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Contouring and Isosurfaces
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What are contours?

Set of points where the scalar field s has a given value c:

Examples in 2D:

• height contours on maps

( ){ }:n s c∈ =x x
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• isobars on weather maps

Contouring algorithm:

• find intersection with grid edges

• connect points in each cell

Example
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2 types of degeneracies:
• isolated points (c=6)
• flat regions (c=8)

Topological consistency

To avoid degeneracies, use symbolic perturbations:

If level c is found as a node value, set the level to c-ε where ε
is a symbolic infinitesimal.

Then:

• contours intersect edges at some (possibly infinitesimal) distance 
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from end points

• flat regions can be visualized by pair of contours at c-ε and c+ε

• contours are topologically consistent, meaning:

Contours are closed, orientable, nonintersecting lines.

Ambiguities of contours

What is the correct contour of c=4?

Two possibilities, both are orientable:

• values s(x)>c are on the left side

• values s(x)<c are on the right side
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Answer: correctness depends on interior values of s(x).

But different interpolation schemes are possible.

Better question: What is the correct contour with respect to bilinear 
interpolation?

• local coordinates:
• function values:
• bilinear interpolant:

( ) ( ) ( ) ( )0,0 , 1,0 , 0,1 , 1,1

( )( ) ( ) ( )00 10 01 111 1 1 1s x y s x y s x y s x y s= − − + − + − +

00 10 01 11, , ,s s s s

Axy Bx Cy D= + + +

Contours in a quadrangle cell
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If A=0, contour equation is
contours are straight lines, all parallel

If A≠0, contour equation is

contours are hyperbola, except for level

C B BCc A x y D
A A A

⎛ ⎞⎛ ⎞= + + + −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

c Bx Cy D= + +

BCc D
A

= −
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Contour equation for special level:

Contour is a pair of axis-aligned straight lines 
and                 .

Applied to example:

Contours in a quadrangle cell

/x C A= −

0 C BA x y
A A

⎛ ⎞⎛ ⎞= + +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

/y B A= −
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• contour equation:

• special level c=4.5
• saddle point at (0.3, 0.5)

( )( )10 0.3 0.5 4.5c x y= − − − +

Decision can be made without computing special level or saddle 
point, by comparing fractions of edges:

Contours in a quadrangle cell
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Using local coordinates, this works also for curvilinear and 
unstructured grids.  

Note: For drawing, straight lines are sufficient.
Drawing hyperbola does not lead to better contours:

Contours in a quadrangle cell

n
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Reason: piecewise bilinear function is not C1.

n

Basic contouring algorithms:
• cell-by-cell algorithms: simple structure, but generate 

disconnected segments, require post-processing
• contour propagation methods: more complicated, but  

generate connected contours

"Marching squares" algorithm (systematic cell by cell):

Contours in a quadrangle cell
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"Marching squares" algorithm (systematic cell-by-cell):
• process nodes in ccw order, denoted here as
• compute at each node      the reduced field

(which is forced to be nonzero)
• take its sign as the ith bit of a 4-bit integer
• use this as an index for lookup table containing the connectivity 

information: 

0 1 2 3, , ,x x x x

( ) ( ) ( )i is s c ε= − −x x
ix

Alternating signs exist 
in cases 6 and 9.

Choose the solid or

Contours in a quadrangle cell

0 1 2 3

4 5 6 7

( ) 0is >x

( ) 0is <x
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Choose the solid or 
dashed line?

Both are possible for 
topological 
consistency.

This allows to have a 
fixed table of 16 
cases.12 13 14 15

8 9 10 11

Linear interpolation of cells implies
piece-wise linear contours.

Contours are unambiguous, making
"marching triangles" even simpler than
"marching squares".

Contours in triangle/tetrahedral cells
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Question: Why not split quadrangles into two triangles (and 
hexahedra into five or six tetrahedra) and use marching triangles 
(tetrahedra)?

Answer: This can introduce periodic artifacts!
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Illustrative example: Find contour at level c=40.0 !

Contours in triangle/tetrahedral cells

60.0 50.0 45.0 42.5
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original quad grid, yielding vertices     and contour
triangulated grid,   yielding vertices     and contour

20.0 30.0 35.0 37.5

3D example based on real (downsampled) dataset.
Contour (=isosurface) in 

original hexahedral grid   vs.     in tetrahedrized grid: 

Contours in triangle/tetrahedral cells
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Contours of 3D scalar fields are known as isosurfaces.
Before 1987, isosurfaces were computed as 
• contours on planar slices, followed by
• "contour stitching".

The marching cubes algorithm computes contours directly in 3D.
f f

The marching cubes algorithm
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• Pieces of the isosurfaces are generated on a cell-by-cell basis.  
• Similar to marching squares, a 8-bit number is computed from 

the 8 signs of            on the corners of a hexahedral cell.
• The isosurface piece is looked up in a table with 256 entries. 

( )is x

How to build up the table of 256 cases?

Lorensen and Cline (1987) exploited 3 types of symmetries:
• rotational symmetries of the cube
• reflective symmetries of the cube
• sign changes of ( )s x

The marching cubes algorithm
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They published a reduced set of 14*) cases shown on the next 
slides where

• white circles indicate positive signs of     
• the positive side of the isosurface is drawn in red, the negative 

side in blue.

*)  plus an unnecessary "case 14" which is a symmetric image of case 11.

( )s x

The marching cubes algorithm

case 0 case 1 case 2 case 3
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case 0 case 1 case 2 case 3

case 4 case 5 case 6 case 7

The marching cubes algorithm

case 8 case 9 case 10 case 11
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case 8 case 9 case 10 case 11

case 12 case 13
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Do the pieces fit together?
• The correct isosurfaces of the trilinear 

interpolant would fit (trilinear reduces to 
bilinear on the cell interfaces)

• but the marching cubes polygons don't 
necessarily fit.

The marching cubes algorithm

case 10
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Example
• case 10, on top of
• case 3 (rotated, signs changed)
have matching signs at nodes but polygons 

don't fit. 

case 10

case 3

Reason for failure: 
Topology decision on faces with alternating signs. 

Decision by original MC algorithm is not correct w.r.t. the interpolant, 
and not consistent.

A consistent decision would be: always cut off the positive corners!

The marching cubes algorithm
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Original MC table obeys this rule, but: 
It is lost when sign change is applied!

Consequence: 
Extend table by 14 complementary cases for changed signs!

The marching cubes algorithm

case 7case 3 case 6
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case 3c case 6c case 7c

The remaining complementary cases are obtained simply by 
changing the orientation.

Example:

The marching cubes algorithm
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Based on the 28 cases, the full 256 cases are obtained by
• rotations of the cube
• reflections of the cube (and re-orienting of triangles)

case 1 case 1c

Summary of marching cubes algorithm:

Pre-processing steps:
• build a table of the 28 cases
• derive a table of the 256 cases, containing info on

– intersected cell edges, e.g. for case 3/256 (see case 2/28):
(0 2) (0 4) (1 3) (1 5)

The marching cubes algorithm
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(0,2), (0,4), (1,3), (1,5)
– triangles based on these points, e.g. for case 3/256:

(0,2,1), (1,3,2).

Loop over cells:
• find sign of          for the 8 corner nodes, giving 8-bit integer
• use as index into (256 case) table
• find intersection points on edges listed in table, using linear 

interpolation
• generate triangles according to table

The marching cubes algorithm

( )s x
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Post-processing steps:
• connect triangles (share vertices)
• compute normal vectors

– by averaging triangle normals (problem: thin triangles!)
– by estimating the gradient of the field s(x) (better)
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Motivation for a different isosurface algorithm:

Marching cubes can produce "bad" topology.
2D example (marching squares):

The asymptotic decider algorithm
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Asymptotic decider algorithm (Nielson and Hamann 1991) :
• generate topologically correct contours (as oriented straight line 

segments) on the cell interfaces
• connect these around the cell, resulting in one or more polygons
• triangulate the polygons

~/avs/networks/SciVis/MCandAD*.net

In general, the AD algorithm generates better isosurfaces.

However,
• it cannot be easily implemented with a table like MC (too many 

cases)
• it generates polygons with up to 12 sides (MC: up to 7)

the topology is correct w r t the trilinear interpolant but the

The asymptotic decider algorithm
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• the topology is correct w.r.t the trilinear interpolant, but the 
geometry can deviate 

• some polygons cannot be "cleanly" triangulated

A few examples are given on the next slide, showing isosurfaces of 
the trilinear interpolant. 

2

2
-3 -3

-2

3

The asymptotic decider algorithm

-4
-1

-3

-3

2

4

-1

-2 2

-3
-2

-5
36

-5
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3

8-sided polygon

2

9-sided polygon

6

12-sided polygon

The 8-sided polygon has no valid triangulation!
• either some triangles lie on faces of the cell
• or an extra vertex has to be used 

~/avs/networks/SciVis/AD*net

Example (VTK demo):
pine root dataset 

(1) unprocessed
MC isosurface

Post-processing of isosurfaces
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Data: J. McFall, Center for In Vivo Microscopy, Duke University

Example (VTK demo):
pine root dataset

(2) largest connected
component only

Post-processing of isosurfaces

Ronald Peikert SciVis 2007 - Contouring 2-29

Algorithm: connected 
component labeling

Example (VTK demo):
pine root dataset

(3) decimated from
351,118 to 
81,111 triangles

Post-processing of isosurfaces
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Purpose of decimation:
• data reduction
• improve mesh quality

(thin/small triangles)
Algorithm (Schroeder):
• vertex removal
• feature edges kept
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An early point-based algorithm (Crawford et al. '87): For each cell 
• check whether it is intersected by the isosurface:

• subdivide intersected cell into                    subcells using trilinear 
interpolation

• draw the centers of all intersected subcells
Points can be lit:

The dividing cubes algorithm

m m m× ×
min maxi ii cell i cell

s c s
∈ ∈

< <
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Points can be lit:
• estimate the gradient and use it as the normal vector

50’078 and
2’506’989 points

Approaches to speeding up isosurface computation:

View dependent algorithms
• occluded triangles not computed
• GPU-based isosurface computation and rendering

f f f f

Optimized isosurface algorithms
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Data preprocessing for fast computation of multiple isosurfaces 
(multiple levels), e.g. for interactive exploration of the data.

• many methods: octree, extrema graph, span space
• common goal: avoid computation in non-intersected cells.

The octree-based algorithm

Method by Wilhelms and van Gelder (1992) for (block-)structured 
grids.

Pre-processing:
• recursively split the grid in two subgrids, building up a binary tree 

of subgrids, stop splitting when single cells are reached.
• compute minimum and maximum of s(x) per subgrid store as an
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• compute minimum and maximum of s(x) per subgrid, store as an 
interval [min, max] in the tree.

Computing the isosurface for a level c:
• starting at the root,
• descend recursively to subtrees if min<c<max
• if a leaf is reached, generate the isosurface for the respective 

cell with MC or AD.

The span-space algorithm

Method by Livnat (1996).

Pre-processing: 
• for each cell compute min and max, 
• treat (min,max) as a point in the span space (Euclidean plane)
• store points in boxes, non-empty boxes organized as linked list
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min

max

Computing the isosurface for a level c:
• Find the intersected cells in the quadrant min<c, max>c

Performance gain for datasets with small local variation,
i.e. points in span space distributed mostly near diagonal

The span-space algorithm
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c

c
min

max

Limitations of isosurfaces

Isosurfaces represent only a single level within the data range.
In practial data, there is often not a single "interesting" level.

Example: Von Kármán vortex street, colored by entropy.
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"interesting" level: red on the left, green on the right.
How should a 3D version of these data be visualized?
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Transparent rendering of multiple isosurfaces is possible, but:
• limited to a small number by visibility
• alpha-blending requires depth sorting

Alternatives:
• feature extraction methods, e.g. detecting "blobs" (maximal 

ellipse like contours)

Limitations of isosurfaces
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ellipse-like contours).
• volume rendering can show ranges of "interesting" levels of the 

field and/or its gradient.


