

Region-type features

A feature is often indicated by high or low values of a derived field. Example: vortical regions in a flow field have been defined by

- large magnitude of vorticity $\boldsymbol{\omega}(\mathbf{x})=\nabla \times \mathbf{v}(\mathbf{x})$
- high absolute helicity $\boldsymbol{\omega}(\mathbf{x}) \cdot \mathbf{v}(\mathbf{x})$ or normalized helicity $\frac{\boldsymbol{\omega}(\mathbf{x})}{\|\boldsymbol{\omega}(\mathbf{x})\|} \cdot \frac{\mathbf{v}(\mathbf{x})}{\|\mathbf{v}(\mathbf{x})\|}$
- positive pressure Laplacian $\nabla \cdot \nabla p(\mathbf{x})$
- positive second invariant of the velocity gradient $\nabla \mathbf{v}(\mathbf{x})$
- two negative eigenvalues of

$$
\frac{\nabla \mathbf{v}(\mathbf{x})^{2}+\left(\nabla \mathbf{v}(\mathbf{x})^{T}\right)^{2}}{2}
$$

The latter three definitions are parameter-free (preferred in feature definitions).
Ronald Peikert
SciVis 2007 - Feature Extraction

Point features in scalar fields

Point features in scalar fields:

- local minima/maxima
- saddle points
occur at zero gradient $\nabla s(\mathbf{x})=0 \quad$ (n scalar equations), (places where height field is horizontal).

The above point features are the places where the contour line or isosurface changes its topology when the level is varied from min to max.

The contour tree (or Reeb graph) describes the split and join events.

Ronald Peikert
Scivis 2007 - Feature Extraction

Watersheds require integration, are therefore not locally detectable.
Alternative definition of ridges/valleys (in nD scalar fields)?

Local minima/maxima:

- Known at least since differentiation was invented ($17^{\text {th }}$ century)!
- What is the natural extension to 1 D ?

Line-like features in scalar fields

Question: How are local maxima most naturally extended to 1D features?

Answer: height ridges.
Surprisingly, a formal definition of height ridges was given only in the 1990s (Eberly, Lindeberg), based on Haralick's definition (1983).
In contrast, local minima/maxima are known for centuries.

De Saint-Venant (1852) defined a concept similar to height ridges.

Line-like features in scalar fields

A point $\mathbf{x} \in \mathbb{R}^{n}$ is a local maximum of $\mathrm{s}(\mathbf{x})$ if for all n axes:

- the first derivatives are zero: $S_{x_{1}}=\cdots=S_{x_{n}}=0$
- the second derivatives are negative: $\quad S_{x_{1} x_{1}}, \cdots, S_{x_{n} x_{n}}<0$

In the appropriate coordinate frame, this generalizes to:
A point $\mathbf{x} \in \mathbb{R}^{n}$ is on a d-dimensional height ridge of $s(\mathbf{x})$ if for the first $n-d$ axes:

- first derivatives are zero:

$$
S_{x_{1}}=\cdots=S_{x_{n-d}}=0
$$

- second derivatives are negative:

$$
S_{x_{1} x_{1}}, \cdots, S_{x_{n-d} x_{n-d}}<0
$$

Ronald Peikert
SciVis 2007 - Feature Extraction

Appropriate coordinate frame means: axes are

- aligned with eigenvectors of \mathbf{H}
- ordered by absolute eigenvalues: $\left|\lambda_{1}\right| \geq \cdots \geq\left|\lambda_{n}\right|$

Remark: We used Lindeberg's definition. In Eberly's definition axes are ordered by signed eigenvalues: $\lambda_{1} \leq \cdots \leq \lambda_{n}$
This is slightly weaker (accepting more points).
Example: scalar field, (1D) height ridge according to Eberly and Lindeberg:

Ronald Peikert SciVis 2007 - Feature Extraction 7-11

Line-like features in scalar fields
Sketch of cases (with Lindeberg's definition, $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right|$)

none

Ronald Peikert

Scivis 2007 - Feature Extraction

Line-like features in scalar fields
"Circular gutter" example (Koenderink / van Doorn):
Height field in polar coordinates:
$\quad z(r, \varphi)=(1-r)^{2}+k \varphi$
- k describes the steepness in the
tangential direction.
-Profiles in radial sections are parabolas: $\quad z(r, \varphi)=(1-r)^{2}+$ const Lowest points in sections $\varphi=$ const lie on the asymptote circle $r=1$. Ronald Peikert

Line-like features in scalar fields
Circular gutter:

Height ridge deviates
(in the circular part)
from the solution
given by radial
profiles.
"Counter-example"
for height ridges.
(of negative field)
watershed
(of negative field)
height contours
slope lines Peikert

Line-like features in scalar fields		
Blended height fields (replacing the circular part by a blend of the two height fields):		
Watershed deviates (in the lower part) from obvious symmetric valley line.	watershed (of negative field) height contour	
"Counter-example" for watersheds.		
Ronald Peikert	Scivis 2007 - Feature Extraction	7-15

Line-like features in scalar fields

The use of watersheds vs. height ridges is still heavily discussed in computer vision (Koenderink/van Doorn '93).

Watersheds:

+ are slope lines of height field (=streamlines of gradient field)
- depend on boundaries
- require existence of a saddle

Geometric features of surfaces

On surfaces in 3-space, 0- and 1-dimensional features can be defined by the (differential) geometry alone.
Geometric features vs. features of a field.
Examples of geometric features (not a core subject of SciVis), based on principal curvatures $\kappa_{1}, \kappa_{2},\left|\kappa_{1}\right| \geq\left|\kappa_{2}\right|$

- umbilic points: $\kappa_{1}=\kappa_{2}$
- curvature ridges: Loci of points where $\left|\kappa_{1}\right|$ is a maximum along the associated curvature line

Image credit: Y. Ohtake

Geometric features of surfaces

The term "ridge" can refer to either height ridges or curvature ridges.
Curvature ridges are not appropriate as features of a scalar field (height field).
Reason: Invariance under rotation (tilting).

Line-like features in vector fields

Height ridges of a scalar field $s(\mathbf{x})$ are definable by the gradient field $\mathbf{v}(\mathbf{x})=\nabla s(\mathbf{x})$ alone:

- \mathbf{H} is its Jacobian $\nabla \mathbf{v}(\mathbf{x})$, and
- $s(\mathbf{x})$ itself is not needed.

A necessary condition for a height ridge is:
$\mathbf{v}(\mathbf{x})$ is an eigenvector of $\nabla \mathbf{v}(\mathbf{x})$

The gradient is a conservative (irrotational) vector field. Let's now extend this to general vector fields.

Line-like features in vector fields

Alternative definitions of vortex core lines:

- According to Levy et al., longitudinal vortices have high normalized helicity (or small angles between velocity and vorticity).
\rightarrow vortex core line criterion: $\mathbf{v}(\mathbf{x})$ is (anti-) parallel to $\omega(\mathbf{x})$.
- Singer and Banks' method:
- find a first point on the core line
- repeat
- predict next point along $\omega(\mathbf{x})$
- correct to pressure minimum in normal plane of $\omega(\mathbf{x})$
- compute vortex hull

Image credit: D. Banks

Line-like features in vector fields

Deviation of locally computed vortex core lines:

Line-like features in vector fields
Discussion: local vs. global features
Global features: e.g. streamlines.
Are vortex core lines streamlines?
Here is a "counter-example":
Scivis 2007 - Feature Extraction

Line-like features in vector fields

How to compute line-like features?
Instead of explicitly computing eigenvectors for height ridges, Sujudi-Haimes core lines, etc.:

Make use of observation: \mathbf{v} is eigenvector of \mathbf{A} if and only if $\mathbf{A} \mathbf{v}$ is parallel to \mathbf{v} (because $\mathbf{A v}=\lambda \mathbf{v}$)
Recipe:

- compute $\mathbf{w}=\mathbf{A v}$ as a derived field
- find places where \mathbf{v} and \mathbf{w} are parallel (or one of them is 0).
- apply constraints
- apply post-filtering (vortex strength, etc.)

Ronald Peikert SciVis 2007 - Feature Extraction

Tracking of features

In time-dependent data, features are usually extracted for single time steps.
How to recognize a feature in a different time step?
Some methods are:

- Decide on spatial overlap (Silver et al.)
- appropriate for region-type features
- detects motion and events (split, merge, birth, death)

Tracking of features

- Decide on feature attributes (Reinders)
- use attributes such as position, shape (fitted ellipsoid), orientation, spin, data values, etc.
- combine with motion prediction

Flow past tapered cylinder. Vortices represented by ellipsoids

Image credit: F. Reinders
Ronald Peikert
SciVis 2007 - Feature Extraction

Tracking of features

- Lift the feature extraction method to space-time domain. Examples:
- Critical points in 2-space + time (Tricoche): Equations $u(x, y, t)=0, v(x, y, t)=0$ yield lines when solved in an "extruded" (x, y, t) grid.
Features move along these lines, no explicit tracking needed.
- Vortex core lines in 3-space + time (Bauer):

Feature extraction yields a 2D mesh in 4-space.
Time-slice is a line-like feature.

Ronald Peikert
SciVis 2007 - Feature Extraction

