

What are contours?

Set of points where the scalar field s has a given value c :

$$
\left\{\mathbf{x} \in \mathbb{R}^{n}: s(\mathbf{x})=c\right\}
$$

Examples in 2D:

- height contours on maps
- isobars on weather maps

Contouring algorithm:

- find intersection with grid edges
- connect points in each cell

Ronald Peikert
SciVis 2007 - Contouring

Topological consistency

To avoid degeneracies, use symbolic perturbations:
If level c is found as a node value, set the level to c - ε where ε is a symbolic infinitesimal.

Then:

- contours intersect edges at some (possibly infinitesimal) distance from end points
- flat regions can be visualized by pair of contours at $c-\varepsilon$ and $c+\varepsilon$
- contours are topologically consistent, meaning:

Contours are closed, orientable, nonintersecting lines.

- isolated points $(c=6)$
- flat regions ($c=8$)

Ambiguities of contours
What is the correct contour of $c=4$?
Two possibilities, both are orientable:

- values $s(\mathbf{x})>c$ are on the left side
- values $s(\mathbf{x})<c$ are on the right side

Answer: correctness depends on interior values of $s(\mathbf{x})$.
But different interpolation schemes are possible.

Better question: What is the correct contour with respect to bilinear interpolation?

Ronald Peikert
SciVis 2007 - Contouring

Contours in a quadrangle cell

- local coordinates: $\quad(0,0),(1,0),(0,1),(1,1)$
- function values: $\quad s_{00}, s_{10}, s_{01}, s_{11}$
- bilinear interpolant:

$$
\begin{aligned}
s= & (1-x)(1-y) s_{00}+x(1-y) s_{10}+(1-x) y s_{01}+x y s_{11} \\
& =A x y+B x+C y+D
\end{aligned}
$$

If $A=0$, contour equation is $C=B x+C y+D$
contours are straight lines, all parallel
If $A \neq 0$, contour equation is $c=A\left(x+\frac{C}{A}\right)\left(y+\frac{B}{A}\right)+D-\frac{B C}{A}$ contours are hyperbola, except for level $c=D-\frac{B C}{A}$

Ronald Peikert
SciVis 2007 - Contouring
Contours in a quadrangle cell
Contour equation for special level: $\quad 0=A\left(x+\frac{C}{A}\right)\left(y+\frac{B}{A}\right)$
Contour is a pair of axis-aligned straight lines $x=-C / A$
and $y=-B / A$.
Applied to example:

- contour equation:
- spe-10 $(x-0.3)(y-0.5)+4.5$
- saddle point at $(0.3,0.5)$
Ronald Peikert

Note: For drawing, straight lines are sufficient. Drawing hyperbola does not lead to better contours:

Reason: piecewise bilinear function is not C^{1}.
Contours in triangle/tetrahedral cells
Linear interpolation of cells implies
piece-wise linear contours.
Contours are unambiguous, making
"marching triangles" even simpler than
Question: Why not split quadrangles into two triangles (and
hexahedra into five or six tetrahedra) and use marching triangles
(tetrahedra)?
Answer: This can introduce periodic artifacts!
Ronald Peikert

Contours in triangle/tetrahedral cells
3D example based on real (downsampled) dataset.
Contour (=isosurface) in
original hexahedral grid vs. in tetrahedrized grid:
Ronald Peikert

The marching cubes algorithm

Contours of 3D scalar fields are known as isosurfaces.
Before 1987, isosurfaces were computed as

- contours on planar slices, followed by
- "contour stitching".

The marching cubes algorithm computes contours directly in 3D.

- Pieces of the isosurfaces are generated on a cell-by-cell basis.
- Similar to marching squares, a 8 -bit number is computed from the 8 signs of $\tilde{s}\left(\mathbf{x}_{i}\right)$ on the corners of a hexahedral cell.
- The isosurface piece is looked up in a table with 256 entries.

The marching cubes algorithm

How to build up the table of 256 cases?

Lorensen and Cline (1987) exploited 3 types of symmetries:

- rotational symmetries of the cube
- reflective symmetries of the cube
- sign changes of $\tilde{S}(\mathbf{x})$

They published a reduced set of 14^{*}) cases shown on the next slides where

- white circles indicate positive signs of $\tilde{S}(\mathbf{x})$
- the positive side of the isosurface is drawn in red, the negative side in blue.
*) plus an unnecessary "case 14 " which is a symmetric image of case 11.
Ronald Peikert
SciVis 2007 - Contouring

The marching cubes algorithm

Do the pieces fit together?

- The correct isosurfaces of the trilinear interpolant would fit (trilinear reduces to bilinear on the cell interfaces)
- but the marching cubes polygons don't necessarily fit.

Example

- case 10 , on top of
- case 3 (rotated, signs changed)
have matching signs at nodes but polygons don't fit.

Ronald Peikert
SciVis 2007 - Contouring
case 3

The marching cubes algorithm

case 6c

Reason for failure:
Topology decision on faces with alternating signs.
Decision by original MC algorithm is not correct w.r.t. the interpolant, and not consistent.

A consistent decision would be: always cut off the positive corners!

Original MC table obeys this rule, but:
It is lost when sign change is applied!
Consequence:
Extend table by 14 complementary cases for changed signs!
Ronald Peikert
Scivis 2007 - Contouring

The marching cubes algorithm

The remaining complementary cases are obtained simply by changing the orientation.
Example:

Based on the 28 cases, the full 256 cases are obtained by

- rotations of the cube
- reflections of the cube (and re-orienting of triangles)

Ronald Peikert
SciVis 2007 - Contouring

The marching cubes algorithm

Loop over cells:

- find sign of $\tilde{S}(\mathbf{x})$ for the 8 corner nodes, giving 8-bit integer
- use as index into (256 case) table
- find intersection points on edges listed in table, using linear interpolation
- generate triangles according to table

Post-processing steps:

- connect triangles (share vertices)
- compute normal vectors
- by averaging triangle normals (problem: thin triangles!)
- by estimating the gradient of the field $s(\mathbf{x})$ (better)

Ronald Peikert
SciVis 2007 - Contouring

Asymptotic decider algorithm (Nielson and Hamann 1991) :

- generate topologically correct contours (as oriented straight line segments) on the cell interfaces
- connect these around the cell, resulting in one or more polygons
- triangulate the polygons

The dividing cubes algorithm

An early point-based algorithm (Crawford et al. '87): For each cell

- check whether it is intersected by the isosurface: $\min _{i \in c e l l} s_{i}<c<\max _{i \in c e l l} s_{i}$
- subdivide intersected cell into $m \times m \times m$ subcells using trilinear interpolation
- draw the centers of all intersected subcells

Points can be lit:

- estimate the gradient and use it as the normal vector

Optimized isosurface algorithms

Approaches to speeding up isosurface computation:

View dependent algorithms

- occluded triangles not computed
- GPU-based isosurface computation and rendering

Data preprocessing for fast computation of multiple isosurfaces (multiple levels), e.g. for interactive exploration of the data.

- many methods: octree, extrema graph, span space
- common goal: avoid computation in non-intersected cells.

The span-space algorithm

Method by Livnat (1996).

Pre-processing:

- for each cell compute min and max,
- treat (min, max) as a point in the span space (Euclidean plane)
- store points in boxes, non-empty boxes organized as linked list
compute minimum and maximum of $s(\mathbf{x})$ per subgrid, store as an interval $[\min , \max]$ in the tree.

Computing the isosurface for a level c :

- starting at the root,
- descend recursively to subtrees if $\min <c<\max$
- if a leaf is reached, generate the isosurface for the respective cell with MC or AD.

Ronald Peikert
SciVis 2007 - Contouring

Limitations of isosurfaces

Isosurfaces represent only a single level within the data range. In practial data, there is often not a single "interesting" level.

Example: Von Kármán vortex street, colored by entropy.

"interesting" level: red on the left, green on the right. How should a 3D version of these data be visualized?

Ronald Peikert
SciVis 2007 - Contouring

Limitations of isosurfaces

Transparent rendering of multiple isosurfaces is possible, but:

- limited to a small number by visibility
- alpha-blending requires depth sorting

Alternatives:

- feature extraction methods, e.g. detecting "blobs" (maximal ellipse-like contours).
- volume rendering can show ranges of "interesting" levels of the field and/or its gradient.

Ronald Peikert
SciVis 2007 - Contouring

