Object Space Volume Rendering

Ronald Peikert
SciVis 2007 - Object Space Volume Rendering
In the case of direct volume rendering, "objects" can mean:

- layers of voxels: image compositing methods
- 2D texture based
- 3D texture based
- voxels: splatting methods
- cells: cell projection methods

Volume rendering by 2D texture mapping:

- use planes parallel to base plane (front face of volume which is "most orthogonal" to view ray)
- draw textured rectangles, using bilinear interpolation filter
- render back-to-front, using α-blending for the α-compositing

Polygon S lices

2D Textures

Fhallmage

Image credit: H.W.Shen, Ohio State U.
Ronald Peikert
SciVis 2007 - Object Space Volume Rendering

The shear-warp factorization

In general the image plane is not parallel to a volume face.

The shear-warp method by Lacroute allows to render an intermediate image in the base plane:

- transform to sheared object space by translating (and possibly scaling) the voxel layers
- render the intermediate image in the base plane
- warp the intermediate image

Object space volume rendering

In object space rendering methods, the main loop is not over the pixels but over the objects in 3-space.

Volume rendering by 3D texture mapping (Cabral 1994):

- use the voxel data as the 3D texture
- render an arbitrary number of slices (eg. 100 or 1000) parallel to image plane (3- to 6-sided polygons)
- back-to-front compositing as in 2D texture method Limited by size of texture memory.

Orthographic shear-warp

The view transformation ("modelview" in OpenGL) is an affine transformation, consisting of a rotation and a translation. Ignoring the translation, the 3×3 submatrix can be factorized:

$$
\mathbf{M}_{\text {view }}=\mathbf{W} \cdot \mathbf{S} \cdot \mathbf{P}
$$

where:

- \mathbf{P} is a permutation matrix mapping the base plane (front face of the volume most orthogonal to the center view ray) to the xy-plane
- \mathbf{S} is the shear matrix
- \mathbf{W} is the warp matrix

The warp is a 3×3 matrix, but effectively an affine transformation of the $x y$-plane.
The third row of \mathbf{W} is irrelevant while two zeros in the third column are required to make the warp independent of z :

$$
\mathbf{W}=\left[\begin{array}{llc}
W_{00} & W_{01} & 0 \\
W_{10} & W_{11} & 0 \\
W_{20} & W_{21} & W_{22}
\end{array}\right]
$$

Ronald Peikert
SciVis 2007 - Object Space Volume Rendering

Perspective shear-warp

The same factorization can be used, but now in homogenous coordinates:

$$
\mathbf{M}_{\text {view }}=\mathbf{W} \cdot \mathbf{S} \cdot \mathbf{P}
$$

The shear and scaling matrix S gets the form
It does $\mathbf{S}=\left[\begin{array}{cccc}1 & 0 & s_{x} & 0 \\ 0 & 1 & s_{y} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & s_{w} & 1\end{array}\right]$

- a translation of x by $S_{x} z$ and of y by $s_{y} z$, followed by
- a scaling with $1 /\left(1+s_{w} z\right)$

Perspective shear-warp

The warp matrix \mathbf{W} is:

$$
\mathbf{W}=\left[\begin{array}{cccc}
W_{00} & w_{01} & 0 & w_{03} \\
W_{10} & W_{11} & 0 & W_{13} \\
W_{20} & W_{21} & W_{22} & W_{23} \\
W_{30} & W_{31} & 0 & W_{33}
\end{array}\right]
$$

The zero in the bottom row is needed to make the warp independent of z.

Ronald Peikert
SciVis 2007 - Object Space Volume Rendering

It follows for the warp coefficients $w_{i j}=v_{i j}(j \neq 2)$
for the shear coefficients

$$
\left(\begin{array}{l}
S_{x} \\
S_{y} \\
S_{w}
\end{array}\right)=\left[\begin{array}{lll}
v_{00} & v_{01} & v_{03} \\
v_{10} & v_{11} & v_{13} \\
V_{30} & v_{31} & v_{33}
\end{array}\right]^{-1}\left(\begin{array}{l}
v_{02} \\
v_{12} \\
V_{32}
\end{array}\right)
$$

and for w_{22} (not needed)

$$
W_{22}=-S_{x} V_{20}-S_{y} V_{21}-S_{w} V_{23}+V_{22}
$$

Ronald Peikert

Comparison of typical object space method (2D texture based) and image space method (raycasting).
Formally both are equivalent, only different nesting order of loops. Practical differences:

- Image space methods with FTB compositing allow early termination.
- Object space methods using framebuffer for intermediate results suffer from quantization artifacts.
- Object space methods can exploit texture mapping hardware and MIPmap textures for antialising.
- Image space methods would need supersampling in x and y for this.

Perspective shear-warp

Assuming again that \mathbf{P} is the identity, we get:

$$
\begin{aligned}
\mathbf{M}_{\text {view }} & =\left[\begin{array}{llll}
v_{00} & v_{01} & v_{02} & v_{03} \\
v_{10} & v_{11} & v_{12} & v_{13} \\
v_{20} & v_{21} & v_{22} & v_{23} \\
v_{30} & v_{31} & v_{32} & v_{33}
\end{array}\right]=\mathbf{W} \cdot \mathbf{S}= \\
& =\left[\begin{array}{llll}
W_{00} & W_{01} & S_{x} W_{00}+S_{y} W_{01}+S_{w} W_{03} & W_{03} \\
W_{10} & W_{11} & S_{x} W_{10}+S_{y} W_{11}+S_{w} W_{13} & W_{13} \\
W_{20} & W_{21} & S_{x} W_{20}+S_{y} W_{21}+W_{22}+S_{w} W_{23} & W_{23} \\
W_{30} & W_{31} & S_{x} W_{30}+S_{y} W_{31}+S_{w} W_{33} & W_{33}
\end{array}\right]
\end{aligned}
$$

Ronald Peikert
SciVis 2007 - Object Space Volume Rendering

Perspective shear-warp

The shear-warp volume rendering algorithm is now as follows:

- For each voxel layer (parallel to base plane):
- shear and scale the layer image by multiplying with S
- apply transfer functions
- Generate intermediate image with α-compositing
- warp the image by multiplying with \mathbf{W}

An advantage of this algorithm is that for scaling images a filter can be used to prevent undersampling (aliasing).

Post-classification can be done in graphics hardware:
Using (OpenGL) dependent texture (two texture mapping stages):

Object space vs. image space

Preintegration is possible also in object space:

- Use slabs (space between two slices) instead of slices
- Dependent textures:
- $1^{\text {st }}$ stage: interpolate scalar field in front and back slice
$-2^{\text {nd }}$ stage: look up integrated transfer function

Ronald Peikert SciVis 2007 - Object Space Volume Rendering

Splatting

Advantages of splatting:

- applicable to structured and unstructured grids
- other reconstruction filters than trilinear interpolation are possible, e.g. sinc filter

Original algorithm (Westover 1990):

- orthographic view, uniform grids \rightarrow all footprints are translates of a template
Elliptical weighted average (EWA) splatting (Zwicker et al. 2001)
- ellipsoidal Gaussians as footprints
- perspective view, low-pass filter for antialiasing

Ronald Peikert
SciVis 2007 - Object Space Volume Rendering

Splatting

Raycasting: "What does each voxel contribute to a given pixel?"
Splatting: "What does a given voxel contribute to each pixel?"
Splatting as a brute-force method:

- pre-processing:
- for each voxel $\mathbf{x}_{\mathbf{i}}$ render (raycast) a field $s\left(x_{j}\right)=\delta_{i j}$
- store resulting footprint images
- main loop:
- for each voxel \mathbf{x}_{i} adjust footprint image to effective TF value
- blend all footprint images of a voxel layer ("sheet buffer")
- do α-compositing of layers

Cell projection

Projected tetrahedra (PT) is an object space method for tetrahedral grids [Shirley, Tuchman 1990].
Each (tetrahedral) cell is decomposed into 3 or 4 tetrahedra along those edges which are not part of the silhouette.

Class to

Class 2

Computation of thick vertex:

- compute determinants $d_{i}=\operatorname{det}\left(\mathbf{x}_{j}, \mathbf{x}_{k}, \mathbf{x}_{l}\right) \quad(i=0,1,2,3)$ where $\mathbf{x}_{j}, \mathbf{x}_{k}, \mathbf{x}_{l}$ are the vertices of the $i^{\text {ith }}$ face, relative to camera position, ordered ccw on outside of face
- if number of positive determinants is
- odd: class 1
- even: class 2
- interpolation weights (for coordinates and data) of thick vertex

$$
\underset{\substack{(\text { example } \\++-+)}}{\text { for class 1: }} \frac{d_{0}}{2\left(d_{0}+d_{1}+d_{3}\right)}, \frac{d_{1}}{2\left(d_{0}+d_{1}+d_{3}\right)}, \frac{1}{2}, \frac{d_{3}}{2\left(d_{0}+d_{1}+d_{3}\right)}
$$

$\begin{gathered}- \text { for class 2: } \\ \text { (example }\end{gathered} \frac{d_{0}}{2\left(d_{0}+d_{3}\right)}, \frac{d_{1}}{2\left(d_{1}+d_{2}\right)}, \frac{d_{2}}{2\left(d_{1}+d_{2}\right)}, \frac{d_{3}}{2\left(d_{0}+d_{3}\right)}$
Ronald Peikert
SciVis 2007 - Object Space Volume Rendering
Assigning opacities:

- 0 for thin vertices projection
- preintegrated TF for thick vertex
Assigning colors:
- look up color TF for thin and thick vertices
Visibility sorting:
- generate partial ordering of cells based on adjacent pairs
- break cycles (rare, small rendering error, alternative: split a cell)

Cell projection

Rendering of triangles with fragment program

- interpolate $s(\mathbf{x})$ for points on front and back triangle
- interpolate cell thickness
- lookup color and opacity in preintegrated TF

Back-to-front compositing

- cells must be depth-sorted
- possible without re-sorting: camera turn, zoom
- depth test (z-buffer) must be enabled
- additional (opaque) objects must be rendered before the volume

Cell projection

When compositing cells with low opacity, opacities are essentially added.
Adding many very small opacities (e.g. between 0/255 and 1/255) leads to quantization artifacts.
Options to reduce artifacts:

- compositing with 16 bits
- α-dithering: instead of standard rounding

$$
x \rightarrow\lfloor x\rfloor+\left(x-\lfloor x\rfloor \geq \frac{1}{2}\right)
$$

use randomized rounding

$$
x \rightarrow\lfloor x\rfloor+(x-\lfloor x\rfloor \geq \text { rand })
$$

(Predicates \geq understood as functions with values 0 and 1 , 'rand' being a random function with range [0,1])
Ronald Peikert
SciVis 2007 - Object Space Volume Rendering

Cell projection

Hardware-assisted visibility sorting (HAVS, Silva et al. 2005) is a faster cell projection algorithm:

- requires 4 RGBA float buffers for storing per pixel 7 pairs of - scalar field value s
- distance d to camera
- initial cell sorting done by CPU, based on centroids, results in k-nearly sorted sequence, with $k \leq 7$
- main loop: draw all cell faces from back to front
- fragment shader
- does exact sorting of buffered (s, d) pairs
- computes "thickness" of cell behind the pixel, $\Delta d=d_{1}-d_{2}$
- does (preintegrated) TF lookup with $s_{1}, s_{2}, \Delta d$ and α-compositing

