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Vector Field Visualization

5
A static vector field is a vector-valued function of space.
A time-dependent vector field depends also on time.
In the case of velocity fields, the terms steady and unsteady flow

are used.

The dimensions of x and v are equal, often 2 or 3, and we denote 

( )v x

Vector fields

( ),tv x
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components by x,y,z and u,v,w:

Sometimes a vector field is defined on a surface              . The 
vector field is then a function of parameters and time:

( ) ( ), , , , ,x y z u v w= =x v

( ),i jx

( ), ,i j tv

An elementary visualization is to draw arrows
• at the data points (grid nodes or cell centers), or
• at a new (uniform) grid, for 3D fields often a 2D slice  

Arrows can visualize:
• direction

Vector fields
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• relative magnitude (when approproiately scaled)
• time dependency (when animated) 

Problems of visualization with arrows:
• It is not clear whether arrows represent vector values at the start 

point or at the midpoint of the arrow
• Often no satisfactory scaling factor exists:

– large scaling: Arrows occlude each other
– small scaling: Direction is not recognizable in some regions

fi d l th M it d i f ti i l t

Vector fields
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– fixed length:   Magnitude information is lost

Streamline-based techniques for comparison: streamlets (short 
streamlines) and LIC (line integral convolution)

Vector fields
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Magnitude information can be added by coloring or with animated 
texture.

For simplicity, the vector field is now interpreted as a velocity field. 

Then the field             describes the connection between location and 
velocity of a (massless) particle.

It can equivalently be expressed as an ordinary differential equation

This ODE together with an initial condition
( ) ( )( ),t t t=x v xi

( ),tv x

Vector fields as ODEs
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This ODE, together with an initial condition

,

is a so-called initial value problem (IVP).

Its solution is the integral curve

( )0 0t =x x

( ) ( )( )
0

0 ,
t

t

t dτ τ τ= + ∫x x v x
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The integral curve is a pathline, describing the path of a massless 
particle which was released at time t0 at position x0.

Remark: t < t0 is allowed.
For static fields, the ODE is autonomous:

Vector fields as ODEs

( ) ( )( )t t=x v xi
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and its integral curves

are called field lines, or (in the case of velocity fields) 
streamlines.

( ) ( )( )
0

0

t

t

t dτ τ= + ∫x x v x

In static vector fields, pathlines and streamlines are identical.

In time-dependent vector fields, instantaneous streamlines can be 
computed from a "snapshot" at a fixed time T (being in a static 
vector field) 

( ) ( ),T T=v x v x

Vector fields as ODEs
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In practice, time-dependent fields are often given as a dataset per 
time step. Each dataset is then a snapshot. 

Besides streamlines and pathlines, two more types of lines can be 
obtained by integration: streaklines and timelines.

A streakline is obtained by continually releasing particles at a fixed 
location and taking a snapshot at a fixed time.

A timeline is obtained by simultaneously releasing particles densely 
on a seed curve and taking a snapshot at a fixed (later) time. 
Thi t b t d d t ti f bt i d b

Streamlines, pathlines, streaklines, timelines
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This concept can be extended to time surfaces, obtained by 
releasing particles on a surface (e.g. rectangle or sphere).

Computing streaklines or timelines is more expensive than solving 
a single IVP.

Algorithm for streakline:
• for time samples                   solve the IVP

( )i it =x y

( )t( )t

0 1, , , nt t t

( ) ( )( ),i it t t=x v x.

Streamlines, pathlines, streaklines, timelines
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• extract from each integral curve             the point
• connect these points
The result is a streakline for time tn.

In the numerical computation the temporal interval must be 
adaptively refined if two successive particles diverge too much.

( )i ntx( )i tx

Algorithm for timeline:
• for point samples                     on the seed curve solve the IVP

( )0i it =x y

( )T( )t

( ) ( )( ),i it t t=x v x.
0 1, , , ny y y

Streamlines, pathlines, streaklines, timelines
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• extract from the integral curve             the point
• connect these points
The result is a timeline for time T.

In the numerical computation the spatial interval must be adaptively 
refined if two neighbor particles diverge too much.

( )i Tx( )i tx

Comparison of techniques:

(1) Pathlines:
• are physically meaningful
• allow comparison with experiment (observe marked particles)
• are well suited for dynamic visualization (of particles)

Streamlines, pathlines, streaklines, timelines
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(2) Streamlines:
• are only geometrically, not physically meaningful
• are easiest to compute (no temporal interpolation, single IVP) 
• are better suited for static visualization (prints)
• don't intersect (under reasonable assumptions)
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(3) Streaklines:
• are physically meaningful
• allow comparison with experiment (dye injection)
• are well suited for static and dynamic visualization
• good choice for fast moving vortices
• can be approximated by set of disconnected particles  

Streamlines, pathlines, streaklines, timelines
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(4) Timelines:
• are physically meaningful
• are well suited for static and dynamic visualization
• can be approximated by set of disconnected particles

Visual comparison of the techniques (from a NASA web page):
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Further example of (discrete) streaklines:

Streamlines, pathlines, streaklines, timelines

Ronald Peikert SciVis 2007 - Vector Fields 5-18



4

Example of discrete time surfaces:

Streamlines, pathlines, streaklines, timelines
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Outline of algorithm for numerical streamline integration 
(with obvious extension to pathlines): 

Inputs:
• static vector field
• seed points with time of release 

t l t

Streamline integration

( )v x
( )0 0, tx
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• control parameters:
– step size (temporal, spatial, or in local coordinates)
– step count limit, time limit, etc.
– order of integration scheme

Output:
• streamlines as "polylines", with possible attributes 

(interpolated field values, time, speed, arc length, etc.)

Preprocessing:
• set up search structure for point location
• for each seed point:

– global point location: Given a point x,
find the cell containing x and the local coordinates                
or ir the grid is structured: 

( ), ,ξ η ζ

( )i j k

Streamline integration
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find the computational space coordinates
– If x is not found in a cell, remove seed point

( ), ,i j kξ η ζ+ + +

Integration loop, for each seed point x: 
• interpolate v trilinearly to local coordinates
• do an integration step, producing a new point x'
• incremental point location: For position x' find cell and local

coordinates                  making use of information
(coordinates, local coordinates, cell) of old point x

( ), ,ξ η ζ

( )', ', 'ξ η ζ

Streamline integration
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Termination criteria:

• grid boundary reached
• step count limit reached 
• optional: velocity close to zero
• optional: time limit reached
• optional: arc length limit reached

Integration step: widely used integration methods:
• Euler (used only in special speed-optimized techniques, e.g. 

GPU-based texture advection)

• Runge-Kutta, 2nd or 4th order

( ),new t t= + ⋅x x v x

Streamline integration
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Higher order than 4th?
• often too slow for visualization
• study (Yeung/Pope 1987) shows that, when using standard 

trilinear interpolation, interpolation errors dominate integration
errors. 

Example: Velocity field of rigid rotation

• v is linear, hence bilinear interpolation is exact
• observed errors are integration errors

( ) ( ),y xω ω= −v x

Streamline integration
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Euler, small steps:                RK2, larger steps:
Δt = 1/4, 1/8, 1/16 Δt = 1, 1/2, 1/4 
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Choosing the step size: 
Several options:

• fixed time step
– used for animated particles 

• fixed spatial step
– time step derived from spatial step                               , 

it ti l t d

tΔ

( )t sΔ = Δ v x

sΔ

Streamline integration
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iteratively corrected 
– used for methods such as LIC

• adaptive
– adapting to grid resolution, i.e. cell size, or
– adapting to data variation (Runge-Kutta-Fehlberg method)
– used for interactive viewing (with zooming)

Incremental point location is nontrivial for curvilinear and 
unstructured grids. 

Buning's stencil walk algorithm solves this problem.

Given:
• point with coordinates x
• cell (as three parameters or as index c resp )( )i j k

The stencil walk algorithm
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• cell (as three parameters              or as index c, resp.)
• local coordinates
• coordinates of a new point x'

Wanted:
• new cell, as                 or  c’ resp. 
• new local coordinates ( )', ', 'ξ η ζ

( ), ,ξ η ζ
( ), ,i j k

( )', ', 'i j k

In a first phase the algorithm finds the cell containing x’ by doing 
iteratively:

• take the difference vector                  .  
• intersect the ray                with the cell boundary, giving a t value
• if t ≥1 the point x’ lies in the current cell and iteration can be 

stopped 
• otherwise move to the neighbor cell adjacent at the intersection

'Δ = −x x x
t+ Δx x

The stencil walk algorithm
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• otherwise move to the neighbor cell adjacent at the intersection 
point

• if no such cell exists terminate with failure
• set the cell centroid as the new x for the next iteration

The sub-problem of intersecting a ray with the cell boundary is 
solved as follows: 

• Linearize the coordinate transform  

in the point     , i.e. compute the Jacobian

( ), ,x y z ϕ ϕ ϕ∂ ⎡ ⎤∂ ∂ ∂
⎢ ⎥J

( ) ( ), , , ,x y zϕ ξ η ζ:

( ), ,x y z=x

The stencil walk algorithm
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• Using J transform the difference vector
into the local coordinate frame of the cell

( )
( ), ,

y ϕ ϕ ϕ
ξ η ζ ξ η ζ

= = ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦
J

( ) 1, , Jη ζ −Δ Δ Δ = Δxξ

'Δ = −x x x

• Find the intersection of the ray 

with the cell boundary:
– having equations

– and for hex cell:

( ) ( ), , , ,tη ζ η ζ+ Δ Δ Δξ ξ

, , 1ξ η ζ =

The stencil walk algorithm

, , 0ξ η ζ =
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resp. for tet cell:

– and inequalities:

Due to linearization the point is not exact but in most cases (!) the 
correct neighbor cell is found. 

1ξ η ζ+ + =

0 , , 1ξ η ζ≤ ≤

Problem of original stencil walk algorithm: 
If cells are sufficiently skewed, the algorithm can walk away from 

the target cell.
This happens also with correctly computed intersection points.

Example:

The stencil walk algorithm

Ronald Peikert SciVis 2007 - Vector Fields 5-30

x

x’ intersection with
grid boundary
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The problem can be solved with a modification of the algorithm:
• Keep ray (x, x’) unchanged, i.e. follow the ray from x to x’
• new problem: cell faces of type quadrangle (nonplanar!) can be 

intersected twice by the ray! 

x’

The stencil walk algorithm
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• therefore, exact intersection points of the ray with the bilinear 
surface patches must be calculated

x

Exact intersection calculation:
• If the quadrangle is nonplanar, the four corners P0, P1, P2, P3

can be mapped to 

by the affine transformation

The stencil walk algorithm

( ) ( ) ( ) ( )0 1 2 30,0,0 , 1,0,0 , 1,1,1 , 0,1,0= = = =P P P P

( )( ) 1
( )

−P P P P P P P
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x

0P x’

3P

2P

1P

2P

3P

0P
1P

z

x

y

( )( )1 2 3 1 2 3 0( )= −x P P P P P P x P

• The bilinear surface containing                          is the hyperbolic 
paraboloid

• Inserting the transformed view ray                leads to a quadratic 
equation for t:

z xy=

( ) ( )( )

The stencil walk algorithm

0 1 2 3, , ,′ ′ ′ ′P P P P

t+ Δx x
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• If real solutions with                exist, the intersection points
are computed and transformed back

( ) ( )( )z t z x t x y t y+ Δ = + Δ + Δ

( ), ,i i ix y z
0 1t< <

In the second phase the stencil walk algorithm computes the local 
coordinates of the point in the cell known to contain it.

The local coordinates are the inverse of the coordinate function

evaluated at the given point

( ) ( ), , , ,x y zϕ ξ η ζ:

( ), ,x y z=x

The stencil walk algorithm
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However, the trilinear function ϕ is a cubic polynomial and its 
inverse is a sixth-degree polynomial.

The problem is therefore solved with Newton's method.

( )

Initialization:
• Let x be the cell centroid
• The local coordinates               are then:

– for a hex cell: (0.5, 0.5, 0.5)
– for a tet cell : (0.25, 0.25, 0.25)

The stencil walk algorithm

( ), ,ξ η ζ
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Loop:
Repeat while the error                    is above a given threshold:
• Compute the (vector) coefficients a, b, ... of ϕ :

( ), ,ϕ ξ η ζ ξηζ ξη ξζ ηζ ξ η ζ= + + + + + + +a b c d e f g h

'Δ = −x x x

• Evaluate the Jacobian in               :

• Transform the error vector into local coordinates:

The stencil walk algorithm

( )
( )

( )

, ,
, ,

x y z ϕ ϕ ϕ
ξ η ζ ξ η ζ

ηζ η ζ

∂ ⎛ ⎞∂ ∂ ∂
= = ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

= + + +

J

a b c e

( ), ,ξ η ζ

'Δx x x
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• Transform the error vector                      into local coordinates: 

• Apply the correction

( ) 1, , Jη ζ −Δ Δ Δ = Δxξ

( ) ( ) ( )new
, , , , , ,η ζ η ζ η ζ= + Δ Δ Δξ ξ ξ

Δ = −x x x
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Global point location is more expensive. Many methods trade in  
safety for efficiency. A few methods are:

(1) Search for the point in every grid cell, using Newton's method.
Hypothetic "brute force" method, safe.

(2) Buning's method: Do incremental point location starting from a 
boundary cell. Problem: Node (o) nearest to given point (x) is 

t il dj t t th ll t i i it F th

Global point location
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not necessarily adjacent to the cell containing it. Furthermore, 
the straight line between the two points can leave the grid.

Buning's method is safe if incremental search is repeated with a 
different boundary cell as long as the point is not found. Instead 
of using all boundary cells, a subset can be precomputed which 
guarantees to find all points within the grid. 

(3) Do incremental point location, starting a node near grid center.
Simple method, safe only for star-shaped grids.

(4) Effi i t th d h t t ( if id t

Global point location
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(4) Efficient methods use a search structure (uniform grid, octree, 
kd-tree) for nodes or cell centers:

• Point query not sufficient, need range query, with range 
determined by cell size.

• Problem: cells (especially from CFD) can have extreme aspect 
ratios. 

(5) Use a bounding box hierarchy for recursively subdivided grid. 
Efficient and safe method. Easy for structured grids. More pre-
processing required for unstructured grids.

Global point location
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In structured grids, point location can be avoided by using a 
different approach:

Integration can be done in computational space C instead of 
physical space P. 

Modification of the integration algorithm: 

• before integration step:

Computational space streamline integration
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before integration step: 
– Transform velocity v(x) to C by multiplying with J−1

• after integration step: 

(only if graphical output of this step is needed): 
– transform new position x =                   to P by 

trilinear interpolation.
( ), ,i j kξ η ζ+ + +

Main problem of integration in C:
• cordinate function 

is only C0 continuous at cell boundaries
• therefore J is discontinuous

Example (Sadarjoen 1994): Four cells with constant velocity field.

Computational space streamline integration

( ) ( ), , , ,i j k x y zϕ ξ η ζ+ + +:

P C
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straight streamlines (dashed)        jagged streamlines (dashed) 

P C

Two sources of error:
• Integration steps across cell boundaries:

– can be avoided by shortening such steps
• Use of a (precomputed) single transformed field vector per node:

– can be fixed by transforming all eight vectors of a cell on the 
fly when entering a new cell.

Computational space streamline integration
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The main advantage of integration in C is algorithmic simplicity.
If done correctly (avoiding above errors) it can be slower than 

integration in P.
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Velocity fields of fluid flow can have grid boundaries which are walls, 
i.e. solid material surfaces. At walls the velocity vector is usually 
zero as a result of the no-slip boundary condition.

Therefore, a derived vector field is often used, namely the wall shear 
stress:

Skin friction lines

w
w s

τ μ ∂
=

∂
v
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obtained as the limit of the wall-parallel velocity component vw
divided by the wall distance s and multiplied with the dynamic 
viscosity μ (a material constant). This limit is typically nonzero 
except at isolated points.

Streamlines of τw are called skin friction lines. They are an example 
of a vector field defined on a surface in 3-space.

s∂

Example (Pagendarm and Walter 1994): Skin friction lines from 
numerical simulation superposed over experimental oil-flow 
pattern.

Skin friction lines
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Problem of visualization by streamlines:
• dependency on seed points
• density of streamlines can be largely inhomogeneous

Solution: streamline placement, i.e. automatic, optimized choice of 
seed points.

M th d 1 t l t ( h t t li t )

Streamline placement
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Method 1: streamlets (short streamline segments)
• length is proportional to velocity magnitude (obtained 

automatically by using fixed integration time)
• start with uniform grid and make spacing roughly even by locally 

adapting (displacing, inserting, removing) seeds

Example of streamlets:

Streamline placement
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Discussion: Compared to arrows:
• additional curvature information
• no overlapping

Method 2, Algorithm by Turk and Banks (for longer streamlines):
• Objective: Create a streamline image which when low-pass 

filtered has a uniform grey level
• Optimize: seed positions and integration lengths
• Operations:

– delete, insert, move, lengthen, shorten

Streamline placement
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• Apply operations either randomly or based on oracles.

Seeds on regular grid vs. Turk/Banks method

Definition of a stream surface: 
Union of streamlines seeded 
densely on a curve, e.g. 
straight line or circle.

Advantage for visualization: 
more structured, better spatial 
perception.

Streamsurfaces
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Naïve algorithm: 
• start integration at discrete 

samples on the seed curve
• connect points of equal 

integration time, resulting in a 
quad mesh.
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Problem: naïve algorithm fails if streamlines diverge or grow at 
largely different speeds. 

Example of failure: seed curve which extends to no-slip boundary:  

Streamsurfaces
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wall
(v = 0)

fixed time steps fixed spatial steps
(slightly better)

Hultquist's algorithm solves the problem of speed differences by 
optimized triangulation: Of two possible connections chose the 
one which is closer to orthogonal to both streamlines.

systematic
triangulation

optimized
triangulation

Streamsurfaces
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streamlines streamlines

The problem of divergence or convergence is solved by 
inserting or terminating streamlines.  

Streamsurfaces
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inserted streamline terminated streamline


