
Computer Modelling Of Fallen Snow

Paul Fearing
University of British Columbia�

Figure 1: A sudden snowfall comes to the North Pole.

Abstract

In this paper, we present a new model of snow accumulation and
stability for computer graphics. Our contribution is divided into two
major components, each essential for modelling the appearance of
a thick layer of snowfall on the ground.

Our accumulation model determines how much snow a particular
surface receives, allowing for such phenomena as flake flutter, flake
dusting and wind-blown snow. We compute snow accumulation by
shooting particles upwards towards the sky, giving each source sur-
face independent control over its own sampling density, accuracy
and computation time. Importance ordering minimises sampling ef-
fort while maximising visual information, generating smoothly im-
proving global results that can be interrupted at any point.

Once snow lands on the ground, our stability model moves mate-
rial away from physically unstable areas in a series of small, simul-
taneous avalanches. We use a simple local stability test that handles
very steep surfaces, obstacles, edges, and wind transit. Our stabil-
ity algorithm also handles other materials, such as flour, sand, and
flowing water.

CR Categories: I.3.5 [Computer Graphics]: Computational Geometry and Ob-
ject Modelling—Physically based modelling; J.2 [Physical Sciences and Engineering]:
Earth and atmospheric sciences;

Keywords: snow, avalanches, stability, natural phenomena

�email: fearing@cs.ubc.ca

1 Introduction

One of nature’s greatest beauties is the way fresh snow covers the
world in a perfect blanket of crystalline white. It replaces sharp an-
gles with gentle curves, and clings to surfaces to form ghostly sil-
houettes.

In many countries, snow is a common fact of life during the win-
ter months. For example, January snow coverage in the Northern
Hemisphere has ranged between 41.7 - 49.8 million square kilome-
tres [17], or nearly half of the hemisphere’s total land mass. A phe-
nomenon that is so common and pervasive is clearly of interest and
importance.

Despite the ubiquitous nature of snow, the entire season of winter
has been almost completely ignored by computer graphics research
and applications, with the exception of distant snow-capped moun-
tains, and falling snowflakes. Without an automatic model of fallen
snow, animators have so far relied upon intuition to produce snow-
covered surfaces - an extremely tedious, time-consuming and poten-
tially inaccurate task. A single tree might have a hundred branches,
each with a complex drapery of snow, and each avalanching onto
branches below, producing subtle second-order accumulation ef-
fects.

Besides the practicalities of research and application, there is an-
other reason for investigating snowfall. Snow transforms common-
place scenes into fantastic wonderlands, greatly changing the ap-
pearance and mood of the landscape, allowing us to see familiar
sights in a fresh, exciting way.

This paper presents a new method of snow pack modelling for
computer graphics. We are primarily concerned with creating and
simulating fallen snow at a scale where the thickness is clearly ev-
ident to the viewer. Our main emphasis is on a framework for effi-
ciently handling large scenes with limited resources, and to a much
lesser extent on a physically correct model of the snow itself. Snow
is arguably one of the world’s most complex naturally occurring
substances, and accurate simulation is still a significant challenge
to snow hydrologists and researchers.1

1We refer the reader to [9] or [1] for a discussion of the real substance.

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee.
 SIGGRAPH 2000, New Orleans, LA USA
 © ACM 2000 1-58113-208-5/00/07 ...$5.00

37

Figure 2: A snow-covered gazebo with a hole in the roof. All snow was generated automatically, including snow on the mountains.

In order to generate images of a snowy world, we need to solve
two major problems. Snow accumulation requires us to determine
how much snow falls upon a scene, and where it accumulates. We
simulate this with an adaptive particle/surface hybrid that addresses
the proper allocation and conservation of snow mass around and un-
der obstacles, the random nature of snowflake motion, and simple
in-transit wind effects.

As snow accumulates, we compute snow stability in order to de-
termine how much mass any particular surface can support. If not
blocked by an obstacle, unstable surfaces release avalanches onto
lower surfaces, also potentially covered in snow. We compute snow
stability using a set of sequential local equations providing us with
good results at a reasonable computational cost. Our approach al-
lows us to simulate varying properties of both snow and like ma-
terials, as well as provide a simple model of mass transport due to
wind.

Finally, we transform our model of accumulated, stable snow
pack into a set of smoothly joining 3D surfaces that can be included
in scenes or animations. During this step we can include bridging
effects between nearby surfaces, as well as wind cornices. We aug-
ment our “thick” snow surfaces with flake dusting textures to pro-
vide extra noise and visual complexity.

Because of the sheer size and complexity of snowy scenes, our
method is also inherently concerned with the practical issues of
speed and control. Our primary contribution to this area is the
counter-intuitive idea that snowflakes are shot upwards from indi-
vidual surfaces, rather than dropped downwards from the sky. Giv-

ing individual surfaces control over their own “snowy destiny” al-
lows us to prioritise computational effort on any number of crite-
ria, including surface slope, area, distance to the camera, likelihood
of interesting occlusions, or other measures of visual interest. Our
algorithm provides a continuous, ever-improving result that can be
terminated at any time, and still display the full snow depth.

As shown in Figure 3, our snow-adding algorithms are part of
a larger pipeline involving a popular commercial animation pack-
age. Since the underlying scene remains unchanged, we retain the
original lighting and animation and can rely upon strong commer-
cial support for shader libraries and rendering. This makes it quite
easy to add snow to a wide range of existing models and animations.

2 Related Work

Despite snow’s common presence in many parts of the world, there
has been little previous research towards a comprehensive model of
snow for computer graphics.

Premoze et al. [16] generate realistic mountainous terrains that
are likely the most convincing snow-covered scenes so far. Starting
with a digital elevation model enhanced with an aerial photo, they
use a detailed model of snow pack evolution to add zero-thickness
patches of seasonal snow cover. The nature of the incoming satellite
data restricts the technique to a scale much larger than our primary
area of interest.

Muraoka et al. [13] simulate thick snow pack by dropping vol-
ume elements on the landscape, with provisions for snow evolution

38

Figure 3: Overview of the snow pipeline. The underlying scene remains unchanged except for the inclusion of new snow surfaces.

[12]. Unfortunately, in order to cover the landscapewith a computa-
tionally feasible number of particles, single-scale elements must be
inflated to the point where they overwhelm underlying base surface
detail.

Other work tangentially involving snow include Sims [20], and
Shinya and Fournier [19], but both approaches are concerned only
with falling and zero-thickness snow. Sumner et al. [21] simulate
tracks in mud, sand, and snow using a regular height field and mod-
els of compression and erosion, but do not address snow accumu-
lation. Nishita et. al [15] introduce a method of snow pack render-
ing based on multiple scattering of light within the snow volume.
Snow surfaces were composed of individual metaballs placed by
hand. Other work on snow illumination properties includes Hanra-
han and Krueger [3] and Krueger [5].

Although not about snow, several other papers describe the mo-
tion of granular materials. Hsu and Wong [4] model zero-thickness
dust accumulation with textures. Luciani et al. [8] introduce a
multi-scale physical model for granular materials, designed to sim-
ulate such granular phenomena as piling, arching, and avalanching
in the 2D plane. Li and Moshell [7] were responsible for a dynamic
soil model on a constant regular grid, allowing for volume conser-
vation, soil slippage, and manipulation of soil with a simulated bull-
dozer. Musgrave et al. [14] describe terrain generation, including
an erosion and thermal weathering model that is quite applicable to
snow stability.

3 Snow Accumulation

Peculiar to snow is the idea of “flake flutter”, where falling ice crys-
tals are affected by crystal shape and atmospheric micro-turbulence.
These local disturbances can prevent falling snow from descending
in a straight line, instead allowing flakes to sidestep blocking obsta-
cles and land underneath on surfaces that have no direct exposure
to the sky. Thus, simulating and modelling an accumulation pattern
is akin to raytracing for light, except that we are interested in path
(instead of straight-line) visibility.

Where an obstacle, such as a porch or a bush, blocks the ground
underneath, the flake flutter effect eventually produces an occlusion
boundary between completely blocked and unblocked areas. An
example of this can be seen in Figure 4(a), where snow accumu-
lates well underneath the overhang of the bush. Over billions of
flakes, these occlusion boundaries exhibit a smooth drop-off, where
the shape of the curve and amount of snow under an object depends
on the size, shape, and number of blocking occlusions, the closeness
of the occlusion to the ground, and the magnitude of the fluttering
effect.

For objects with many occluding components (such as a pine
tree) the occlusion boundaries are still present, but are much less

pronounced. Most falling snow accumulateson the uppermost layer
of branches,but some accumulateson the next layer, and most lower
branches and the ground get at least a small dusting. This con-
tributes to the visual impression that snow is everywhere in a scene,
and not just sitting on the uppermost surfaces exposed to the sky.

3.1 Computing the Snowfall Accumulation Pattern

Our goal is to generate an accumulation pattern for every surface in
the model, where the amount of snow each surface receives is pro-
portional to the occlusion factors described above.

Our approach is to allow launch sites on each surface to emit a se-
ries of particles aimed upwards towards a sky bounding plane. As
particles flutter upwards, they are checked for intersection with in-
tervening surfaces, where a “hit” indicates that a particle is some-
how blocked, and cannot contribute snow to its source surface. A
“miss” means that the particle made it through or around all block-
ing obstacles and reached the sky.

As particles reach or are blocked from the sky they slowly build
a picture of a given launch site’s sky occlusion. Whenever a launch
site has a sufficiently different sky occlusionfrom an adjacentneigh-
bour, a new launch site is added at the perturbed midpoint to re-
fine the transition. Likewise, launch sites can be merged whenever
all surrounding neighbours have identical sky occlusions, usually in
cases where sites are consistently confident that they are either com-
pletely exposed or completely occluded.

As soon as we have generated a mass accumulation picture that
meets some resource criteria (compute time, number of samples,
size of sample or some other importance-driven function) we can
add an appropriate (and arbitrary) amount of snow. This generates a
complete set of 3D snow surfaces that rise off the base model. Since
the addition of a layer of blocking and obscuring snow changes the
previously computed mass accumulation pattern, we can repeat the
accumulation step as often desired, increasing accuracy at the cost
of computation time.

3.2 Importance Ordering

The rationale for shooting upwards generally arises from the need
for control: the idea that each individual surface can locally influ-
ence its resolution by deciding how many launch sites it needs, and
how many particles each site should shoot. Since our sampling rate
is orders of magnitude less complete than Nature’s, prioritising the
few samples we do have allows us to make better use of them. This
ensures that even the tiniest surface is guaranteed at least a rough es-
timate of snow accumulation. This is a major advantage over poten-
tial approaches that drop blobby particles, since small surfaces are
often missed at the expense of covering large ones. Figure 16 shows

39

Figure 4: (a) A bush leaning out over a wall provides a real example of the flake-flutter phenomena. (b) After 10 seconds, importance ordering
has found the general shape of the boundary. (c) After 100 seconds, the boundary shape is essentially the same as (b), due to the importance
ordering of launch areas. For illustration, neither (b) nor (c) have been smoothed. (d) Initial meshing of a crude bush model. No measurement
of the real bush was done. (e) The denser mesh reflects the more interesting areas. A significant amount of refinement occurs behind the bush
and is not visible from this viewpoint. (f) The denser mesh after 100 seconds.

how our multi-scale approach covers individual blades of hay in the
middle of a very large snowy field.

Each launch site is given an importance ordering used to deter-
mine order of site testing, determine the number of particles to shoot
per site, and decide if more sites are needed nearby to improve the
resolution. As long as the allocated time has not expired, the most
important launch site shoots a small batch of particles, gets a new
importance based on the results, and is placed back in sorted order.
The importance ordering is a heuristic weighting based on the fol-
lowing factors:

� Completeness. Launchsites with no previous chances to shoot
are more important than sites that have had at least one chance,
ensuring a crude global approximation exists before any fur-
ther refinement begins.

� Area. As the area of a launch site increases, particles from a
single site will pass through less of the volume immediately
overhead. To prevent missing occlusions, large areas may
need more particles per launch site and more initial sites. Oc-
clusion boundaries in large areas are more visually obvious,
and so gain preferential allocation of new refinement sites.

� Neighbourhoods. If the particle hit percentage of two neigh-
bouring sites is sufficiently different, it implies that there is
a nearby obstacle causing some kind of occlusion boundary.
Both sites gain importance, asking for more particles to im-
prove knowledge of the shape, orientation and magnitude of
the boundary. If the neighbours are sufficiently different and
important, a new refinement site may be added to the per-
turbed midpoint. Likewise, launch sites that are the same as
all nearby neighbours become less important, and may be can-

didates for removal.

� Effort. If all other factors are equal, launch sites should use
approximately the same number of particles, aiming for con-
sistency of confidence.

� Limits. The user can set several parameters that limit the ap-
proximate scale of the finest allowable increase in resolution.
This prevents launch sites from increasing indefinitely along
very complex occlusion boundaries. If all sites have been re-
solved to this limit, the phase can terminate early.

� Steepness. Very steep launch sites are swept of what little
snow they accumulate; in most scenes, these avalanches are
negligible compared to accumulations on nearby stable sites.

� Camera. When optionally enabled, sites closer to the camera
receive more particles, greater refinement, and improved ac-
curacy at the cost of imposed view dependence.

� User. Importance ordering allows users to arbitrarily tag sur-
faces as being “boring” - useful for ignoring areas that will
eventually be occluded or matted out.

We defer the reader to [1] for the actual parameterised importance
weighting and further discussion of each factor. The important idea
is that some launch sites get priority access to a limited sampling
budget, based on criteria important to the user for a particular scene.

Figure 4(a) shows the occlusion boundary under a real snow-
covered bush, illustrating the type of visual effects we want sam-
pling to determine. After 10 seconds, the importance ordering has
found the boundary, and generated an initial approximation. Spend-
ing an additional 90 seconds results in more subtle improvement, re-
fining launch sites of less visual interest. Background unoccluded
areas are of very low importance, and so undergo almost no im-

40

provement.

3.3 Launch Site Meshing

Launch site surfaces are represented as triangles, generated from
the original (potentially non-polygonal) base models. Once snow
has been generated, the polygonal approximation of the underlying
model is discarded, allowing snow to accumulate on the original,
unchanged base scene.

All upwards-facing triangles in the approximation of the under-
lying model are initially allocated at least one launch site. Addi-
tional launch sites are allocated based on the importance ordering
of the surface, user-set resolution parameters, and the magnitude of
the flake-flutter.

In order to properly allocate snow, each launch site must be re-
sponsible for some non-overlapping portion of the surface, ideally
the area immediately surrounding the sample point. We have cho-
sen a strategy based upon Voronoi diagrams, although there are nu-
merous other valid meshing possibilities. Launch sites are con-
nected in a constrained Delaunay triangulation, where each launch
site is responsible for its own immediately surrounding Voronoi
area, clipped to the edge of the triangle for maximal surface inde-
pendence. Advantages of this approach include fast point-in-area
tests and neighbour location, and the ability to quickly generate tri-
angulations for intersection testing.

Figure 4 (d) shows an example of a sparse initial mesh undergo-
ing the addition of more and more launch sites, shown in Figures 4
(e) and (f). Note how neighbouring constrained-Voronoi areas vary
in size at the transition zones, and mostly minimise extreme angles.
In practice, many surfaces are small and isolated (such as the brush
and pine needles in Figure 1), and meshes are reduced to the trivial
case of one or two samples in a triangle. Significant meshing occurs
on large, connected surfaces, such as the ground.

Launch sites and their associated meshes are additionally divided
into edge groups, which are isolated world objects, projected into
the XY plane, bordered by the XY silhouette edges. Edge groups are
used primarily for avalanche resolution, denoting sharp boundaries
where snow may slide off from one edge group to another. Project-
ing into XY implies that launch sites can only be placed on surfaces
with an angle of repose of [0::90)�. Since edge group silhouettes
are not necessarily convex, we must do some additional processing
to “break” constrained Delaunay neighbour links that cross a silhou-
ette boundary or a hole in the mesh. A single edge group may also be
arbitrarily broken into smaller edge groups, although this is ineffi-
cient since moving snow across group boundaries is more expensive
than moving snow within the same edge group. Figure 5 shows how
a sphere is converted into an edge group.

Figure 5: An isolated object (a), bordered by XY silhouette edges
(in red) forms an edge group - top view (b), side view (c).

Our particular meshing strategy means that we have trouble with
certain types of connected models that overlap in Z, such as a helix.
However, this can be fixed by either splitting the model’s natural ob-
ject hierarchy, or increasing the number of edge groups, ultimately
reaching the level of a group per polygon, if needed. Figure 6 shows
an overlapping Z model that our meshing algorithm considers hard.

Note that although the knot was split into 200 edge groups, bound-
aries between the groups are not visible in the final result.

Figure 6: An object our meshing strategy considers “hard”. Knot
model courtesy of [18].

3.4 Locating Particles in the Sky

When a launch site reaches the head of the importance queue, it
shoots a batch of particles towards the sky. Batch size is user defin-
able, but generally within the order of 10-15 flakes. Particles orig-
inate from the launch site’s snow surface, potentially reaching the
sky plane unimpeded and contributing to the growth of the parent.
We use a simple bucketing and filtering scheme to allocate the suc-
cessful flakes to the total mass of the sky’s available snow, while en-
suring that small local areas of sky do not over-contribute. This is
important, since the number of particles hitting any particular area
of the sky may vary dramatically depending on the complexity of
the underlying surfaces. We must ensure that a large concentration
of flakes (say, directly above a tree), draws the same total snow as
would the sky above a sparse flat surface. Furthermore, importance
ordering implies that not all launch sites shoot the same number of
particles.

We divide the sky into a grid of constant size buckets. When a
flake reaches the sky successfully, we spread its representative area
(defined as the launch site’s projected area divided by the number of
flakes in the current batch) across one or more buckets, as shown in
Figure 7.

When the snow accumulation phase finishes, all sky buckets are
allocated some mass based upon the arbitrary depth of snow desired.
Each bucket b computes a mass per area value, based on available
mass of b and the summation of all representative flake areas extend-
ing into b. An individual launch site l then receives new mass pro-
portional to the summation of the representative area of all flakes
belonging to l that hit b. A single launch site may receive snow from
multiple buckets. Flake area filtering is done at the end of the accu-
mulation phase, when a given launch site cannot change in area due
to added or removed refinement sites.

Since a launch site’s accumulation pattern may change with the
addition of blocking snow, it is sometimes useful to split the de-
sired snow depth up and run the accumulationphase more than once.
Depending on the time allocated for each phase, lower-importance
launch sites may not get a chance to shoot particles every pass. To

41

flake area is allocated to sky buckets

surfaces

sky

sky buckets

successful flakes

flakes represent different areas

Figure 7: Allocating flake area to sky buckets.

allow fair mass allocation to those launch sites, we keep flake infor-
mation in the sky until replaced by a “fresher” set of shot particles
from a new pass.

The allocation of snow mass to sky buckets is usually constant,
although interesting effects can be obtained by multiplying bucket
mass by an input image. Figure 8 shows a scene where the sky gen-
erates very uneven amounts of snow.

Figure 8: Non-constant allocation of snow mass to sky bucketing
can be used to “write” the SIGGRAPH 2000 logo with snow

3.5 Snowflake Motion

We simulate snowflake motion with a series of straight-line vectors
approximating a curved path, where vector length and end position
are determined with a random walk process based upon a circle of
radius fr , and Z step resolution is influenced by the importance or-
dering. At each step, the value of fr is randomly chosen from a
normal distribution. As fr approaches zero, flakes duplicate ver-
tical raycasting, producing no partial occlusion. As fr increases,
the “area of effect” of a flake widens, generally blurring occlusion
boundaries and making it less obvious where bumps and depres-
sions came from.

In practice, it is hard to match flake-flutter parameters with ob-
served real scenes. We currently compare a grid of generated im-
ages to find the parameters that best match the shape of boundaries
found in a real scene.

3.6 Determining Particle/Surface Intersection

In order to find particle/surface intersections, we allocate surfaces
into a regular grid of XY buckets. Within each bucket, we com-
pute the minimum and maximum Z values of the surface as it passes
through the bucket bounding box. We then insert all Z ranges into
a per-box range tree [23]. For a tree containing n ranges, it takes
O(log2n) per insert and delete, and O(log2n + k) to return a list
of the k elements that overlap the Z query range. During the accu-
mulation phase, rebucketing is only needed upon completion, when

snow mass is added. During stability, rebucketing is done more of-
ten, although with a considerable lag for efficiency reasons.

3.7 Surface Construction

After snow allocation, each launch site is elevated by recently
accumulated snow mass divided by the current launch site area.
The polygonal top snow bounding surface is then the constrained-
Delaunay triangulation of elevated launch sites, with corner ver-
tices set to the minimum of adjacentneighbours. Additional vertical
planes are included around edge group boundaries to close the sur-
face down to the base plane.

3.8 Flake Dusting

In many instances, accumulated snow is not thick enough to com-
pletely obscure the underlying surface, appearing instead as a light
“dusting”of flakes. This phenomena often occurs in areas of low
snowfall, high instability, or on surfaces with microtexture bumps,
such as tree bark. Since it is not practical to model dusting as thick
3D objects, we use already-computed snow occlusion percentages
to generate procedural noise textures of the appropriate averaged
dusting density. Dusting textures are semi-transparent, textured
polygons oriented to float slightly in front of the original model.
Figure 9 compares the texture dusting of a (slightly tilted) real and
a computer generated sign. Figure 6 shows an example of the tran-
sition between thick surfaces and flake dusting textures.

In a view-dependent scene, flake dusting can be used to replace
sufficiently thin and distant snow layers with a white texture, reduc-
ing the polygon count.

4 Snow Stability

The snow stability phase of the algorithm is responsible for re-
distributing recently accumulated snow mass into a configuration
that is stable, according to some very simple surface and snow prop-
erties. It can be run at intermittent times as computationalpower and
desired accuracy permit, usually immediately after snow accumula-
tion.

All launch sites are initially sorted by absolute Z height plus ac-
cumulation, and placed in a list of unresolved sites u1. The list
is examined in decreasing Z order, immediately resolving unstable
launch sites as they are discovered. The resolution of a single launch
site s may affect a number of nearby neighbours: lower sites may
receive new snow from s, while the loss of snow from s may cre-
ate unstable angles with previously stable higher neighbours. Af-
fected samples also include sites receiving edge-transit snow from
s, or sites newly created to improve resolution.

If not there already, all launch sites affected by s, including s, are
placed in a new sorted list u2 . At the completion of an entire pass
through u1, the list is destroyed and replaced with u2, and the entire
pass is repeated until termination.

The length of u1 is not guaranteed to decrease on each pass,
and in fact may increase, or undergo large fluctuations. Consider
a large amount of very unstable snow on a wide flat surface. On
the first pass, the vast majority of interior samples are considered
stable, since they are at the same height as their neighbours. The
band of instability exists only at the edges, where unsupported snow
avalanches off into the void. As edge sites lose mass, adjacent inte-
rior neighbours are affected, and the area of instability widens. For-
tunately, the erosion of snow from the edges towards the centre is
very physically plausible.

42

Figure 9: (a) A real sign covered with real snow. (b) A computer generated sign covered with computer generated snow. Note how dusting
density increases near the top and edges in both models.

4.1 Angle of Repose

Despite the wide range of physical factors influencing real snow, for
simplicity we base our stability test mainly on the angle of repose
(AOR) of a particular snow type. The AOR measures the static fric-
tion of a pile of granular material, and is one of the major parameters
influencing our scene. It can range [6] [9] from near 90� in fresh
dendritic snow to 15� in extreme slush conditions.

For a given type of snow, we use a transition curve that models
the probability of stability over a range of angles around the AOR.
Increasing the width of the transition curve gives a stability solu-
tion with bumpier surfaces and increased variation at snow bound-
ary edgesnear the critical angle. A narrow curve generates smoother
surfaces with less variation.

The AOR is based on the relative heights of accumulated snow,
and not on the fixed angle of launch sites on the underlying surface.
As snow drains from one launch site to another, the AOR changes
continually. This means that launch sites on very steep surfaces may
still support snow if the AOR of neighbouring sites is low enough,
possibly because snow is blocked from moving away.

Figure13 shows an example of this using water (AOR = 0�) fill-
ing a fountain basin. The basin sides are too steep to support water,
so mass avalanches towards the basin bottom. As the basin fills, this
downward movement is blocked by the rising water level. Eventu-
ally, the basin fills to the brim, leaving a stable flat surface supported
by the steep sides of the bowl.

4.2 Stability Test

The actual stability test for a single iteration on launch site s can be
described as follows:

1. compute AOR between s and all neighbours ni lower than s

2. for each i with an AOR too steep to support snow, perform an
obstacle test between s and ni

i. if there is a non-snow obstacle in the way, the avalanche
is blocked, and the neighbour ni is ignored.

ii. if there is a vertical snow surface (an edge group bound-
ary) in the way, there an interpenetrating surface car-
rying snow between s and ni, so the avalanche is also
blocked.

iii. if there is a non-vertical snow surface in the way, there is
an interpenetrating surface B between s and ni, where
the interpenetrating surface could potentially receive the
snow destined forni. Replaceni with the closest launch
site on B.

3. evenly shift snow from s to all neighbours ni still in con-
tention, until at least one neighbour becomes stable.

4. repeat steps 1 to 3 until all there are no unstable neighbours
left, or s is bare of snow.

Figure 10 illustrates some of the obstacle cases.

(c)

B

(b)

ss

BB

s

(a)

n ii nin

Figure 10: (a), (b), (c) illustrate stability test obstacle cases i, ii, and
iii respectively

The obstacle test (step 2) checks to make sure that avalanche mo-
tion is not blocked by intervening surfaces or snow belonging to
other objects. If an obstacle is found, snow is blocked and forced to
pile up unless there is an alternative escape direction or snow rises
above the intervening obstacle. Figure 13 shows how blocked water
rises above the level of the basin sides, transferring to the top of the
basin edge, eventually overflowing into the next basin.

Step 2 is expensive. Practically, we achieve large speedupsby re-
ducing the frequency of this step - from every test, to every pass, to
once per stability phase, with corresponding decreases in accuracy.
The most infrequent testing is usually sufficient for models where
there is little inter-object penetration, although some blocking due
to rising snow will be missed. Figure 1 was computed using the
fastest method. Figure 16, containing thousands of interpenetrat-
ing and closely spacedgrass blades, was computedusing the slowest
method.

Any time there is a non-snow obstacle between two adjacent
neighbours, we can optionally improve the way snow builds up
against the obstacle by adding refinement launch sites just before the
intersection point.

4.3 Moving Snow over Edges

If an unstable launch site has no downhill neighbours, it is next to
an edge. Before snow cascades over an edge into the air, we per-
form an intersection test with a very short vector oriented in the di-
rection of avalanche motion. If an intersection is found, then some
surface or nearby snow is sufficiently close to the avalancheorigin to
block movement. Blocked avalanches continue to accumulate un-
til the origin launch site has enough snow to pass over the obstacle.
If no intersection is found, the avalanche heads over the edge and
is approximated as a few (usually < 5) avalanche particles mov-
ing on a simple projectile trajectory. Avalanche particles are tracked

43

downwards, bouncing off surfaces until reaching a surface support-
ing launch sites. If the edge is on a shared boundary with an adjacent
edge group, the particles end up “hopping” to the adjacent group via
very short projectile motion.

When an avalanche particle comes to rest, it contributes its snow
load to the nearest launch site on the destination surface. Depending
on user-set parameters, new launch sites may be created if existing
launch sites are not dense enough to capture the pattern of falling
snow.

4.4 Stability Termination Criteria

A single pass of the stability algorithm reaches completion when it
runs out of time, when the unresolved list u1 becomes empty, or
when all avalanches in the last pass moved only a very small amount
of snow.

In most scenes, the first few passes through u1 resolve a major-
ity of the unstable snow, with subsequent passes handling smaller
and smaller avalanches. Forced early termination may leave unsta-
ble areas, but all launch sites will usually have avalanched at least
once. Our multi-pass approach avoids driving a large wave of snow
downwards in a single pass, which leads to chaotic results on early
termination.

If the stability phase completes before the alloted time expires,
we re-run the entire phase to compensate for some speed-accuracy
tradeoffs, such as missed obstacle testing, and lag in the rebucket-
ing of changing snow surfaces. The extra phase usually fixes a few
missed sites and completes immediately.

Figure 11: Covering a hydrant with low AOR snow.

5 Implicit Functions

Importance-ordering accumulation algorithms are surface-based,
implying that snow can only accumulate on supporting objects. To
allow for unsupported snow, such as gap bridging, edge bulges and
wind cornices, we perform an additional (optional) conversion step
using implicit functions. Figure 2 shows an example where snow on
many closely-spaced pine needles has formed unsupported bridges
and clumps.

Each snow volume is converted into one of several different im-
plicit function types, as shown in Figure 12. Generator functions
do not radiate uniformly. The one-sided “edge” function allows
bulging and cornice formation, where size, bulging and direction are
based upon wind velocity. The limited “top” function blends with
snow directly above the generator surface, but does not blend much
with adjacent neighbours. The resulting isosurface is polygonalized
in O(n2) space [22].

In order to reduce blending discontinuities and apparent mass in-
flation at function boundaries, we use known adjacency information

to shrink and clip implicit functions so that the isosurface is coin-
cident with the polygonal top surface. A small variable-radius line
generator function blends cracks between adjacent functions, and
smoothes over sharp creases in the snow. Our method is not en-
tirely satisfactory, since surface cracks often remain visible - how-
ever, they are often minimised sufficiently to be destroyed during
mesh reduction [2] after polygonization.

edge generator
blending lines

(a) (b)

shrunken top

isosurface
edge surface

top surfaces

generator

Figure 12: (a) Side view of adjacent snow volumes. (b) Side view of
adjacent top and edge generator functions, with crack-filling blend-
ing lines.

Implicit functions potentially allow us to add animal tracks, wind
ripples, and other patterns to snow surfaces by “stamping” the snow
surface with appropriately scaled negative functions.

By interrupting the pipeline before the implicit function step in
Section 5, we obtain polygonal results with no bridging or smooth-
ing effects and a much lower polygon count. These compact inter-
mediate results are appropriate for scene setup and real-time view-
ing, and may actually be sufficient for the final image. Figures 4, 13
and 16 were computed without the smoothing step. As well, inter-
mediate polygonal results can be used as the underlying model for
a completely new snow accumulation run, producing the effect of
true snow layers.

6 Rain and Wind

By setting AOR = 0� and flake-flutter fr = 0 the basic snow al-
gorithm can also simulate the accumulation of water, from the sky
or elsewhere. Figure 13 shows an example of an empty fountain
slowly filling up with water. Only the patch of sky shown as a red
square has any mass to contribute, approximating how water ap-
pears at a spout, fills the first basin, and overflows to lower basins.

Figure 13: Snow stability algorithms can also be used to simulate
water accumulation. Water from the red patch fills the first basin
before overflowing into subsequent basins.

Wind is a major factor in the large-scale transport of snow, pro-
ducing some very compelling and interesting effects. Although we
cannotclaim to duplicate these effects, we at least have a framework
for simple wind phenomena in both snow accumulation and snow
stability phases.

44

During snow accumulation, wind influence is easily included
by modifying a flake’s direction and distance by a velocity vector.
Wind velocity vectors can be approximated with a constant direc-
tion, or much more accurately computed offline. The foreground
haystack in Figure 16 shows the asymmetrical accumulation effects
of a very slight breeze to the right, where the wind influence is glob-
ally constant.

During stability, we widen our single-site stability test to include
neighbours that are within 90� of the downwind direction. Snow
transport is then dependenton the neighbour’s angle with respect to
the local wind vector, the duration of the wind influence, and the car-
rying capacity of a given wind velocity, based on [10]. The instabil-
ity vector is moved according to the rules of Section 4.2, including
obstacle testing.

We use a simple heuristic to compensate for the different num-
ber of times each launch site may be stability tested. All launch
sites compute a flux maximum that is reduced and moved over some
small number of stability trials. Unfortunately, if the stability phase
is terminated early, some areas may not get a chance to move all al-
lowable wind transport snow. Figure 14 shows an example of wind
and stability effects using a simple, globally constant wind vector.

Figure 14: (a) The initial scene without wind. (b) A globally con-
stant wind blows the snow against the wall. Much of the snow has
blown completely away.

7 Validation

Validation of snow-covered scenes is hard, in that snow observed
outdoors is the result of uncontrollable and unknown environmen-
tal factors. Creating artificial snow is beyond our capabilities as a
graphics lab, so instead we restrict validation to observation, ask-
ing the question: “does our algorithm produce phenomena and/or
effects that are observable in nature?”

However, we were able to perform a few simple experiments to
show that our snow stability algorithms are at least plausible. We
substituted sifted flour for snow, to improve controllability and show
that our algorithms work for materials other than snow. Figure 15
shows a side-by-side comparison of real and computer generated
flour scenes. Figure 9 shows an additional side-by-side validation
image of flake dusting.

8 Future Work

Our initial focus was on a framework for snow generation, and as a
result we ignored, simplified, and actively avoided many extremely
important physical properties and effects, including snow compres-
sion and packing, layers, slab avalanches, snow creep, snow pack
metamorphosis, melting, and solar influence.

Other priorities include improving the overall smoothness of the
final results. Our sampling method is very noisy, mainly due to the
(relatively) tiny number of flakes used to extrapolate snow depth.

Figure 15: A real flour-covered scene (a) and a computer generated
scene (b) compared to show that our stability algorithms are at least
plausible. Our experimental setup was fairly ad-hoc: despite our
best efforts, flour was distributed unevenly around the base of the
real sphere.

Additionally, avalanching real snow distributes snow in a much
wider and more complex cloud that we currently model with our few
particles, leading to snow stalagmite artifacts, such as those near the
foreground wall in Figure 1. Although we are able to artificially en-
force surface smoothing, we have not done so in this paper.

Timing results are not fully applicable to our importance ordering
scheme, as models are usually allocated a running time convenient
to the user. However, the timing bottleneck of snow as a useful ef-
fect is the rendering phase, which is outside the scope of our current
work. Large models such as Figures 1 and 2 were given overnight
for snow accumulation, yet required weeks to raytrace animations
of several hundred frames. Rendering is aggravated by aliasing in
moving scenes - such as the distant, tiny, white snowpatches resting
on distant, tiny, dark needles shown in Figure 1. We are interested
in physically realistic, multi-resolution snow shaders or rendering
models that are fast and accurate.

9 Conclusions

This paper describes a new algorithm for the creation of snow-
covered models, using a novel particle location scheme that allows
surfaces to independently control sampling effort needed to deter-
mine accumulation. Separability of surface accumulation produces
many useful side effects, including importance ordering, adaptive
refinement, smooth degradation upon early termination, and greater
control of the final result. Our accumulation algorithm allows us
simulate effects such as accumulation under obstacles, flake dust-
ing, wind, falling rain, and “snow-writing”.

We have also presented a simple model of snow stability that han-
dles avalanches, edge-transit snow, obstacles supporting and block-
ing snow, materials other than snow, and mass transport due to
wind. Additional features of the approach include support for snow
bridges, cornices and various levels of model detail. Integration
with commercial software allows us to snow upon existing models
in a variety of formats, providing greater flexibility, power, and ease
of use. Finally, we have shown that our approach is able to handle
large, complex outdoor scenes consisting of hundreds of thousands
of surfaces.

It is our hope that this work will open up an entire new season to
computer graphics, and will stimulate other researchers to explore
the natural, glorious beauties of winter.

10 Acknowledgements

Alain Fournier provided guidance and the haystack model, while
colleagues and the anonymous reviewers provided many helpful
suggestions. Most of base models were provided courtesy of Plat-
inum Pictures.

45

Figure 16: A snowy scene inspired by Monet [11]. This model shows the results of omitting the final implicit smoothing phase. Haystack
models courtesy of Alain Fournier.

References
[1] Paul Fearing. The Computer Modelling of Fallen Snow. PhD thesis, Dept. of

Computer Science, University of British Columbia, July 2000.

[2] Michael Garland and Paul Heckbert. Surface Simplification Using Quadric Error
Metrics. SIGGRAPH 97 Conference Proceedings, pages 209–216, August 1997.

[3] Pat Hanrahan and Wolfgang Krueger. Reflection From Layered Surfaces Due
To Subsurface Scattering. Computer Graphics (SIGGRAPH 93 Conference Pro-
ceedings), 27:165–174, August 1993.

[4] Siu-chi Hsu and Tien-tsin Wong. Simulating Dust Accumulation. IEEE Com-
puter Graphics and Applications, 15(1):18–22, January 1995.

[5] Wolfgang Krueger. Intensity Fluctuations And Natural Texturing. Com-
puter Graphics (SIGGRAPH 88 Conference Proceedings), 22(4):213–220, Au-
gust 1988.

[6] Daisuke Kuroiwa, Yukiko Mizuno, and Masao Takeuchi. Micrometrical Proper-
ties Of Snow. In InternationalConference on Low Temperature Science (Physics
of Snow and Ice), volume 1, Part II, pages 722–751. Institute for Low Tempera-
ture Science, Aug 1966.

[7] Xin Li and Michael Moshell. Modeling Soil: Realtime Dynamic Models For Soil
Slippage And Manipulation. SIGGRAPH 93 Conference Proceedings, 27:361–
368, August 1993.

[8] A. Luciani, A. Habibi, and E. Manzotti. A Multi-Scale Physical Model Of Gran-
ular Materials. In Proceedings of Graphics Interface, pages 136–137. Canadian
Information Processing Society, 1995.

[9] David McClung and Peter Schaerer. The Avalanche Handbook. The Moun-
taineers, Seattle, Washington, 1993.

[10] Malcolm Mellor. Engineering Properties Of Snow. Journal of Glaciology,
19(81):15–66, 1977.

[11] Claude Monet. Wheatstacks, Snow Effect, Morning. Painting: oil on canvas, J.
Paul Getty Museum, Los Angeles, 1891.

[12] K. Muraoka and N. Chiba. A Visual Simulation Of Melting Snow. The Journal
of the Institute of Image Electronics Engineers of Japan, 27(4):327–338, 1998.

[13] K. Muraoka, N. Chiba, and I. Ohtawara. Snowfall Model For Simulating Close
Views Of Snowy Landscapes. The Journal of the Institute of Television Engineers
of Japan, 49(10):1252–1258, 1995.

[14] F.K. Musgrave, C.E Kolb, and R.S. Mace. The Synthesis And Rendering Of
Eroded Fractal Terrains. Computer Graphics (SIGGRAPH 89 Conference Pro-
ceedings), 23(3):41–50, July 1989.

[15] T. Nishita, H. Iwasaki, Y. Dobashi, and E. Nakamei. A Modeling And Rendering
Method For Snow By Using Metaballs. In Proc. EUROGRAPHICS, volume 16.
European Association for Computer Graphics, 1997.

[16] S. Premoze, W. Thompson,and P. Shirley. Geospecific Rendering Of Alpine Ter-
rain. In Eurographics Rendering Workshop. European Association for Computer
Graphics, June 1999.

[17] D.A Robinson. Northern Hemisphere Snow Cover Charts. National Snow and
Ice Data Center, http://www-nsidc.colorado.edu/NSIDC/EDUCATION/SNOW
/snow Robinson.html, as of April 10, 2000.

[18] Robert G. Scharein. Interactive Topological Drawing. PhD thesis, Department
of Computer Science, The University of British Columbia, 1998.

[19] Mikio Shinya and Alain Fournier. Stochastic Motion – Motion Under The Influ-
ence Of Wind. In Proc. EUROGRAPHICS, pages 119–128. European Associa-
tion for Computer Graphics, 1992.

[20] Karl Sims. Particle Animation And Rendering Using Data Parallel Computation.
Computer Graphics (SIGGRAPH 90 Conference Proceedings), 24(4):405–413,
August 1990.

[21] R. Sumner, J. O’Brien, and J. Hodgins. Animating Sand, Mud and Snow. In
Proceedings of Graphics Interface, pages 125–132. Canadian Information Pro-
cessing Society, 1998.

[22] Alan Watt and Mark Watt. Advanced Animation and Rendering Techniques.
Addison-Wesley Publishing, Don Mills, Ontario, 1992.

[23] D.E. Willand. New Data Structures For Orthogonal Queries. SIAM Journal of
Computing, 14(1):232–253, 1985.

Figure 17: Another view of Figure 1.

Figure 18: Snow covered brush.

46

