

Streamlines, J	pathlines, streaklines, timelines		
Comparison of techniques:			
(1) Pathlines:			
• are physically meaningf	ul		
• allow comparison with e	experiment (observe marked particles)		
· are well suited for dynar	mic visualization (of particles)		
(2) Streamlines:			
are only geometrically, not physically meaningful			
are easiest to compute (no temporal interpolation, single IVP)			
are better suited for static visualization (prints)			
don't intersect (under reasonable assumptions)			
Ronald Peikert S	SciVis 2007 - Vector Fields	5-12	

Streamlines, pathlines, streaklines, timelines

(3) Streaklines:

- · are physically meaningful
- allow comparison with experiment (dye injection)
- are well suited for static and dynamic visualization
- good choice for fast moving vortices
- · can be approximated by set of disconnected particles

(4) Timelines:

- are physically meaningful
- are well suited for static and dynamic visualization
- can be approximated by set of disconnected particles

Visual comparison of the techniques (from a NASA web page):

Ronald Peikert

SciVis 2007 - Vector Fields

5-13

The stencil walk algorithm				
 Find the intersection of th (ξ,η,ζ) 	he ray $(\Delta \boldsymbol{\xi}, \Delta \eta, \Delta \zeta)$			
with the cell boundary: – having equations – and for hex cell: resp. for tet cell: – and inequalities:	$\begin{aligned} \xi, \eta, \zeta &= 0\\ \xi, \eta, \zeta &= 1\\ \xi + \eta + \zeta &= 1\\ 0 &\leq \xi, \eta, \zeta &\leq 1 \end{aligned}$			
Due to linearization the point is not exact but in most cases (!) the correct neighbor cell is found. Rorald Pekert SciVis 2007 - Vector Fields 5-29				

Global point location Buning's method is safe if incremental search is repeated with a different boundary cell as long as the point is not found. Instead of using all boundary cells, a subset can be precomputed which guarantees to find all points within the grid. (3) Do incremental point location, starting a node near grid center. Simple method, safe only for star-shaped grids. (4) Efficient methods use a search structure (uniform grid, octree, kd-tree) for nodes or cell centers: Point query not sufficient, need range query, with range determined by cell size. Problem: cells (especially from CFD) can have extreme aspect ratios.

SciVis 2007 - Vector Fields

