Conventional kW×kW×
kB convolutions (where kW = 2rW + 1 and kB = 2rB + 1) process
feature maps with a regular cuboid grid pattern, centered around the
bin p = (x,y,b). For our kernels, we keep the regular square pattern
in the x and y dimensions. For each neighboring pixel (x′,y′) with
|x′−x| ≤ rW and |y′−y| ≤ rW , we first find the bin bx′,y′ closest (in

depth) to the center bin p. We then add 2rB+1 bins centered around
bx′,y′ (i.e., bins bc located at the pixel (x′,y′) with |bc− bx′,y′ | ≤
rB) to the sampling grid at location (x′,y′). Repeating this for all
kW×kW neighbors (including the center pixel) gives us a sampling
grid of size kW×kW×kB. We provide a visual aid in Figure 3. For
brevity, we defer the formal definition to Appendix A.

Figure 3: Illustration of depth-aware neighborhood construction
around bin p = (x,y,b).

The difference between the depth-aware and regular neighbor-
hoods can be seen in the 2-D illustration of Figure 2 using a scan-
line of a deep-Z image. For such a region containing both fore-
ground and background, depth-aware indexing ensures the direct
neighbor for a bin is close in depth, overcoming bin misalignment
caused by the changing number of bins in the foreground and back-
ground within each pixel. The bottom example in Figure 2 further
demonstrates the edge case when neighboring bins are empty and
padded with zeros, where depth-aware neighborhoods cover close-
by neighbors.
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Figure 4: Network architecture of our deep-Z denoiser. Our model includes a U-Net and multi-scale kernel-based reconstruction heads
(Section 3.2). Raw input data goes through some transforms (Table 2) before being passed to the U-Net. The convolution and denoising
kernels on depth-aware neighborhoods (Section 3.1) are utilized at the finest scale, except for reconstructing the depth channels (front
and back). Diffuse and specular channels utilize hybrid reconstruction with additional flat pixel data. The internals of our three types of
reconstruction heads are shown in the middle row, and the bottom row includes legends.

3.2. Multi-scale neural deep-Z denoiser

We describe our multi-scale neural deep-Z denoiser architecture be-
low, which simultaneously reconstructs the deep data components
at multiple scales and consecutively combines them into a single
deep-Z image.

Multi-scale denoising. In order to expand the receptive field of the
denoiser, and to reuse bins that are farther away in the spatial (x and
y) dimensions, we propose a multi-scale deep-Z denoiser architec-
ture using a U-Net and a multi-scale reconstruction module, similar
to the denoiser module described by Zhang et al. [ZMV∗21] with a
straightforward extension to process the bin dimension. As shown
in Figure 4, the U-Net takes the full-resolution input noisy images
and auxiliary features, which can be potentially transformed, and
processes them via encoder and decoder residual blocks at different
scales. The encoder and decoder parts at each scale are connected
with a residual connection. Down-scaling and up-scaling between
scales are performed by 2×2×1 strided convolutions and strided
transposed convolutions, respectively, and thus they only change
the spatial resolution (by 2×), which is typically significantly larger
than the bin count.

As a direct extension of the multi-scale reconstruction from a
previous flat denoiser [VRM∗18], our multi-scale reconstruction

module with S scales contains S kernel prediction modules and
(S− 1) multi-scale combiners. At each scale s, the kernel predic-
tion module predicts the reconstruction kernels to be applied on the
down-sampled noisy input image from the U-Net feature maps at
scale s. After the per-scale reconstruction, the multi-scale combiner
at scale s predicts mixing weights ws between the current scale s
and the coarser scale s+1 and combines them by applying the fre-
quency decomposition [VRM∗18] to each bin index b:

ÔS,b = OS,b

Ôs,b = Os,b−ws,bU(D(Os,b))+ws,bU(Ôs+1,b), s = S−1, . . . ,1,

where Os,b and Ôs,b denotes the denoised image at scale s and
bin index b before and after multi-scale combining, respectively.
U(·) and D(·) denote 2×2×1 up- and down-sampling with near-
est neighbor interpolation and average pooling, respectively. The
arithmetic operations are element-wise.

Denoising multiple components and handling premultiplied al-
pha. In Monte Carlo denoising, particularly in final-quality sce-
narios, it is common to denoise different components of the light
transport and combine them to create the final denoised image
[BVM∗17, VRM∗18, XZW∗19, ZMV∗21]. We follow these ap-
proaches and denoise diffuse and specular components separately,
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gles tagged with “A” denote alpha-premultiplied deep-Z channels,
those marked with “D” denote denoised channels, and vice versa.
Symbols� and⊗ denote element-wise division and multiplication,
respectively.

which are created by the renderer based on material properties at
the first intersection. Finally, our method does not only denoise
color channels but also the alpha and depth channels, as noise in
those channels could potentially introduce visual artifacts during
compositing even if the color channels are noise-free. Note that
in our kernel-predicting architecture, each channel is reconstructed
individually, with its own reconstruction heads.

In the standard deep-Z format, alpha is assumed to be premulti-
plied in the color channels and the auxiliary feature maps [Ope23],
except for the depth channel. Differences in alpha thus lead to dif-
ferences in all other channels, especially for auxiliary features, and
can complicate the denoising procedure where similar bins need to
be identified. We thus unpremultiply alpha before denoising, i.e.,
dividing it out, on all premultiplied input channels, and multiply
the denoised (unpremultiplied) diffuse and specular channels with
the denoised alpha before summing them up as the final denoised
color. Figure 5 summarizes our denoising workflow which denoises
multiple components and handles alpha premultiplication.

3.3. Hybrid flat–deep-Z denoising

The neural deep-Z denoiser described above can produce relatively
clean deep-Z images while preserving intra-pixel depth separation.
However, its output often contains residual noise, as will be shown
in Section 5.3.1. This can be partly attributed to the lower sample
count and higher noise within input bins, compared to pixels. Also,
compared with flat denoising, the additional dimension for deep-Z
denoising means that it can be more difficult to gather information
from the neighborhood that can provide context for denoising. For
example, the bins within a pixel might have very different colors
from the composited pixel itself. To achieve good denoised results
both before and after flattening, we propose to combine the flat and
deep-Z architectures and denote our final approach as a hybrid flat–
deep-Z denoiser.

The first step towards the hybrid approach is to provide pixel
context at the input level, as illustrated by the white boxes on the

left in Figure 4. In this step, each channel of the noisy deep-Z im-
age is flattened using the noisy alpha channel, preprocessed, and
concatenated to the preprocessed deep-Z image as additional fea-
ture channels for each bin. The additional pixel-wise information
can improve the capability of per-bin denoising, e.g., by provid-
ing aggregated context from all bins within the pixel and indicating
whether the bin is at a depth discontinuity in the image.

The second step of our hybrid deep-Z denoiser is the hybrid re-
construction for the diffuse and specular channels shown on the
right of Figure 4; alpha and depth channels only use deep-Z re-
construction because of the lower noise. Here we produce the final
denoised deep-Z image by combining the output of the deep-Z and
the flat reconstruction heads at the finest scale. As shown in the
flat reconstruction head, by flattening the per-bin feature embed-
ding from the U-Net (averaging across the bin dimension), we can
obtain the per-pixel feature embedding at each scale. Taking these
per-pixel feature maps as input, a flat multi-scale kernel-predicting
reconstruction head can then denoise the flattened noisy image. Fi-
nally, the denoised flat image is combined with the denoised deep-Z
result by another learned weighted average, whose weights are pre-
dicted from the embeddings from the finest scale of the U-Net for
each bin. As will be shown in our results (Section 5.3.1), the hybrid
flat–deep-Z reconstruction greatly improves the denoising result in
flat regions, with minimal impact on the quality of the depth sepa-
ration.

4. Implementation

Our neural deep-Z denoiser is implemented in TensorFlow 2
[AAB∗15] and trained on imagery rendered with the Hyperion ren-
derer [BAC∗18]. In this section, we describe in more details the
dataset, the neural network architecture and training setup.

4.1. Data

Our dataset contains a total of 516 pairs of noisy–reference deep-Z
images from 100 production scenes at resolution 1920×804. Each
scene is rendered at between 4 and 7 noise levels, and the sample
count ranges from 16 to 1024 samples per pixel (spp) for the noisy
images. The training–validation–test split of our dataset is shown
in Table 1.

Table 1: Dataset split. The validation set is used for adjusting the
training hyper-parameters, and the test set for final evaluations.

#Scenes #Images Purpose

Training 81 423 NN training
Validation 9 43 Hyper-param tuning
Testing 10 50 Final evaluation

Rendering deep-Z images. The bin layout is identical for each
noisy–reference pair, since the bin layout and depth boundaries are
created in a pre-pass [VAN∗19]. In the pre-pass, paths are traced
only until the first bounce to record depth values, and close-by
depth values are averaged to determine the depth of a bin. As
single-bounce ray tracing is inexpensive, the pre-pass for images
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in our datasets uses hundreds to thousands of samples per pixel to
ensure good coverage of potential depth values. After the pre-pass,
full light paths are traced and each path’s color value is recorded
in the bin closest to the path’s first-bounce depth. The recorded bin
depth is the average depth of the color-pass samples that fall in
this bin and the pre-pass samples are discarded. Notably, pixels in
noisy images can receive fewer samples in the color pass than they
did in the pre-pass. This results in empty bins that did not receive
any color samples and have zeros in all channels, including depth.
As depth values are needed for depth-aware neighbor indexing, we
fill a missing bin’s depth by taking the median depth of non-empty
bins in its regular neighborhood. We also ensure that all pixels re-
main tidy, i.e., all bins are ordered by depth [Ope23]. The detailed
depth filling algorithm can be found in Appendix B. Note that depth
filling is not a requirement for our method, as renderers can be in-
structed to inherit the pre-pass depth value for empty bins.

Input channels and preprocessing. Our method’s input consists
of the noisy color c(p), alpha α(p), depth (front z f (p) and back
zb(p)), diffuse cD(p), specular cS(p), normal vectors n(p) and
albedo ρ(p) of each bin in the noisy deep-Z image. As shown in
the top-left corner of Figure 4, input preprocessing transforms are
applied on the channels before they are concatenated as input to
the neural network. Such input transforms can facilitate learning,
e.g., by mapping the raw features to a lower dynamic range. Ta-
ble 2 summarizes the input transforms used in our method. First, al-
pha premultiplication is undone. Then, we apply the log transform
y = log(x+1) for color channels, and keep normals and albedo as
is. For the depth channels, we normalize and use sine and cosine
waves with 10 frequencies so that high-frequency changes along
the depth dimension can be better identified. Finally, we apply three
different transforms on alpha. “OverToAdd” turns the alpha values
used in over compositing to those in add, representing the effective
contribution of the bins to the flattened pixel value [VAN∗19]. “Al-
phaToDensity” applies y = log(1−α) on bins with α < 1, which
roughly corresponds to the concept of “density” of a bin. “Al-
phaTypeMask” classifies the bins into three categories, α = 1 (fully
opaque), α = 0 (empty) and α ∈ (0,1) (partially transparent).

Table 2: Transforms and symbols applied to each input channel.

Symbol α-div Transform

Color c(p) X LogTransform
Diffuse cD(p) X LogTransform
Specular cS(p) X LogTransform

Normals n(p) X Identity
Albedo ρ(p) X Identity

Front depth z f (p) – FourierFeatures
Back depth zb(p) – FourierFeatures

Alpha α(p) – Identity
– OverToAdd
– AlphaToDensity
– AlphaTypeMask

Bin merging for training. To process deep-Z images with the
CNN architecture, we use empty bins as paddings so that all pixels
have the same bin count. After denoising, we prune all the padding
bins to preserve the original bin layout. However, this padding step
can be inefficient when few pixels have a large number of bins,
and the varying maximum bin count across batches can also cause
memory consumption fluctuation during training. In fact, the im-
ages in our deep-Z dataset contain up to 53 bins in a pixel, and the
max bin count of each image averages to 15.99, compared to the
average bin count 3.35 across all pixels in all images, indicating
that most of the computations could be spent on empty padding
bins.

To facilitate training on modern GPUs and avoid wasting com-
putation resources due to excessive padding, we use a bin merging
method based on alpha values and proximity in depth, and process
the training set to have a maximum of 8 bins per pixel. Details of
the bin merging algorithm can be found in Appendix C. As shown
in Section 5, though our denoisers are trained on images with re-
duced bin count, they can be directly applied to deep-Z images with
the original bin layout and achieve high denoising quality.

4.2. Neural deep-Z denoiser architecture

As shown in Figure 4, we use 3 scales in our multi-scale neural
deep-Z denoiser, both for the backbone U-Net and the final recon-
struction. The encoder and the decoder parts of the U-Net each con-
tain 2 residual blocks per scale, and each residual block contains 2
layers, either 3×3×3 depth-aware convolutions (for the finest scale)
or 3×3×3 regular convolutions (for the coarser two scales). The
convolution layers inside the residual blocks for both the encoder
and decoder part at each scale, from fine to coarse, have 64, 96, and
128 output feature maps, respectively. All convolution layers use
ReLU as the activation function, unless otherwise noted.

We denoise diffuse, specular, alpha, and front and back depth
layers using kernel-predicting reconstruction. Each layer has
its own (potentially multi-scale) kernel-predicting reconstruction
module, so that the predicted denoising kernels can adapt to the
content in different components. The two depth layers are denoised
only at the finest scale because of their relatively low noise, us-
ing 5×5×3 depth-aware kernels. 3-scale reconstruction is applied
to the other layers (diffuse, specular, alpha), where the finest scale
uses the same configuration as for the depth layers, and the coarser
2 scales use regular kernel prediction with the same kernel size. For
per-scale kernel prediction, we use two dense layers of 64 channels
prior to the kernel-predicting dense layer (softmax activation). The
3-scale flat reconstruction head uses 5×5 reconstruction kernels at
each scale, predicted from two dense layers of 32 channels. Each of
the multi-scale combiner for both the flat and deep-Z reconstruction
heads uses 2 dense layers of 32 channels to predict per-pixel or per-
bin mixing weights. The weights, with values between 0 and 1, are
produced with tempered sigmoid activation function, y = σ(x/5),
where σ(x) = 1/(1 + e−x) is the sigmoid function. Experimen-
tally, we find that stretching the sigmoid function helps stabilize
the training. Finally, the flat–deep-Z mixture weights at the finest
scale are also predicted using the stretched sigmoid activation. The
per-layer reconstruction setup is listed in Table 3.
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Table 3: Per-layer reconstruction modules. “553” under “Kernel”
means 5×5×3 denoising kernels, “DA” means using depth-aware
kernels at the finest scale, and “Hybrid” means using the flat–
deep-Z hybrid reconstruction, and the flat reconstruction head has
3 scales with 5×5 denoising kernels at each scale.

Layer Symbol Scales Kernel DA Hybrid

Diffuse cD(p) 3 553 X X
Specular cS(p) 3 553 X X

Alpha α(p) 3 553 X –

Front depth z f (p) 1 553 – –
Back depth zb(p) 1 553 – –

4.3. Losses and training setup

We rely on SMAPE [Flo86] and its variants as the training losses
for our neural deep-Z denoiser because of its proven ability as the
loss function for training flat denoisers for renderings [VRM∗18,
ZMV∗21]. Given a reference image Ī and a denoised image Î, de-
fined on the same image grid (or bin layout), SMAPE between the
images is computed as an average of the per-pixel (or per-bin) val-
ues:

SMAPE
(
Ī, Î

)
= ∑

p∈A

∣∣Ī(p)− Î(p)
∣∣∣∣Ī(p)

∣∣+ ∣∣Î(p)
∣∣+10−2

, (1)

Where A contains the indices of all pixels (or bins). For diffuse,
specular and alpha layers, we supervise both at the bin level and at
the flattened pixel level, i.e., flattening both reference and denoised
images with corresponding alpha maps before computing the loss.
For layers with the hybrid reconstruction, we also directly supervise
the flat denoiser’s output. The training losses for different layers are
summarized in Table 4. The denoising of all layers are trained end-
to-end with the total loss equal to the sum of all individual losses
in the table.

Table 4: Per-layer SMAPE loss configuration. “Bin” and “Pixel”
denote the use of bin-wise and pixel-wise (flattened) losses on the
final output, and “H-Flat” is for direct supervision of the flat re-
construction in the hybrid architecture. The final column indicates
the use of a log transform before loss computation of depth layers.
All losses marked with “X” have the same weight.

Layer Symbol Bin Pixel H-Flat Transform

Diffuse cD(p) X X X –
Specular cS(p) X X X –

Alpha α(p) X X – –

Front depth z f (p) X – – log(x+1)
Back depth zb(p) X – – log(x+1)

The denoisers in this work, if not mentioned otherwise, are
trained with the Adam optimizer [KB14] with an initial learning
rate of 10−4 (other optimizer parameters set to default). Each batch

during training contains a single 128×128 patch of deep-Z im-
age from our training set, and can be randomly flipped and ro-
tated along the spatial dimensions for data augmentation purposes.
Learning rate decay is applied 4 times during training, namely at
50%,62.5%,75%,87.5% of the training duration of 786K total iter-
ations, which takes about 2.5 days on a single NVIDIA RTX A6000
GPU.

5. Results

In this section, we report the evaluation results of our neural
deep-Z denoiser on our test set with 10 scenes via quantitative
metrics and visual comparisons. First, we show the effectiveness
of our proposed deep-Z denoiser by comparing with the previ-
ous state-of-the-art deep-Z denoiser Vicini19 [VAN∗19], which is
a non-neural method based on feature-guided non-local means
[RMZ13]. To assess the final denoising quality, we compare our
method with a flat neural denoiser (denoted as Flat) trained on
the flattened version of our training set, using similar hyper-
parameters. Finally, we justify the main decisions in our method
through ablation studies, including the use of depth-aware bin
neighborhoods and the hybrid flat–deep-Z denoising architecture,
and discuss the method’s generalization capability by evaluating on
an alternative test set. We use SMAPE (Equation (1)) and DSSIM
(1−SSIM [WBSS04]) as error metrics, which are computed on flat
images or flattened deep-Z images after denoising, unless otherwise
noted. We include 5 noise levels in the evaluation, as indicated by
sample count: 16spp, 32spp, 64spp, 128spp and 129+spp, with the
last including images from 129 to 256 samples per pixel. Results on
all scenes in our test set can be found in the supplemental viewer.

5.1. Effect of neural denoiser

The Vicini19 deep-Z denoiser relies on feature buffers and variance
estimates to create filter kernels for each bin. Our implementation
of Vicini19 uses 19×19 spatial kernel sizes and 7×7 patches around
pixels. To denoise the bin color, Vicini19 computes two kernels,
one using per-bin auxiliary feature similarity and the other using
per-pixel non-local means; each bin’s contribution is weighted by
its effective, or add, alpha (see Section 4.1). Note that Vicini19
requires half buffers and per-bin variance estimates, whereas our
method only uses the noisy color channels and two auxiliary fea-
tures, which is more practical considering the typically large size
of deep-Z images.

In terms of timings, an unoptimized TensorFlow implementation
of our method can denoise a typical deep-Z image at 1920×804 res-
olution in 5 minutes compared to more than 20 minutes for Vicini19
on an AMD Ryzen 7 5800X 8-Core CPU with 16 threads. On an
NVIDIA RTX 3090 GPU, the denoising time of our method drops
to around 7.5 seconds with the help of XLA.

Figure 6 summarizes the error metric comparison between our
deep-Z denoiser and Vicini19, where metrics are computed on
denoised flat images or flattened denoised deep-Z images. Both
deep denoisers receive as input the original deep-Z image topol-
ogy without any bin merging, despite our model being trained on
merged data with up to 8 bins. In these comparisons, our method
significantly outperforms Vicini19 at all noise levels and metrics.
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When comparing our method with Vicini19 across different sample
counts, our method always achieves lower error than Vicini19 even
with half the samples in terms of SMAPE. The advantage is sig-
nificantly higher with DSSIM as Vicini19 requires more than four
times the sampling budget to match the quality of our method.

The comparisons mentioned above focus on per-pixel metrics
only evaluated on the entirely flattened versions of the denoised
deep-Z images. To quantitatively evaluate the depth-resolved qual-
ity of the deep denoising methods we perform an additional experi-
ment in Figure 7. The resulting denoised deep-Z images are clipped
either from the front or the back and flattened, before the per-pixel
DSSIM error is computed with the correspondingly clipped ref-
erence. This evaluation can capture artifacts along the depth di-
mension such as blurring or leaking across depth boundaries that
could otherwise be hidden by the entirely flattened comparisons.
In both cases, as we move from left to right, more bins are re-
tained. As shown in the plot, our method (blue) produces lower
errors than Vicini19 (red) on depth-clipped images, demonstrating
better preservation of the depth-resolved information even though
our denoiser can blend in flattened reconstructed data at each bin.

Finally, columns 4 and 5 of Figure 8 show visual comparisons
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Figure 6: Quantitative comparison between the non-neural deep-Z
denoiser (Vicini19) and our method (Ours) at different noise lev-
els. The reported metrics for Vicini19 and Ours are computed on
flattened versions of respective denoised deep-Z images. We ob-
serve significant improvement with our method across all metrics
and noise levels compared to Vicini19. For context, we also pro-
vide the results of a flat neural denoiser (Flat) which we apply after
flattening the noisy deep-Z image. This method destroys the depth
structure in the deep-Z image and prohibits deep compositing.
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Figure 7: Depth-resolved denoising quality. In this comparison be-
tween Ours and Vicini19, we perform depth clipping on the de-
noised deep-Z data at 32spp. We then flatten the clipped deep-Z
image and measure the DSSIM error with the corresponding refer-
ence. The horizontal axis indicates the percentage of bins kept after
clipping, and the vertical axis shows the aggregated error over the
entire test set. Here “back clipping” means removing the most dis-
tant bins in terms of depth, and “front clipping” means removing
the closest ones, and the two curves for each method converge at
100% bins retained, which is the flattened full image.

between our method and Vicini19, on the full depth range and on
depth slices. Compared to Vicini19, our method preserves the cor-
rect details (red inset of rows 1-3) and mitigates denoising artifacts
(orange inset of rows 1-3). Our method achieves better quality in
out-of-focus regions (row 4, orange inset), which require gathering
information from relevant bins in neighboring pixels. Finally, in
the depth-sliced result in the last row, where an out-of-focus fore-
ground object was removed, our method does not produce artifacts
in the noisy region behind the removed object.

In summary, our method achieves significantly higher recon-
struction quality than Vicini19, requires fewer channels in the noisy
input, and is much faster, especially when a GPU can be utilized.

5.2. Flat vs. deep-Z denoisers

Flat kernel-predicting denoisers represent the state of the art for
denoising Monte Carlo renderings, and it is of interest to assess
the final quality achieved by our neural deep-Z denoiser with a flat
denoiser as a baseline. It is worth reminding that it is challenging
for flat denoisers to support deep compositing workflows, such as
the examples demonstrated in Figure 1, since they do not preserve
depth separation, and also because denoising after deep composit-
ing can change the intention of the compositing operations, e.g., by
introducing artifacts on inserted clean objects.

Our flat denoiser baseline also uses a 3-scale U-Net and 3-scale
kernel-based reconstruction with a multi-scale combiner, with layer
settings similar to that of our deep-Z denoiser but in 2-D. It is

c© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.



10 of 18 X. Zhang et al. / Neural Denoising for Deep-Z Monte Carlo Renderings

Ours Input Flat Vicini19 Ours Reference

SMAPE (0.0209) 0.0280 0.0209
DSSIM (0.0338) 0.0656 0.0300

SMAPE (0.0289) 0.0317 0.0294
DSSIM (0.0293) 0.0362 0.0296

SMAPE (0.0440) 0.0505 0.0441
DSSIM (0.0863) 0.1098 0.0839

SMAPE (0.0210) 0.0253 0.0218
DSSIM (0.0189) 0.0323 0.0205

SMAPE (0.0315) 0.0142 0.0128
DSSIM (0.0457) 0.0238 0.0170

Figure 8: Comparing the denoising results of our method (Ours) with the previous non-neural deep-Z denoiser (Vicini19) on deep-Z images,
both visually and through metrics computed on the flattened denoised images. We also show the results from a flat denoiser (Flat) that was
applied to the flattened images. This is only for reference purposes and we mark the metrics of Flat with parentheses. As evidenced in the
bottom row where a blurred foreground object was removed after denoising, the flat denoiser cannot be applied prior to deep compositing.
c© Disney

trained to denoise diffuse, specular, and alpha, but not depth. Ap-
pendix D lists the details of the architecture of this denoiser. It was
trained on the flattened version of our training set using SMAPE
on each denoised layer, with a similar training schedule, requiring
approximately 1.5 days to reach the same number of training itera-
tions.

In addition to the comparison between Vicini19 and our method,
Figure 6 also compares the deep-Z denoisers (denoise before flat-
tening) with this neural flat denoiser (denoise after flattening). De-

spite the fact that the latter produces a flat denoised image that pro-
hibits deep compositing, it does provide context on the quality of
our neural deep-Z denoiser. In terms of the average metrics, we ob-
serve that the quality of our deep denoiser is slightly worse than the
neural flat denoiser (Figure 6). This small discrepancy measured on
the entirely flattened denoised results can be further reduced by us-
ing a higher weight on the flattened component of the training loss
of our method. This change, though, can hinder the quality of the
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Ours Input Deep-Z only Ours (hybrid) Reference

SMAPE 0.0508 0.0333
DSSIM 0.1031 0.0632

SMAPE 0.0205 0.0199
DSSIM 0.0284 0.0253

Figure 9: Comparing the hybrid flat–deep-Z denoising (Ours) with a deep-Z-only approach. The flat components help improve the recon-
struction quality in regions with high noise or less depth structures. c© Disney

depth separation and consequently produce artifacts during deep
compositing.

We additionally include examples from the flat denoiser in our
qualitative evaluation (Figure 8). Despite the overall lower error,
the flat denoiser can over-blur regions with complex depth infor-
mation (red inset for rows 1 and 3), which the two deep denoisers,
and especially our method, preserve better. Finally, the last row of
this figure demonstrates the degradation of depth separation when
denoising flat data. Specifically, in this example, the input of the flat
denoiser contains aggregated depth and color information at each
pixel, which, in the case of out-of-focus boundaries, cannot be de-
composed cleanly into the foreground and background. Both deep
denoisers can prevent such color-leaking artifacts along depth.

5.3. Ablation studies

In this section, we validate the effects of the hybrid flat–deep-Z de-
noising and the depth-aware neighborhoods by removing the corre-
sponding component from our architecture, and train and evaluate
the resulting model under the same settings as mentioned above.
We also apply our model on imagery from another renderer, in or-
der to evaluate the generalization of the method.

5.3.1. Hybrid flat–deep-Z denoising

Table 5: Average error metrics on the test set for our hybrid method
and a deep-Z only method.

Ours Deep-Z Only

Sample count (spp) SMAPE DSSIM SMAPE DSSIM

16 0.0377 0.0854 0.0407 0.0963
32 0.0313 0.0684 0.0338 0.0756
64 0.0261 0.0559 0.0282 0.0602
128 0.0222 0.0471 0.0233 0.0484
129+ 0.0194 0.0416 0.0197 0.0410

The hybrid flat–deep-Z architecture is designed to provide the

deep-Z denoiser with pixel context and to offer a shortcut for de-
noising flat regions by combining a flat reconstruction with each
bin of the deep-Z output. The mean metrics on flattened images at
each spp level are listed in Table 5 for the hybrid architecture com-
pared to a purely deep architecture. It can be observed that at all
except the highest spp levels, the hybrid architecture outperforms
the deep-Z-only method for both metrics. The advantage of using a
hybrid architecture is more prominent at lower sample counts, i.e.,
with more noisy input. This can be attributed to bins in the noisier
images being more susceptible to insufficient sampling, resulting in
highly fluctuating and unreliable values in their bin neighborhood.
The flat components in the hybrid architecture provide the critical
context of the neighborhood, resulting in better reconstruction. As
more samples accumulate in the bins, the bin neighborhood values
become more stable, and the impact of the flattened context sub-
sides. Figure 9 shows visual comparisons between the two meth-
ods. The character’s face in the first example is primarily flat, and
the grass field in the second example is out of focus and has a rel-
atively simple depth structure. When only reconstructing each bin,
residual noise is noticeable in the flat or highly blurry regions, and
the hybrid approach gives a much smoother reconstruction than the
deep-Z-only approach. Also, as showcased previously in Figure 1
and Figure 8, the hybrid approach does preserve the depth separa-
tion, indicating that the learned combination can learn to selectively
use the flat denoising result as needed. These comparisons confirm
the benefit of the hybrid flat–deep-Z denoising approach.

5.3.2. Depth-aware neighborhoods

As described in Section 3.1, our depth-aware neighborhoods are
designed to address artifacts caused by bin misalignment, as il-
lustrated in Figure 2, and we provide visual results that demon-
strate this in Figure 10. The non-depth-aware method uses a naive
3-D CNN with regular indexing in the input of convolution layers
and denoising kernels for each bin. The first example showcases
a scene with a very complex depth structure. The naive 3-D CNN
approach struggles to find useful neighboring bins and produces
results with artifacts and residual noise. Our method, augmented
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Ours Input Non-Depth-Aware Ours Reference

SMAPE 0.0524 0.0505
DSSIM 0.2480 0.2368

SMAPE 0.0325 0.0333
DSSIM 0.0349 0.0363

SMAPE 0.0180 0.0182
DSSIM 0.0159 0.0163

Figure 10: Comparing our method with a non-depth-aware variant. The first three examples show the artifacts from the regular convolution
and kernel reconstruction operators. The second and third rows are different sampling levels of the same scene, showcasing the difficulty of
mitigating such artifacts even with a significantly increased sample count (8x). c© Disney

with the lightweight depth-aware indexing, is able to locate useful
neighbors and blend them to create a more accurate reconstruc-
tion. The second example focuses on a region that is heavily out of
focus but exhibits substantial bin misalignment due to the random-
ness in the depth values, as the blurred object covers a large depth
range. The misalignment causes artifacts in the non-depth-aware
approach, which are mitigated by using the depth-aware neighbor-
hoods. In the third example, we increase the input sample count
by a factor of 8 (from 32 to 256 spp), and we observe that these
artifacts are still visible for the non-depth-aware approach.

Table 6: Average error metrics on the test set for our deep-Z de-
noiser with and without depth-aware neighborhood indexing. The
two methods are very close in error metrics, and we refer the read-
ers to the main text and figures for discussion on the effect of the
depth-aware method.

Ours Non-Depth-Aware

Sample count (spp) SMAPE DSSIM SMAPE DSSIM

16 0.0377 0.0854 0.0377 0.0850
32 0.0313 0.0684 0.0312 0.0682
64 0.0261 0.0559 0.0260 0.0561
128 0.0222 0.0471 0.0221 0.0474
129+ 0.0194 0.0416 0.0193 0.0417

Though our method avoids reconstruction artifacts caused by bin
misalignment, such cases only cover a minority of pixels in our
test set, and on average, the methods with and without depth-aware

neighborhoods perform similarly in terms of the metrics, as listed in
Table 6. Notably, depth-aware indexing operates with the assump-
tion that, within a pixel, each surface is only represented by a sin-
gle bin. As bins are created by closeness in depth, this assumption
might be violated if a pixel contains slanted surfaces, i.e., a sin-
gle surface with a large depth range. There, depth-aware indexing
might not be optimal, because the bins in the front of the center
pixel will be closest to bins in the back of a neighboring pixel. In
this case, there can be residual noise in the output, as showin in Fig-
ure 11. We argue that the problem is mainly caused by the render’s
binning algorithm rather than the denoiser, and can be mitigated
by more appropriately creating and merging bins. To validate this,
we preprocess the datasets and merge bins that are close within 1%
depth distance. A network trained on the new training dataset, de-
noted “Ours (Z-merged)” in Figure 11, does not suffer from the
residual noise.

5.3.3. Generalization to new content

Our model is trained on a relatively small dataset, as described in
Section 4.1, and all images in this dataset are from the same produc-
tion, rendered with the same renderer. This is mainly caused by data
availability restrictions, as some features were not supported by the
renderer’s deep-Z mode, and manual modification was necessary
for each scene; the large size of deep-Z images also limited the
number of renderings. Though we did not observe overfitting dur-
ing training, it is of interest to evaluate whether the current model
can perform well on data from other productions, or even other
renderers. Therefore, we apply the trained deep-Z denoiser on an
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Ours Input Non-Depth-Aware Ours Ours (Z-merged) Reference

SMAPE 0.0164 0.0168 0.0164
DSSIM 0.0199 0.0209 0.0208

Figure 11: Failure case of depth-aware neighborhood when multiple bins are created for a single slanted surface. By merging bins based
on depth more aggressively, the artifact can be mitigated, suggesting the potential benefit of more advanced binning and indexing methods.
c© Disney

Ours Input Ours Reference

(a) Visual example of deep-Z denoising on new data. The second row shows the result after
removing the background. c© Disney / Pixar
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(b) The progress of mean relative losses (computed on flat-
tened images) during training.

Figure 12: Generalization ability of our method. (a) Our model can denoise test images from a different production and renderer, despite
not having trained on imagery from this production or renderer. (b) Losses on these new test images decrease during training in a similar
manner as losses on our original training set.

additional test set from another production, rendered with Render-
Man [CFS∗18]. This test set contains 9 scenes rendered at 16–256
spp. As can be seen in Figure 12(a), our method can suppress the
noise while preserving the separation between the foreground and
background, despite not having been trained on data from Render-
Man.

Furthermore, to examine possible overfitting, we evaluate the
model with checkpoints at 6 different training iterations of the same
model. Figure 12(b) shows the progress of mean relative losses on
Hyperion (images from the same production as the training set,
Section 4.1) and RenderMan test sets, with respect to losses at the
earliest checkpoint. As can be noticed, losses on the RenderMan
test set decrease with the same trend as those on Hyperion images.
Also, the RenderMan relative losses are lower than the Hyperion
ones, which can be explained by a lower residual noise level in the
reference images.

6. Discussion and future work

As illustrated in previous sections, our hybrid neural deep-Z de-
noiser is capable of achieving high-quality reconstruction from ren-
dered deep-Z images while preserving the depth separation within
each pixel. In this section, we discuss the limitations of the current
method and directions for potential future work.

Final denoising quality and data availability. Despite getting
close to a flat denoiser’s results (Section 5.2), our method still can

be improved in terms of the quality of the final flattened image,
e.g., through hyper-parameter tuning such as loss weighting. More-
over, as discussed in Section 5.3.3, challenges for creating a large
number of deep-Z renderings have resulted in a relatively small
dataset for training our method, which also leaves room for qual-
ity improvement. As an indicator of quality, we run Intel’s Open
Image Denoise (OIDN) [Áfr23] on the flattened version of our
test images, and compare it with our method and Flat. On aver-
age, OIDN achieves slightly better metrics than Flat, at around 1%
lower SMAPE and 4% lower DSSIM, a distance smaller than that
between our method and Flat. Such a difference is likely due to
the much larger training set for OIDN. Two visual examples are
shown in Figure 13. It can be seen that OIDN can better recon-
struct textured details than models we trained, indicating possible
quality improvement, especially for auxiliary feature usage, from
larger training sets. However, in the second example, OIDN strug-
gles in regions with hair, which could be atypical of its training set,
again showing the importance of training data. Apart from gather-
ing additional data, it would also be desirable to use flat denoisers
trained on larger datasets to improve the quality of deep-Z denois-
ers for which training data is scarcer due to the cost of generating
and storing deep data. Our current hybrid approach only uses a flat
reconstruction module, but a fully flat, potentially pre-trained de-
noiser can allow the deep-Z part of the network to focus on details
and bin separation.

c© 2024 Eurographics - The European Association
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Ours Input OIDN Flat Ours Reference

Figure 13: Comparing Intel’s Open Image Denoise (OIDN) with the flat denoiser trained on our dataset (Flat) and our proposed method
(Ours). OIDN produces better reconstruction in textured areas, but creates artifacts with hair. c© Disney

Artifacts from depth denoising. The output from our current
approach is suitable for deep compositing operations because
the depth separation is preserved and noise reduced, and this is
achieved by joint denoising of color, alpha and depth channels.
However, in rare cases, our method can produce incorrect denoised
depth values. This can be observed in Figure 14 where the back-
ground is clipped away, but some background pixels still light up.
Most problematic cases happen at input bins that are empty, as men-
tioned in Section 4.1. These artifacts can be cleaned up by revert-
ing to the input (filler) depth for empty bins, but we believe better
depth denoising, e.g., by using more loss terms or through hard con-
straints on output value ranges, can help prevent such cases from
the source.

Denoised

Using filler depth for empty bins

Figure 14: Depth denoising artifacts (top) and result after using
filler depth for empty bins (bottom). The results are shown for a
32spp input image with the background removed. c© Disney

Identical bin layout through noise levels. In our dataset, all im-
ages from the same scene share the same bin layout that was created
in a pre-pass. While it enables the direct application of bin-wise
losses for training, the identical bin layout assumption does not
hold for all renderers that support rendering deep-Z images. The bin
layout can also be gradually constructed during rendering, where
each sample can create a new bin or be included in an existing bin,
and different sample counts can result in different numbers of bins.
It is interesting to explore how to effectively train a deep-Z denoiser
on noisy–reference pairs with different bin layouts, and we believe
that it is possible to apply the depth-aware principle when finding

the corresponding bins between noisy and reference to compute
losses.

Learned bin layout. Our method does not change the bin layout
of the input image in terms of the per-pixel bin count. However,
it is sometimes desirable to change the bin layout after render-
ing, that is, to increase or reduce the bin count for some pixels.
In low-sample-count scenarios, pixels can have missing bins due
to insufficient sampling, and on the other end, there can be redun-
dant bins that could be merged for increased processing and stor-
age efficiency. It is interesting to see whether it is possible to use
depth-aware neural networks to construct new bin layouts that bet-
ter suit downstream tasks.

Alternative neural architectures for semi-structured data. Our
current method relies on an adapted convolutional neural network
to perform deep-Z denoising. In terms of handling deep-Z images
with a variable number of bins per pixel, other architecture options
can be explored, including graph neural networks (Section 2), re-
current neural networks, or transformers. The former can represent
a bin’s neighborhood as edges in a graph, and the latter two have
been proven to work well with natural language processing tasks
where sequences of different lengths are common.

Deep-Z and deep-objectID. Though deep-Z is the format of stan-
dard “deepEXR” defined by OpenEXR [Kai13a], alternative for-
mulations of deep images exist, where each bin is not necessarily
associated with a depth value. Deep-ObjectID is one of such formu-
lations [CLC16,Hil18], which associates each bin with the ID of the
first-intersection primitive. Deep-ObjectID images provide the pos-
sibility to perfectly separate each object in the scene. Our deep-Z
denoising method is not directly applicable to deep-ObjectID im-
ages that do not contain depth information, and care needs to be
taken when using object IDs, as they are typically arbitrary hash
values of object name strings [Hil18] and the definition of an “ob-
ject” can vary from scene to scene, resulting in possibly small
numbers of available neighbors. Finally, combining deep-Z and
deep-ObjectID can potentially lead to higher denoising quality than
relying solely on either one.

Deep volumes. Volumetric effects, such as smoke, fog, clouds, or
explosion, form one interesting application for deep compositing

c© 2024 Eurographics - The European Association
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because of their natural transparency [Duf17] and their high cost
of rendering. Our current method was not tested on rendered volu-
metric effects due to data availability, but there is no fundamental
limitation on applying our hybrid depth-aware deep-Z denoiser to
such effects given sufficient training data.

Temporal deep-Z denoising. In this work, we address denois-
ing single deep-Z images, and it is natural to consider denoising
deep-Z image sequences for higher temporal stability and qual-
ity at the same sample count. In the case of flat image denois-
ing, pixels from neighboring frames are aligned via motion vec-
tors [VRM∗18, IFME21], which provide pixel-to-pixel correspon-
dence between frames. Such a step can also be used to align deep-Z
images at the pixel level, but it could be more interesting to explore
possibilities to align at the bin level, that is, to find out which bin(s)
in the previous frame correspond to a bin in the current frame.
Practical issues, such as memory consumption, may also arise for
deep-Z denoisers processing frame sequences.

7. Conclusion

In this work, we introduced a neural kernel-predicting denoising
method for deep-Z images which preserves their depth structure
and enables deep compositing workflows. Our hybrid multi-scale
deep-Z denoiser combines a flat and a deep-Z reconstruction result
through learned weights, which ensures high quality in regions with
and without depth structure. Depth-aware neighborhood indexing
is used to align neighboring bins and more effectively gather infor-
mation, which avoids artifacts caused by a naive 3-D extension of
a kernel-predicting denoiser. Through evaluation on a production-
quality dataset, we demonstrate that our method significantly out-
performs the current state-of-the-art deep-Z denoiser, reaching the
same quality at half or even a quarter of the sampling budget,
while operating at a much-improved speed. Our method produces
denoised images with quality close to that of a recent neural flat
denoiser, while preserving depth separation and supporting deep
compositing workflows. We believe that the quality and efficiency
of our deep-Z denoiser addresses a major challenge for efficiently
producing clean path-traced deep-Z images for deep compositing
workflows and can be a significant addition to future production
pipelines.
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Appendix A: Formal definition of depth-aware neighborhood

Below, we provide a formal description of our depth-aware neigh-
borhood. We start by defining the input to our depth-aware 3-D
kernels that operate on a subset of neighboring bins based on depth
information. This 3-D neighborhood has a user-defined size of
kW ×kW ×kB where kW = 2rW + 1 and kB = 2rB + 1 (e.g., our
depth-aware convolutions use kW = kB = 3 and our depth-aware
kernels use kW = 5 and kB = 3). The coordinate of the center bin
p = (x,y,b) is located within pixel (x,y).

We define a kW×kW spatial neighborhood N (x,y) that is cen-
tered around pixel (x,y) and includes the pixel itself. Within each
neighboring pixel (x′,y′) ∈ N (x,y), we define the set of neighbor-
ing bins’ coordinates as (x′,y′,b′) ∈ B(x′,y′). We find the coor-
dinates of the closest bin in depth for each neighboring pixel by
computing

q∗(x′,y′;p) = argmin
q∈B(x′,y′)

|zc(p)− zc(q)|, (2)

where zc(·) := (z f (·)+ zb(·))/2 denotes the center depth for a bin.

Then we identify a set of bin coordinates from each pixel
(x′,y′,b′)∈BrB(q) with a bin index distance from q= (x′,y′,b) re-
stricted by the user-defined size along the bin dimension |b−b′| ≤
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rB. We can now construct the input for our depth-aware 3-D kernels

QDA(x,y) =
⋃

(x′,y′)∈N (x,y)

BrB(q
∗(x′,y′;p)). (3)

For comparison, we can also construct a neighborhood with the
regular neighboring indexing as follows:

QS(x,y) =
⋃

(x′,y′)∈N (x,y)

BrB(q), (4)

where in this case q = (x′,y′,b) shares the same bin index b with
the central bin at p. Compared to regular neighbor indexing, by
using the depth information we essentially shift the bin dimension
of all neighbors such that their central bin is as close as possible to
the depth of bin p = (x,y,b).

Given the depth-aware neighbor-indexing method, our operators
can be defined as receiving per-bin input values I(q) within the
neighborhood q ∈ QDA(p), and a kernel K(q;p) of shape kW×
kW×kB, and computing a weighted sum Î(p):

Î(p) = ∑
q∈QDA(p)

K(q;p)I(q). (5)

Equation 5 describes both the application of depth-aware convolu-
tion kernels on feature maps inside the U-Net and the application
of predicted depth-aware denoising kernels on noisy input chan-
nels, such as α(p) and c(p).

Appendix B: Filling depth for empty bins

Input bins that did not receive any samples during the color pass
will be left empty, i.e., with zeros in all channels. However, it is
challenging to denoise them, as their location along the depth di-
mension is unknown. This is in contrast with black pixels in a
flat image, where the pixel’s position is known and only the color
values are missing. We therefore fill these bins’ depth values by
reusing the median of the valid depths in its bin neighborhood and
ensuring the tidiness within each pixel.

We list below the detailed steps of our depth filling algorithm,
where b denotes an empty bin’s index, and B denotes the total num-
ber of bins in a pixel. For brevity, we omit the dependence of B on
the pixel location. Additionally, dfb(b) := zb(b)−z f (b) denotes the
distance between the front and back depth values of bin b, i.e., its
depth range.

1. Set z f (b) to the global maximum depth.
2. Set zb(b) to 0.
3. If b = 0, set z f (b) to the median of the first bin depth in the 5×5

spatial neighborhood.
4. If b = B−1, set zb(b) to the median of the last bin depth in the

5×5 spatial neighborhood.
5. If b > 0, set z f (b) to maxb′<b zb(b

′).
6. If b < B−1, set zb(b) to minb′>b z f (b

′).
7. Set z f (b) to the median eligible z f (b

′) in the 5×5×3 neighbor-
hood; bin b′ being eligible means z f (b)≤ z f (b

′)≤ zb(b).
8. Set dfb(b) to the median eligible dfb(b

′) in the 5×5×3 neigh-
borhood; eligible means dfb(b

′)≥ 0.
9. Set zb(b) to z f (b)+dfb(b).

The tidiness is then ensured by interleaving front and back

depths within a pixel, i.e., forming a list of z f (0), zb(0), z f (1),
zb(1), . . . , z f (B−1), zb(B−1). Then we compute the running max-
imum from front to back, which will be used to update the depth
values for only the empty bins. Afterwards, we compute the running
minimum from back to front and update the empty bins’ depth val-
ues again.

As discussed in the limitations, depth denoising for these bins
still remains challenging after the filling step. An easy fix would be
to directly use the filler depth as the output depth. Better techniques
to ensure tidiness within pixels for the output deep-Z images can be
an interesting path for future work.

Appendix C: Bin merging for training efficiency

To help us better balance the memory requirements during training
and meet the GPU memory constraints, we propose a bin merg-
ing approach that reduces the maximum number of bins per pixel.
Within each deep pixel, we utilize a heuristic for identifying merge
candidates which aims for minimal degradation of how flattened
color changes when removing part of the depth range. We approx-
imate this with the help of the Z–A (depth–alpha) curve, which
models accumulated opacity within a pixel with increasing depth
as visualized in Figure 15. Based on the Z–A curve, we define the
cost of merging two bins as the product of their depth and opacity
ranges:

cost(p,q) =
(

zb(q)− z f (p)
)(

α+(p)+α+(q)
)
, (6)

where p = (x,y,b) and q = (x,y,b+ 1) are two consecutive bins
in the same pixel, z f (·) and zb(·) return the depth values at the
front and back bin boundaries, and α+(·) returns the bin’s effective
alpha as described by Vicini et al. [VAN∗19]. For each pixel with
more bins than a user-defined maximum bin count threshold, we
iteratively select the pair of bins with the lowest cost and merge
them. The merged bin will span the depth range of the original bins
and yield the same alpha-composited color at the back edge. More
formally, equations for computing the depth (z′f ,z

′
b), alpha (α′),

and color (c′, premultiplied) in the merged bin are:

z′f (p) = z f (p),

z′b(p) = zb(q),

α
′(p) = α(p)+(1−α(p))α(q),

c′(p) = c(p)+(1−α(p))c(q).

(7)

Examples of bin merging on rendered deep pixels are illustrated
in Figure 15, where we demonstrate the ability of Equation 6 to
reduce bin count in a manner that has little impact on the depth-
resolved appearance of a deep pixel. Overall, we empirically found
that using the proposed heuristic, we can consistently reduce the
number of depth bins and thus overcome memory bottlenecks dur-
ing training. We merge our training dataset in a pre-process, using
the depth and alpha values from the reference deep-Z images that
share the bin layout with the noisy inputs.

During training, we use a bin-merged version of the training set
containing max 8 bins per pixel. Given the overall maximum orig-
inal bin count of 53, such a bin merging pass greatly reduces the
peak memory consumption and runtime requirement for training.

c© 2024 Eurographics - The European Association
for Computer Graphics and John Wiley & Sons Ltd.
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Figure 15: Effect of bin merging (to 4 bins) on accumulated opacity and color in two example pixels. The top part of each sub-figure renders
the composited color as a function of depth, and the bottom plots the accumulated opacity with depth. Depth discontinuities in opacity due
to multiple bins with the original binning (blue) are approximated with fewer bins (orange). On the left, multiple bins with small opacity
contributions spanning a large depth range are merged into bin 2 with minimal impact on the color. On the right, bins with similar depth and
large opacity contributions are merged into bin 2, yielding a smoother color discontinuity in depth.
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Figure 16: Network architecture of our flat denoiser, following similar notations as Figure 4. The flat denoiser uses 2-D convolutions and
denoising kernels in places where our proposed methods use 3-D operators.
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Figure 17: Histogram of bin count across all pixels in our dataset
(training, validation and test).

Figure 17 shows the histogram of bin count in all pixels of our
dataset. It can be seen that pixels with more than 8 bins are rela-
tively scarce, and by merging to a maximum of 8 bins, most of the

depth structure is preserved with the benefit of much lower RAM
consumption and faster training.

Appendix D: Details of the flat denoiser

Our flat denoiser (Flat) uses a three-scale U-Net and kernel-based
reconstruction, and denoises diffuse, specular and alpha channels.
The difference from our main method is the use of 2-D operators,
including convolutions and denoising kernels. The architecture of
the flat denoiser is shown in Figure 16 using a similar notation as
Figure 4 for the proposed deep-Z denoiser. Due to the use of 2-D
instead of 3-D layers, the flat denoiser has less trainable weights
than our main method. However, we experimentally find that fur-
ther enlarging the flat denoiser’s architecture, e.g., by increasing
the number of feature channels at each scale, only marginally im-
proves the denoising quality. We eventually decided to stay with
the current flat denoiser architecture for a more direct comparison
between the flat and deep-Z denoisers with the same length for the
internal representation of the processed entities (pixels and bins,
respectively).
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