

	The marching cubes algorithm	
Summary of marchi	ng cubes algorithm:	
Pre-processing step	os:	
 build a table of the 	e 28 cases	
 derive a table of 	the 256 cases, containing info on	
 intersected ce (0,2), (0,4), (1 	ell edges, e.g. for case 3/256 (see cas 1,3), (1,5)	e 2/28):
 triangles base (0,2,1), (1,3,2) 	ed on these points, e.g. for case 3/256 2).	6:
Ronald Peikert	SciVis 2007 - Contouring	2-23

	The marching cubes algorithm	
 Loop over cells: find sign of s̃(x) use as index interformed intersection interpolation generate triangle 	for the 8 corner nodes, giving 8-bit integer o (256 case) table points on edges listed in table, using linear es according to table	
Post-processing st • connect triangle • compute normal – by averaging – by estimating	eps: s (share vertices) l vectors t triangle normals (problem: thin triangles!) g the gradient of the field <i>s</i> (x) (better)	
Ronald Peikert	SciVis 2007 - Contouring	2-24

The octree-based algorithm

Method by Wilhelms and van Gelder (1992) for (block-)structured grids.

Pre-processing:

- recursively split the grid in two subgrids, building up a binary tree of subgrids, stop splitting when single cells are reached.
- compute minimum and maximum of *s*(**x**) per subgrid, store as an interval [*min*, *max*] in the tree.

Computing the isosurface for a level *c*:

- · starting at the root,
- descend recursively to subtrees if min<c<max
- if a leaf is reached, generate the isosurface for the respective cell with MC or AD.

Ronald Peikert

SciVis 2007 - Contouring

Limitations of isosurfaces

Transparent rendering of multiple isosurfaces is possible, but:

- · limited to a small number by visibility
- alpha-blending requires depth sorting

Alternatives:

- feature extraction methods, e.g. detecting "blobs" (maximal ellipse-like contours).
- volume rendering can show ranges of "interesting" levels of the field and/or its gradient.

Ronald Peikert

SciVis 2007 - Contouring

2-37