

Havok Game Dynamics SDK

A product overview of the most comprehensive, optimized,
real-time physics solution for game development.

© 2002 Telekinesys Research Ltd. All rights reserved.

Havok.com and the Havok buzzsaw logo are trademarks of Telekinesys Research Ltd. All other
trademarks contained herein are the properties of their respective owners.

This document is protected under copyright law. The contents of this document may not be reproduced or
transmitted in any form, in whole or in part, or by any means, mechanical or electronic, without the express
written consent of Telekinesys Research Ltd. This document is supplied as a manual for the Havok game

dynamics software development kit. Reasonable care has been taken in preparing the information it
contains. However, this document may contain omissions, technical inaccuracies, or typographical errors.

Telekinesys Research Ltd. does not accept any responsibility of any kind for losses

due to the use of this document. The information in this document is subject to
change without notice.

 © 2002 Telekinesys Research Ltd. 1

Contents
1 Product Summary __ 3

2 Collision Detection__ 4

3 Simulation & Collision Response ______________________________________ 6

4 Scene Management ___ 7

5 Constraints __ 8

6 Vehicle Dynamics___ 9

7 Fast Deformable Technology __ 11

8 Actions & Controllers __ 15

9 Events & Callbacks __ 16

10 Toolkit Layer ___ 18

11 Platform Support & Renderer Integration ______________________________ 19

12 Debugging / Profiling __ 20

13 Havok: All Tooled Up __ 21

14 Demos, Demo Framework and Documentation __________________________ 28

15 Source Code __ 32

16 Contact Details __ 33

 © 2002 Telekinesys Research Ltd. 2

1 Product Summary
The Havok Game Dynamics SDK is a comprehensive highly optimized development
solution designed to simplify the task to integrating full physical simulation into
entertainment applications.

The core technology has support for the following:

Optimized collision detection & resolution
Rigid body response
Deformable dynamics: soft body (mesh and FFD based), cloth and rope
Vehicle Dynamics
Fast general constraints
Specific car and rag doll constraints
Sensors, events & callbacks
Rapid prototyping layer
Debugging and profiling support
Demos, tutorials and documentation

In addition to the core engine, the Havok Game Dynamics SDK features a comprehensive
set of tools for programmers, artists and designers to facilitate parallel development
streams early in the project lifecycle and easy tuning and profiling of your game.

Exporters for 3ds max and Maya, for the easy set-up of physical scenes within a
familiar environment
Car tuning tool, for tweaking over 100 vehicle parameters, while testing vehicle
drivability in real-time on your target platform
Visual Debugger, for analyzing and profiling your game

Supported Platforms

The Havok 1.7 Game Dynamics SDK is available for PlayStation 2, GameCube, Xbox
and PC and supports all commonly used compilers (e.g. Codewarrior, ProDG). Havok’s
core technology is optimized for each supported platform.

Havok also supports all 3D graphics engines: Alchemy from Intrinsic, NetImmerse from
NDL, Renderware from Criterion, the Quake and Unreal engines, as well as all in-house
rendering engines.

 © 2002 Telekinesys Research Ltd. 3

2 Collision Detection
Collision geometry types supported by Havok are:

Spheres and Planes
Convex objects
Concave objects (not necessarily closed)
Fixed polygon soups (e.g. landscapes): used for geometry, which never moves and
has been optimized for this purpose.
Heightfields (2 flavors: optimized and unoptimized).

The matrix above details the collision detection implementation in the current release.
Each square represents whether collision are calculated for the associated features. In
some cases (e.g. planes colliding with planes) the collisions are purposefully not
implement. Currently, the height-field support is limited to rigid convex objects but
support for all other object classes is in development.

 © 2002 Telekinesys Research Ltd. 4

Feature Benefits:

Feature Description Benefit
Optimized Collision
Detection Engine

The Havok Collision Detection Engine
requires significantly less memory than
any other implementation available on
the market today.

Havok has developed a new mid-phase
collision detection system based on Memory
Optimized Partial Polytope (MOPP)
Technology. The revolutionary MOPP
Technology significantly reduces the
amount of memory required to store
collision detection information, making it
possible to create large physical landscapes
for the first time on platforms like PS2 and
Gamecube.

An added bonus is that the new technology
also improves game performance in many
instances. In particular, vehicle games that
use raycasts will benefit the most from these
improvements.

Access to collision
results

Each collision gives a position, normal,
relative velocity and distance from
surface information.

Gives you total control of the effects you
want to create. For example, you can change
the volume levels of explosions depending
on the relative velocity of the objects
colliding.

User defined
collision primitives

The Havok SDK features support for user
defined collision primitives. This
provides a callback during collision
detection that can be used to add your
own collision types.

Havok gives you the flexibility to create
your own collision primitives. Use of
collision primitives optimizes performance
in your game.

Query collision
system

The collision system may be called
independently of the physics, by
disabling collision response.

You will often want to detect collisions
without calling the physical responses into
play. We give you the freedom to turn off
the collision response.

Display proxies Represent any object in the game by an
arbitrary collision geometry.

Improve your game engine’s performance –
by decoupling display and collision shapes,
you can display something relatively
complex while simulating it as a box or
sphere. In this way, you get control of the
CPU used by the collision detection in their
game.

Phantom Objects Objects which are included in the
collision detection process but do not
cause collisions.

These are great for making sensors: for
example, a box phantom object might be
placed surrounding a room – if an object
penetrates the box a collision is registered
and information passed to the client, but the
object does not bounce off the box – instead
it passes straight through.

Collision Filtering All collision events may be filtered
according to game specific needs.

This allows you to optimize the collision
detection for your game – you can remove
collisions from the system where
appropriate.

Collision Layers Objects in the system may be grouped
into layers, and the collisions between
layers disabled or enabled.

This gives you even more control over the
collision system allowing you to further
optimize performance. For example,
objects in different rooms might be gathered
into different layers, and collisions between
these layers disabled.

 © 2002 Telekinesys Research Ltd. 5

3 Simulation & Collision Response
The collision response subsystem manages what happens to objects after they collide.
This system is responsible for sliding, bouncing, stacking and general movement of all
the objects in the physical simulation.

Feature Benefits:

Feature Description Benefit
Physical Properties Physics properties like mass, elasticity,

friction and restitution can be set for each
rigid body. You can also change the
center of mass.

At any time in the game any of the physics
properties can be set or changed giving full
control over the behavior of the objects.
Some physics engines require that you fix
the properties of the objects in the scene at
scene construction time – this is not the case
with Havok.

Fast Subspace A new collision response algorithm may
be selected for cases where you want low
CPU hit and are prepared to sacrifice
some accuracy.

Fast subspace is great for rockfalls, meteor
storms etc, where you don’t always see the
results of a slightly less accurate physics
simulation, but want to simulate lots of
objects.

ODE Solvers A selection of ODE solvers1 is provided
including Euler and RK45.

If you want to have greater control over how
the simulation is handled numerically you
can specify the integrator to use

Multiple Friction
Models

There are a number of friction models
provided with the Havok SDK, from
simple to complex (handling both static
and dynamic friction).

Depending on the accuracy you want in the
simulation you can choose which friction
model to go for. This gives you greater
control over the CPU hit required for the
simulation. The complex friction model
seamlessly handles static/dynamic friction,
which is a requirement for stacking and
sliding.

Stable Stacking When lots of objects are in contact
simultaneously, the Havok SDK handles
this to provide stable stacks as you would
expect (i.e. objects don’t continue to slide
about).

Without stable stacking it’s hard to create
structures like walls, or place things on
tables etc. Stable stacking is a necessary
feature to provide realism in a physical
simulation.

Math Library A fully featured math library with
support for vectors, matrices and
Quaternions is provided with the Havok
SDK.

You can use the math library for your own
purposes, building on our stable and
optimized routines for your own game.
These libraries have been well tested as they
form the core of the Havok SDK.

 © 2002 Telekinesys Research Ltd. 6

1 An ODE is an ordinary differential equation (in this case the equation is that which
describes the motions of the rigid bodies). An ODE solver is a piece of math code that
solves the equations, and in this case works out how the objects move in the
simulation.

4 Scene Management
The Havok SDK provides a set of functions to allow you to manage the simulation of
your game world in a scalable way, allowing it to handle large geometries and large
numbers of dynamic objects.

Feature Benefits:

Feature Description Benefit
Dynamic Creation
& Deletion

All objects can be created and deleted at
runtime, adding and removing them to
the physical simulation.

This is great for large worlds where you
only want those objects close to the player
to be active in the simulation and taking up
memory. When they get too far away, just
delete them.

Subspaces Havok groups simulated entities into
subspaces. Each subspace can be
managed separately, with their own
integrators, deactivation parameters etc.

You can break your world up into subspaces
and then manage the CPU load across these
subspaces in real time. For example, a
subspace that is not near the player might be
updated less frequently.. In this way you
can better manage the CPU load.

Cloning Physical objects may be cloned, having a
single memory resident version of the
geometry but as many instances as you
want.

If you have many repetitions of an object
(rock in a rockfall, leaves in the wind etc.)
then you only need to store one geometry
and then instance it many times, so you
have very efficient memory usage.

Automatic
Deactivation

Objects that are not moving are removed
automatically from the simulation. They
are not deleted, just tagged as “inactive”
and do not wake up until collided with or
explicitly activated through the SDK.
The user has control over how aggressive
the deactivator is so that it may be tuned
to a specific application.

In most cases only a few objects at any
given time are truly active and moving in
the scene. The automatic deactivation
optimizes CPU usage by removing inactive
objects. With the tuning parameters you can
deactivate objects aggressively (e.g. in a
rockfall where you won’t notice) or more
subtly.

 © 2002 Telekinesys Research Ltd. 7

5 Constraints
Havok has a fully featured constrained dynamics engine tailored for real-time game
applications. Our constraints have been optimized for games and are extremely efficient
while very stable. All constraint properties and connections are editable in real-time so
you can make or break constraints at will at run-time.

Feature Benefits:

Feature Description Benefit
Point to Point Constrain a point on one object to a point

on another with full joint limiting and
joint friction.

Fast and stable point to point make it easy to
connect objects together (great for effects
like ropebridges, machinery, hanging lights
etc).

Point to Nail A special case of point to point allows
you to connect an object to a fixed point
in space, again with full joint limiting and
joint friction.

Good for anchoring objects to parts of the
landscape.

Joint Limits You can specify for most constraints the
limits of the relation motions and
orientations of the constrained bodies.

Allows constraints like hinges to only twist
through a limited angle, or for rag doll limbs
to ensure that they always maintain realistic
poses.

Joint Friction Joints with friction lose energy as the
joint is manipulated, so an arm joint will
not result in an arm that spins forever.

Really important to allow rotations around
constraints to come to rest eventually

Hinge joint Allow one object to spin around the axis
of another.

Great for doors and levers like seesaws.

Rag Doll
constraints

A special constraint designed to match
the sort of connections that exist between
limbs in humans. There are soft joint
limits and friction with independent
control over positional and angular
constraints.

This makes it very easy to create rag doll
effects, like bodies falling having been
killed or a motorcyclist reacting to bumps in
the road or passengers in a car as it
powerslides around corners.

Car Wheel
constraints

A special purpose constraint to make it
easy to construct vehicles. A wheel may
be constrained to spin about an axel
while also having limited rotational spin
around a steering axis.

Although we have a vehicle SDK that
replaces wheels with ray casts, sometimes
you want to construct a simple vehicle (e.g.
trailer). The Car wheel constraint is great
for this. It’s also possible to create cars and
other vehicles with this constraint (and use
springs for suspension), but this is not as
efficient as using out car SDK, but may be
more general in some cases.

Stiff Springs A faster alternative to point-to-point
constraints. Stiff springs are very
efficient to computer but are not as stiff
as constrained joints.

Great when you want to connect things (and
lots of them) but are not as concerned about
a little bit of drift in the connection (i.e. the
connected objects may move apart a little
under enough force).

Springs Classic Hookean springs with control
over rest length (compression and
extension) and damping.

Sometimes a spring is just what you need!
Good for joint actuators or suspensions.

 © 2002 Telekinesys Research Ltd. 8

Feature Description Benefit
Dashpots Dashpots are similar to springs but act on

velocities of objects not forces. They
may be used when springs are not stiff
enough, and where stiff springs are too
expensive to compute. Dashpots come in
linear and angular flavours.

Dashpots are great for creating constrained
systems very cheaply. It’s easy to create a
rag doll effect which uses little CPU but
which is perhaps not as accurate or
controllable as one created with rag doll
constraints.

6 Vehicle Dynamics
The Havok vehicle dynamics module is made up of a core vehicle physics system with
efficient ray casting for wheels and a tuned car wheel friction model to allow all types of
vehicle behaviors to be simulated effectively. On top of this core are a series of game
specific modules, which are available with source (and thus are user replaceable). These
include modules for:

Transmission
Engine
Suspension
Gameplay
Aerodynamics
Steering

The default system provided (complete with car tuning tool) gives access to over 100
parameters all of which may be tweaked in real-time for outstanding vehicle design
control. Some of these parameters are:

Wheel parameters: radius, width, friction, axle
Suspension parameters: length, strength, damping, suspension hardpoint
Engine parameters: rpm, torque, resistance torque
Gearing parameters: gear levels, shift points, clutch delay, wheel torque ratios
Aerodynamics parameters: air density, drag coefficient, lift coefficient
Gameplay parameters: friction equalizer, inertia factors, wheel friction tweakers

The vehicle SDK is based on a 2-axel steerable model with an unlimited number of
wheels per axel.

 © 2002 Telekinesys Research Ltd. 9

Feature Benefits:

Feature Description Benefit
Car Tuning Tool A real time UI giving direct access to

most of the vehicle parameters using
sliders and other controls. The UI can
communicate directly with the target
device (e.g. PS2) to allow you to tweak
the vehicle for your game.

See the tools section for more details.

Allows exploration of the functionality of
the vehicle SDK without having to create
your own application. This is great way to
get familiar with the vehicle SDK features
and also to make a stab at the parameters to
extract a particular type of behavior from
the vehicle technology. This can be can be
useful for game designers to get a feel for
the cars they create, and save time when
prototyping vehicle dynamics.

Also, given that source is provided, you can
extend this into a specific tool for your own
car game. The on-target nature of the tool
means that you can test vehicle performance
on consoles like PS2 and XBox directly.

Modular with
Source

The vehicle system has been designed as
a core physics module with all functional
components separated into distinct
modules. All of the application specific
vehicle modules are provided with full
source (e.g. engine, transmission,
aerodynamics).

All application specific modules can be
altered to directly suit the requirements of
your game. If you want to implement your
own strange transmission method then
you’re free to do so. This makes the vehicle
SDK a truly open and extensible framework
for vehicle dynamics simulation.

Raycasting for
Wheels

Although wheel constraints are provided
in the core SDK, the vehicle SDK uses
fast ray casting for simulating the
suspension/wheels of the vehicles. The
ray cast takes full account of wheel radius
and width.

Raycasting for wheels gives superior
performance across all supported platforms
with negligible visual loss in quality. You
can specify the wheel width, so the ray
casting performs accurately even when the
wheels come in contact with low edges like
kerbs.

100+ parameters There is a vast array of parameters
associated with each of the vehicle
modules, with full real-time access
always available to change the vehicle
performance during game play or game
design.

Every aspect of the vehicle system is
tweakable to extract just the sort of behavior
you are looking for. With full real time
access you can test the parameter changes
in-situ, as you design the game. And with
our modular approach with full source you
can create your own parameters or entire
vehicle modules to suit a specific
requirement.

Skidmarks &
Camera Support

Support is provided through an event
system for tire tracks and skid marks.
We also provide techniques for dealing
with cameras following the vehicle.

The visual representation of the vehicle has
a huge impact on the perception of vehicle
performance and speed. We provide
graphical methods to extract best use of the
vehicle dynamics, from skid marks to
camera techniques that enhance the
appearance of speed.

Advanced wheel
friction model

An isotropic model of friction for each
wheel is provided to allow modeling of
many different types of tire and ground
surfaces.

A good tire friction model is crucial for
achieving accuracte over-steer, under steer,
powersliding, handbrake turns etc. Our
model captures many of the physical
features of modern radial tires as well as
being able to model many other less
“standard” tire types.

 © 2002 Telekinesys Research Ltd. 10

7 Fast Deformable Technology

Fast deformable technology provides fast cloth, soft body and rope dynamics with control
over stiffness and damping and extremely efficient collision detection based on
deflectors. With this technology, you can easily tweak the parameters to optimize your
game’s performance.

Feature Benefits:

Feature Description Benefit
Fast Integration A fast integration method is used for the

fast deformable technology.
The deformable technology is very efficient
taking little CPU time to simulate complex
deformations.

Deflectors A new approach to collision detection has
been provided based on deflectors or
collision regions that may be setup by the
user. Each vertex in the simulation can
be instructed to collide with any number
of deflectors.

The collision performance of the
deformable object may be completely
tailored to suit the application. By having
vertex level control over collision detection
you can achieve very efficient collisions
with little loss in visual accuracy.

Attachment
Constraints

Every deformable body may be attached
to another or to rigid elements in the
scene through a series of constraints.
There are no limits of these constraints
and they may be made and broken at
runtime. Constraints may be specified at
a vertex level for complex attachments.

The deformable constraint system allows
you to construct complex scene elements in
a straightforward manner. Cloth may be
attached to moving characters, soft portions
may be attach to rigid frames, and ropes can
be attached to cloth / soft for effects like
tassels.

Volume Constraints Specified vertices in the deformable
object may be constrained to lie inside a
volume specified by a deflector object.

This gives you really fine grain control over
the behavior of the cloth. Sometimes you’ll
want to ensure that parts of the cloth do not
move too far (for example to approximate a
loose belt around a piece of clothing.)

Full max exporter
support

Creation of deflectors, constraints and
deformable bodies is fully supported in
the max exporter.

Although a large number of complex
parameters are made available through the
deformable technology, the max exporter
gives an intuitive and artist-friendly
interface to the technology making it simple
to integrate into an existing game
production framework.

 © 2002 Telekinesys Research Ltd. 11

Deformable Bodies Parameters:

Common properties:

o Mass
o Air Resistance
Additional cloth properties:
o Stretch Stiffness
o Bend Stiffness
Additional soft body properties:
o Geometry based (uses the actual triangles in the model), and cube lattice

based (simulates a series of connected soft cubes which may themselves
be used to drive deformation of an underlying 3D model)

o Variable stiffness parameter.
Rope properties:
o Rope is a linked chain of vertices, with a user specified thickness.
o 2 Dynamics models available: constraint based, and spring based (faster

but springier)
o Variable stiffness.
o Variable bend stiffness.

Deformable body constraints:

Constraints allow you to connect cloth, rope and soft elements to each other and to rigid
bodies in the scene. The system of constraints provided is identically applicable to soft
bodies, cloth and rope. “Vertices” below means vertices in soft bodies, or cloth, or rope.

Rigid Body to Deformable Constraints:
o Constraints from vertices to world space positions or to user specified

transforms allowing simple integration with bones systems.
o Constraints from vertices to rigid bodies, with optional force feedback (i.e.

you can allow the deformable bodies to affect the rigid bodies or vice
versa).

o Dynamic addition and removal of constraints.
Deformable to Deformable Constraints

o All permissible combinations supported: Rope-Rope, Rope-Cloth, Rope-
Soft Body, Cloth-Cloth, Cloth-Soft Body, Soft Body-Soft Body

o Dynamic addition and removal of constraints allows for breaking ropes,
pre-scripted tearing of cloth, etc.

o Constraints can be combined e.g. many vertices from multiple ropes, soft
bodies or cloths can be constrained together

o Deformable to Deformable and Rigid Body to Deformable constraints can
be combined together.

 © 2002 Telekinesys Research Ltd. 12

Deflectors:

Cloth, soft bodies, and rope do not get added to the Havok collision detector. Instead, a
specialized collision detection system is provided to allow very fast and accurate collision
detection with specialized objects.

The focus of the cloth / soft body, and rope collision detection solution, is for the
creation of deformable character dynamics.

Cloth vertices may be setup in advance to be deflected by any number of deflectors. In
addition, deflectors can be used dynamically (activated by callback functions from the
collision detector) to provide some interaction between external objects and deformable
bodies. Deflector shapes provided include:

Plane deflectors
Cylinder deflectors
(Almost) Arbitrary geometric deflectors = capsule height field

This last deflector type might need a little more explaining. To create deflectors for
objects that are not flat (where a plane is fine) or cylindrical (usually OK for most limbs
of characters) you can use a capsule height field, which is fitted to the shape of the object
you want to represent. Remember, this new deformable technology does not have
collision detection with arbitrary objects so you have to do a bit of work to achieve the
same result. Recall that height fields are a pretty efficient way to do collision detection
(that’s why they’re so popular on PS2 in particular). What we’ve provided here is a
height field in 3D – one that is wrapped around a cylinder capped with 2 hemispheres (a
capsule). We take the rigid body we want to represent and generate a height field on the
capsule to closely approximate the rigid body. If the rigid body is convex then we can
always generate a good representation. If is not convex, we will end up with a convex
deflector regardless (sort of like using a convex collision geometry but a non-convex
display geometry). This is the main limitation of the deflector approach.

This process is shown below using screen shots from the max exporter:

Deflector Object we want to represent as a deflector

 © 2002 Telekinesys Research Ltd. 13

Object and deflector superimposed Deflector mapped to the object

In addition a volumetric constraints system is provided, based on deflector positions, to
allow easy control of the behavior of a cloth, soft body or rope interacting with a
deflector. Vertices may be constrained to lie within a deflector for example (maybe to
prevent some part of the cloth from deviating too far from its initial position). In this way
the user can create a wide variety of real time clothing solutions, and deformable
character dynamics.

 © 2002 Telekinesys Research Ltd. 14

8 Actions & Controllers

We provide an extensible architecture to allow game developers to add their own game
specific dynamics functionality to the Havok system. The main interface is via our action
framework. Actions are functions or modules called during each simulation step that
have access to the entities in the simulation and can apply forces, torques and other direct
manipulations of objects. A set of actions is provided with the SDK with source to
illustrate how to go about creating your own.

Feature Benefits:

Feature Description Benefit
Action Interface An interface to the physics SDK to allow

easy extensions of the functionality and
create game specific physics components.

This interface gives you access to the core
of the Havok simulation and allows full
control over all the entities in the system.

Z-Order Actions A special class of actions that give you
direct kinematic control over objects
being simulation. This allows you to
directly set positions and orientations.

Actions that alter the positions and
orientations of objects can cause
interpenetration problems. The Z-order
action interface is designed to get around
this by taking such changes into account and
thus allow easy integration of key framed
animation into the physics simulation.

Character
Controller

A special purpose action that provides a
rich set of control paradigms for moving
a character around a 3d world while
interacting physically with the world and
the objects contained within.

This makes it very easy to get character-
based games up and running using the
Havok system. The controller is designed to
be extended to suit your specific game play
needs.

Source available Source code is provided for all the non-
core actions.

You get to see in detail how many of our
actions are created giving you a great base
upon which to build your own game specific
actions.

The complete list of actions (with source) provided includes:

Character Controller: a basic character controller with walk, jump run and climb
actions.
Constant Force Action: apply a constant force at each time step. This is a tutorial
action.
Magnetic Action: turns any object into a magnet.
Motor Action: apply a motor to an object with controllable torque and gain.
Self-Orientator: an action that uses an angular dashpot to flip an overturned object.
Useful for righting flipped cars.
Simple Drive Controller: a basic vehicle controller.
Simple Rigid Wind Action: a wind effect that applies to rigid bodies.
Simple Soft Wind Action: a wind effect that applies to deformable objects.

 © 2002 Telekinesys Research Ltd. 15

9 Events & Callbacks
The primary mechanism for interfacing the physics system with game logic and AI
controllers is through our event and callback system. This is a comprehensive Java-like
event delegator, event pipe, event filter and event dispatcher system to give full control
over the raising and handling of events.

Feature Benefits:

Feature Description Benefit
Collision Events Raised in response to collisions between

certain objects in the system. The events
may be filtered according to criteria
including object types, collision strengths
and frequency.

Collisions form one of the core events that a
game will need to monitor for game specific
logic (i.e. character picks up a key, or car
crashes into a wall). By filtering events we
give control over the strength of the
collision required to create a certain effect
(e.g. the car is destroyed only when it hits
the wall hard enough).

Sensor Event Many parameters of physical objects may
be monitored and an event is raised if the
sensor value falls within a user specified
range of values (e.g. raise an event when
the velocity of an object exceeds a
specific value).

This lets the physics system monitor objects
in the system and only inform the game
logic when a certain state has been reached

Interpenetration
Events

An event can be triggered when two
objects interpenetrate to allow an
application specific fix to occur.

Interpenetration usually occurs when an
object has been placed into an invalid state
by game logic code or an AI routine. By
raising an event, the game can respond
intelligently, taking appropriate actions to
restore the objects to a valid state.

Phantom Object
Events

Events may be triggered in response to an
object colliding with or leaving a
phantom object.

Using this event system, it is very easy to
create triggers for game behaviors. For
example, you can put a phantom object in a
doorway and an event will be raised
whenever any object tries to get through the
door.

Callbacks Events can be read directly off event
pipes or alternatively callback functions
can be associated with each event. These
functions will be called automatically by
the Havok system when the event is
raised.

Callbacks provide a natural and simple way
to associate game logic functions with
Havok events. With callbacks there is no
need to continually check event pipes
through code.

Event Filters Events may be filtered (as in sensor
events) by ranges of values but also by
frequency. You can specify, for example,
that you only want one collision event
per second from a set of rigid bodies.

You have full control over the numbers of
events being generated. In situations like
rock falls you can potentially have many,
many events. Having a filter allows you to
prevent the event pipes from filling up with
unnecessary detail.

 © 2002 Telekinesys Research Ltd. 16

Sensor events:
The following parameters of rigid bodies many be monitored by a sensor and an event
raised if the value falls within a user supplied range of values:

Linear Velocity
Angular Velocity
Force experienced by the rigid body
Torque experienced by the rigid body

 © 2002 Telekinesys Research Ltd. 17

10 Toolkit Layer
A toolkit layer is provided on top of the core physics API to allow easy access to many of
the features of the SDK without needing to dig deep into the workings of the core. With
the toolkit, you can inject physics functionality quickly and easily into your game.

Feature Benefits:

Feature Description Benefit
Toolkit functions A suite of about 20 functions is provided

to allow very rapid scene construction
and manipulation without needing
detailed information about how the core
of Havok works.

Get up to speed really quickly, creating rigid
bodies and entire scenes and experiment
with the physics without necessarily
becoming an expert. This allows you to
evaluate the system rapidly and only delve
deeper into the core Havok APIs when you
want to have more flexibility or generality.

TK File Utility A simple utility demonstrating reading
geometry from an ASCII file format and
creating the corresponding rigid bodies.

You can use this to develop your own
streaming utilities and to see how core
geometry in Havok is created and handled.

Export Toolkit A toolkit to allow reading and extracting
information from a HKE file exported
from a Havok exporter.

This toolkit allows you to very easily read in
entire levels of individual objects from a
HKE file with little coding required. Very
quickly you will be able to get an entire
physically enabled scene up and running
with your artists designing the physics in an
industry standard modeler.

 © 2002 Telekinesys Research Ltd. 18

11 Platform Support & Renderer
Integration

The first thing any game developer needs to do when using a physics engine is to
interface the physics system to the existing 3D graphics / rendering solution. This should
be a straightforward task, but because of the particular features of each renderer and the
various platforms (particularly consoles) to be supported Havok has put a lot of effort
into making the integration an easy one and to open up the core of the engine so that
game specific optimizations for each platform may be implemented.

Feature Benefits:

Feature Description Benefit
Multi Platform Havok is available on PS2, PC, Xbox and

GameCube. We support all the major
compilers on each platform and maintain
up to date builds for the latest hardware
updates from the platform manufacturers.

Games developed with Havok on one
platform are easy to port to all other
platforms supported by Havok. You are
guaranteed that your physics code will
compile and run across all the platforms
Havok support.

In some cases (e.g. moving from PC to
PS2), you may want to optimize your code
further due to the constraints of the
platform. Havok provides you with the
flexibility you need to further tune your
game’s performance.

DirectX8 Display
library

A sample display library implemented in
DX8 is provided for Win32 platforms.

This allows you to examine how we have
interfaced the physics with an industry
standard graphics API. You can use this
information to develop your own interface
to the physics system.

hkBase source Full source for the Havok base class
including memory manager and timer
classes is provided allowing the
implementation to be replaced by
application specific routines optimized
for your context

Particularly in the case of the console
platforms, where organization and
management of memory is critical for game
performance, having full game control over
the hkBase class gives the game developer
the flexibility needed to employ game
specific optimizations.

Active object lists Active lists of objects are maintain
internally by Havok and exposed to the
rendering solution. The renderer then
simply repositions those objects that have
moved since the last frame.

This allows the 3D engine to streamline the
updates to objects – inactive objects will not
have moved since the previous frame and
therefore do not need to be repositioned.
This may have significant performance
improvements for 3D systems that employ
caching.

 © 2002 Telekinesys Research Ltd. 19

12 Debugging / Profiling
Havok has not been designed as a black box system. Though we need to protect some of
our core IP by not supplying source, we have gone to great lengths to remove the need for
source to allow you to effectively debug and test your applications.

Feature Benefits:

Feature Description Benefit
Visual Debugger A graphical interface for remotely

monitoring your simulation, including
collision geometries and bounding boxes.

Source for the Visual Debugger is
shipped with the product.

See Tools section for more details.

The Visual Debugger provides a
visualization of the position and orientation
of simulated objects. It is very useful for
debugging any rendering of simulated
worlds.

Source code is shipped with the Visual
Debugger, making it easy to configure and
integrate into your own tool chain.

Debug Build A debug build of the Havok SDK is
provided on all platforms. The debug
build provides many additional
ASSERTS and a full call-stack to allow
you to pin point where problems are
occurring.

The debug build allows you to pin point the
source of your problems which will either
help you solve the problem or will speed up
the turn around time on a fix from Havok’s
developer relations team.

Timing Stats The hkBase class provides a bank of
timers that may be used to time different
parts of the core to examine the relative
CPU usage of these different parts.

The timers allow you to identify the CPU
load per module (e.g. collision detection,
collision response, actions etc.) so that you
can identify bottlenecks in the system and
concentrate your optimization efforts on
those parts that are slowest.

Source for many
systems provided

Source code has been provided for a large
number of non-core components.

Many of the game play and architectural
level modules can be replaced entirely with
user-supplied code if necessary.

Memory profiler Our sample memory manager (provided
with source through the hkBase class)
tracks memory usage and can provide a
full memory trace at any time during the
execution of the application.

Track memory allocation and de-allocation
to help pin point the source of memory leaks
or heavy memory usage.

 © 2002 Telekinesys Research Ltd. 20

13 Havok: All Tooled Up
Havok provides a comprehensive set of tools for creating, tuning and profiling your
physical content:

Havok SDK Exporters – set up and tweak your dynamics scenes within a familiar
environment.

•

•

•

•

•

•

Car Tuning Tool – assign and tweak over 100 vehicle parameters in real-time,
while previewing your game on your target platform
Visual Debugger – analyze your scene while running your game on your target
platform: identify synchronization issues and profile your game’s performance.
Tools to help you build your own – Havok also provide the tools necessary to
incorporate our tools into your own toolchain.

Create your content in a familiar environment

From within your favorite modeler and without writing any code, the Havok SDK
Exporters enables you to assign physical properties to elements in your scenes and levels
exactly as you would assign color, textures and game-specific attributes. You can even
preview the behavior of your work real-time within the modeler. The result is speedier
development.

Features and benefits:

Work in a familiar environment
o The Havok SDK Exporters work from within 3ds max and Maya so that

you can take advantage of editing tools and workflow provided by your
favorite modeling tool.

Allows you to create complex physical systems quickly and easily
o Easily assign physical parameters to rigid bodies.
o It’s not just the easy-to-handle mass or friction properties that can be

applied within the modeling tool. Complex systems of constraints such as
articulated bodies and hinges can be created.

o Easily create, tweak and test character joints.
o Simple geometries act as proxies for more complex geometries, and

bodies can be grouped to form more difficult ones.
o Enable and disable inter-object collisions, or create collision layer groups

for more fine-tuned control of the physical scene.
o You can update the state of your scene in the modeler after a preview.

 © 2002 Telekinesys Research Ltd. 21

Figure 1 Havok SDK Exporter for Max: setting up a scene in a familiar environment

Figure 2 Setting up rag dolls in the Havok SDK Exporter for Maya

 © 2002 Telekinesys Research Ltd. 22

•

•

•

Reduces the dependency between designers and programmers
o Physics contend created in max/Maya can be previewed in real-time using

our preview display (OpenGL or DirectX).
o Real-time preview within the modeling tool allows artists and designers to

quickly prototype physical interactions without having to wait for the
game engine to be up and running.

o In preview mode you can examine the geometry of the objects, play and
pause the simulation and explore the scene with a user controllable camera
and a mouse-picking interface.

Exporters provide an easy path to the game engine
o Once exported, files are imported by a game with minimum amount of

code and, once imported, all objects and their parameters remain fully
accessible via the names assigned in the modeler. This makes the task of
writing customer controllers or systems acting upon the physical objects
much easier.

Allows you to debug and profile your scene
o With the realtime preview you can inspect and debug the physics scene

interactively.
o Analyze your physical world to find possible inconsistencies such as

interpenetrating objects or values that are out of range.
o Optimize performance by assigning rigid bodies to collision group layers.
o Determine the best collision geometry proxy to use and optimize the proxy

automatically (mesh reduction) or manually (define your own geometry).
o Various display modes are supported (solid, wireframe, physics geometry

only etc.) to give you full control over the playback of the physical world.
Artists and designers can therefore debug much of the physics
functionality before turning the scene over to the game programmers.

 © 2002 Telekinesys Research Ltd. 23

Figure 3 Real time preview in Maya

Tune, debug and profile your game using on-target tools

Once all your physical content has been imported into your game engine, developers can
use Havok’s virtual tuning and profiling tools to tweak and analyze the game on the
target platform. Havok’s Car Tuning Tool allows you give your game vehicles a virtual
overhaul, while viewing the results on-target in real-time. The Havok Visual Debugger
provides a graphical interface for remotely monitoring your game.

 © 2002 Telekinesys Research Ltd. 24

Figure 4 On-target real-time preview of vehicle game

Features and benefits:

Tweak a few slide bars to change your vehicle behavior from a Formula One
racer to a cartoon truck

•

•

o A default vehicle is constructed from more than 50 unique parameter
values. These are placed into some ten categories that define the car, such
as steering, suspension and wheels.

o Tweak the default values to design your unique vehicle handling.
See the vehicle behavior change in real-time on your target platform

o Changing a parameter value in code and recompiling the executable is
obviously time-consuming and bothersome. But with our tuning tool you
can dynamically load the parameter values from an external source, or
synchronize using a real-time connection.

o Run a car simulation on the PlayStation2 and tune it using the tuning tool
running on a PC.

 © 2002 Telekinesys Research Ltd. 25

Figure 5 Tweaking over 100 vehicle parameters in real-time

Easily check for any inconsistencies between graphical and simulation worlds •

o Visualize collision geometries and bounding boxes to check position and
orientations of simulated objects, while playing your game in real-time on
target platform.

 © 2002 Telekinesys Research Ltd. 26

Figure 6 Visualizing collision geometries and bounding boxes in real-time, while demo is running on

target platform.

Check for rogue set-ups •
o Timings and statistics displayed in the Visual Debugger allow you to

check your set-up and identify areas where you are getting less than
optimal performance.

Bend them, shape them, any way you want them

All the Havok tools are designed so that they can be easily integrated into your tool-
chain. We provide the means by which you can integrate our export functionality into
your own exporter, writing Havok date into a game specific file format.

Source is provided for both the Car Tuning Tool and Visual Debugger, so you can extend
both tools and easily integrate the functionality into your own toolchain.

 © 2002 Telekinesys Research Ltd. 27

14 Demos, Demo Framework and
Documentation

Havok is provided with a comprehensive set of demos, all provided within a demo
framework that abstracts the simulation from the display and provides for cross-platform
support (abstracts mouse, keyboards and controllers). There is a wealth of documentation
available also covering all aspects of the physics system at a user level and an online
reference manual.

Feature Benefits:

Feature Description Benefit
Reference Manual A complete reference manual in CHM

format is provided with documentation
on all Havok classes and functions. Full
hyper linking is provided with class
hierarchy diagrams, a search function and
a complete index tool.

Quickly get information on any Havok
function or class. Perform fast searches and
cross-reference your searches through the
hyper links.

User Manuals A set of user manuals covering all
aspects of the SDK, the API and tools is
provided

A wealth of reading material should ensure
you are never in the dark about any aspect
of Havok technology. Code samples are
provided for cutting and pasting into your
applications and many manuals cross
reference with the code samples provided in
the demos so that you can always find
source associated with the feature you are
looking for information on.

Demos Numerous demos are provided with full
source covering all aspects of the Havok
engine.

Get source code examples for all aspects of
the engine so you can quickly cut and paste
into your own application and build on the
examples provided.

Demo Framework A demo framework is provided which
abstracts the differences between the
various hardware platforms supported by
Havok and also separates the display and
simulation aspects of each demo.

This abstraction leaves the physics source in
one place so that it is easy to read and
understand without being confused by
controller handlers and specific display
information.

List of Manuals:

Note: all manuals are in Adobe PDF format and are fully illustrated in color.

 Actions – Poltergeist and Possession: describes the action interface and illustrates

how to create your own actions to extend the physics system using a poltergeist action
as an example. This is accompanied by a corresponding demo with the action fully
implemented.

 © 2002 Telekinesys Research Ltd. 28

Collision Detection: a complete overview of the Havok collision detection system,
discussing geometry formats, narrow and broad phase collision detection systems and
how to interface with the collision detector yourself.
Constraints User Guide: an overview of the complete Havok constraints system and
associated parameters.
Convex Hull Generator Utility: a description of the simple utility supplied for max
that allows you to break complex objects into simpler convex sub-parts.
Deformable Bodies User Guide: a complete overview of deformable bodies, cloth,
soft and rope and associated constraint systems.
Events – Pinball Wizard: a tutorial on using the Havok events systems covering all
events by creating a simple pinball-like application.
Havok Base: an overview of the hkBase case, for which source is available.
Havok SDK User Guide: an introduction to the Havok physics system. You should
read this manual before doing anything else. It explains the architecture and
philosophy of the Havok SDK and gives an overview to all the remaining
documentation.
Quickstart Guide: a guide to compiling and running the demos and getting your first
application up and running using Havok.
Vehicle SDK Programming Guide: a complete description of the architecture and
class hierarchy of the vehicle SDK.
Vehicle SDK User Guide: a comprehensive overview of the vehicle dynamics SDK
with a description of all the parameters and modules and hints on how to get the
performance you require from the SDK by hacking the physics.
Havok Vehicle SDK Workflow: a guide to the car tuning tool and how to integrate it
into your own vehicle design workflow.

List of Demos

The following list gives all demos shipping with Havok 1.7. For each demo, the features
demonstrated are listed.

 © 2002 Telekinesys Research Ltd. 29

Demo Features
Fast Subspace Lots of objects colliding, both in gravity-free and with-gravity situations. Each

of the objects is actually simulated as a sphere.
Stacking Boxes Stable stacking with lots of boxes on top of each other. This highlights good

collision detection and scalable collision response. The boxes are simulated
with bevelled edges.

CharacterCloth Shows how to create a cloth object and a deflector. The demo illustrates cloth
collision with a complex shape with small CPU overhead.

CharacterCloth
Controller

Demonstrates how to handle a character animated using bones and our fast
cloth technology. Deflectors have been setup for each bone (i.e. limb) and
these move when the limbs move in the keyframed animation, so that the cloth
animates naturally with the character.

ChildsPlay Shows stable collisions and collision response. Long thin objects and a
spinning top, that is initially spinning, exhibit the classic behavior of the kid’s
toy.

CityCar Havok’s vehicle physics in action. We have a large landscape with Driver style
gameplay on the car (US style suspension – large heavy chassis, lots of body
roll etc.).

Demo Features
ClothCollision A complex object collides with lots of high-density cloth patches. This

illustrates the speed of the cloth simulation. Note that to achieve this high
performance level, the cloth does not avoid self-penetration – an acceptable
compromise in most cases.

EventTest Demonstrates (mostly for coders) the event system in Havok. Events are
raised when the cube collides with the plane and also when the velocity of the
cube is between 5 and 10 m/s (but filtered so that only 1 such event per second
will get handled). This is not a great standalone demo – most value is gained
from looking at the code.

HingeConstraint Shows the fast hinge constraint in Havok. Each of the cubes is attached to the
next via a hinge joint (collisions between every neighboring cube pairs are
disabled).

hkMenuGame
(blank)

A blank demo application just showing, through code, how to setup a demo
yourself.

LP2PConstraint Limited point-to-point constraint demo shows how to setup and use point-to-
point constraints. Joints limits limit the permitted angle between the
constrained bodies giving more control over the behavior of the joints.

Necklace This scene has been created in max and exported as a HKE file. Each of the
links of the necklace is represented as simplified proxy geometries (turn on
sim-edges to see these) attached together with point-to-point constraints. It’s
easy to get the necklace into an impossible situation because we haven’t
limited how each link can twist relative to the ones attached, but the simulation
is fast and convincing otherwise.

P2PConstraint A long chain (30) of cubes attached with point-to-point constraints. Note how
the end cubes get snapped around a lot but don’t drift or seem springy – this is
what people will be looking for. Also, compare this to the limited P2P
version: you can see that these cubes spins lots more as there are no angular
limits here.

PhantomObjects This addition to collision detection allows you to specify an object as a region
rather than solid, with collision events raised accordingly. In this demo pick
up the small cube and move it through the walls – an event is raised on
entering and leaving the walls.

PileUp Shows the robustness of the collision detection and response: lots of different
shaped objects (all convex) congregate around a narrow opening at the base of
the “chute”. This is often a difficult case for collision detectors to handle.

Pinball A tutorial for Havok events and sensors. Collision events with the middle
cylinders cause impulses to be applied to the object, so that it bounces off
rapidly. A phantom object at the base (invisible) allows us to know when the
falling object has reached the bottom. Finally a velocity sensor is used to add
to the score based on the speed the ball travels – higher marks for higher
speeds.

Poltergeist Another tutorial showing how to create your own special purpose “action”. In
this case the action checks if an object is inside a cone region in the center of
the room and applies a tornado like force if it is.

RagDoll This demo uses the ragdoll constraints (one for each limb connection) to create
a ragdoll that may be picked up and chucked around or “kicked” using the
keyboard.

Rope Shows rope collisions and simulation with a head. It also shows how to create
a deflector from geometry through code. The ropes are spring based as
apposed to constraints so exhibit a little more springiness but with the
advantage of low CPU overhead. If you want stiffer ropes, use the constrained
variety.

 © 2002 Telekinesys Research Ltd. 30

Demo Features
SoftBody A cube with wobbly soft body antennae can be controlled showing how the

soft bodies collide against the objects in the scene (which have had simple
deflectors associated with them through code). You can also pull the soft
bodies with the mouse.

SSpringConstraint Stiff springs demo – compare this with the P2Pconstraints demo. They do
essentially the same thing, but stiff springs are faster to compute but exhibit a
little more springiness which you can see near the top when the chain reaches
full extension – the cubes at the top are pulled away from each other slightly.
This is not so noticeable on shorter chains.

Toothpicks A demo of collision handling for objects that are typically difficult to handle
i.e. long thin ones. You can select between normal long and thin and even
longer and thin so see the effect.

Truck Another example of the vehicle SDK, this time with simple AI opponents.
These guys follow a set of way points on the track, but all the behavior of the
trucks (skidding out, under steering etc.) are all down to the vehicle SDK.
Power sliding and tight suspension is a feature of the truck (in comparison to
the Driver style loose suspension in the city car demo).

WindAndCloth A flag flapping in the breeze just showing the nice behavior of the cloth
coupled with a wind action. The cloth can be picked, but this doesn’t look
very nice. There are 1100 triangles in this piece of cloth.

 © 2002 Telekinesys Research Ltd. 31

15 Source Code
The source code that is shipped with the SDK is listed below.

Events
Base Library (hkBase)
Toolkit Library
Vehicle SDK gameplay modules
Particle System (available on request; mail info@havok.com for more details)
 Water Module (available on request; mail info@havok.com for more details)

Renderer Integration Toolkits
Demos
Car tuning tool and Convex object tools.
Core Vehicle physics.

Integration source code is provided for the exporters.

Source is NOT shipped for:

Core actions (including constraints)
Collision Detection
Collision Resolution
Entities
World
Math Library
Geometry Lib
Export Lib

 © 2002 Telekinesys Research Ltd. 32

mailto:info@havok.com
mailto:info@havok.com

16 Contact Details
European & UK Offices

1 Farnham Road,
Guildford,
Surrey,
GU2 4RG,
Tel: +44 1483 549 287
Fax: +44 1483 549 100

North American Offices

510 Veterans Blvd,
Redwood City,
CA 94063,
USA
Tel: +1 650 322 2332
Fax: +1 650 322 2240

Global Headquarters

7 Westland Court,
Cumberland Street,
Dublin 2,
Ireland
Tel: +353 1 677 8705
Fax: +353 1 676 7094

Further Information: info@havok.com
Support: support@havok.com
World Wide Web: www.havok.com

 © 2002 Telekinesys Research Ltd. 33

mailto:info@havok.com
mailto:support@havok.com
http://www.havok.com/

	Contents
	Product Summary
	
	Supported Platforms

	Collision Detection
	
	Feature Benefits:

	Simulation & Collision Response
	
	Feature Benefits:

	Scene Management
	
	Feature Benefits:

	Constraints
	
	Feature Benefits:

	Vehicle Dynamics
	
	Feature Benefits:

	Fast Deformable Technology
	
	Feature Benefits:
	Deformable Bodies Parameters:
	Deformable body constraints:
	Deflectors:

	Actions & Controllers
	
	Feature Benefits:

	Events & Callbacks
	
	Feature Benefits:

	Toolkit Layer
	
	Feature Benefits:

	Platform Support & Renderer Integration
	
	Feature Benefits:

	Debugging / Profiling
	
	Feature Benefits:

	Havok: All Tooled Up
	
	Create your content in a familiar environment
	Tune, debug and profile your game using on-target tools
	Bend them, shape them, any way you want them

	Demos, Demo Framework and Documentation
	
	Feature Benefits:
	List of Manuals:
	List of Demos

	Source Code
	Contact Details
	
	European & UK Offices
	North American Offices
	Global Headquarters

