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Tensor Field Visualization

9
Tensors

"Tensors are the language of mechanics"

Tensor of order (rank)
0: scalar
1: vector
2: matrix
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…

Tensors can have "lower" and "upper" indices, e.g.               ,
indicating different transformation rules for change of coordinates. 

, ,j ij
ij ia a a

(example: stress tensor)

Visualization methods for tensor fields:
• tensor glyphs
• tensor field lines, hyperstreamlines
• tensor field topology
• fiber bundle tracking

Tensors
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Tensor field visualization only deals with 2nd order tensors 
(matrices).

→ eigenvectors and eigenvalues contain full information.

Separate visualization methods for symmetric and nonsymmetric 
tensors.

Tensor glyphs

In 3D, tensors are 3x3 matrices. 

The velocity gradient tensor is nonsymmetric → 9 degrees of 
freedom for the local change of the velocity vector.

A glyph developed by de Leeuw and van Wijk can visualize all 
these 9 DOFs:

• tangential acceleration (1): green "membrane"
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tangential acceleration (1): green membrane

• orthogonal acceleration (2): curvature of arrow

• twist (1): candy stripes

• shear (2): orange ellipse (gray ellipse for ref.)

• convergence/divergence (3): white "parabolic reflector"

Example:

NASA "bluntfin" dataset, glyphs shown on points on a streamline. 

Tensor glyphs
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Symmetric 3D tensors have real eigenvalues and orthogonal 
eigenvectors → they can be represented by ellipsoids.

Three types of anisotropy:               Anisotropy measure:
• linear anisotropy

• planar anisotropy

• isotropy (spherical)

Tensor glyphs
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Problem of ellipsoid glyphs: 

• shape is poorly recognized in projected view

Example: 8 ellipsoids, 2 views

Tensor glyphs
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Problem of cuboid glyphs:

• small differences in 
eigenvalues are over-
emphasized

Tensor glyphs

Problems of cylinder glyphs:

• discontinuity at cl = cp

• artificial orientation at cs = 1
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Combining advantages: superquadrics

Superquadrics with z as primary axis:

Tensor glyphs
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with              used as shorthand for                    

cos
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Superquadrics for some 
pairs (α,β)

Shaded: subrange used 
for glyphs

cosα θ

cos sgn(cos )αθ θ

Superquadric glyphs (Kindlmann): Given cl , cp , cs

• compute a base superquadric using a sharpness value γ:

l ith l d t t i t i t f

Tensor glyphs
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• scale with cl , cp , cs along x,y,z and rotate into eigenvector frame

γ = 1.5 γ = 3.0 γ = 6.0
cl = 1 cp = 1 cp = 1 cp = 1cl = 1 cl = 1

cs = 1 cs = 1 cs = 1

Comparison of shape perception (previous example)

• with ellipsoid glyphs

Tensor glyphs
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• with superquadrics glyphs

Comparison: Ellipsoids vs. superquadrics (Kindlmann)

Tensor glyphs
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color map:                                        (with e1 = major eigenvector)( )

1

1

1

1
1 1

1

⎛ ⎞
⎛ ⎞ ⎛ ⎞⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟= + −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠

⎝ ⎠

x

l y l

z

eR
G c e c
B e



3

Let T(x) be a (2nd order) symmetric tensor field.

→ real eigenvalues, orthogonal eigenvectors

Tensor field line: by integrating along one of the eigenvectors

Important: Eigenvector fields are not vector fields!

• eigenvectors have no magnitude and no orientation (are 

Tensor field lines
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bidirectional)

• the choice of the eigenvector can be made consistently as long 
as eigenvalues are all different

• tensor field lines can intersect only at points where two or more 
eigenvalues are equal, so-called degenerate points.

Tensor field lines can be rendered as hyperstreamlines:
tubes with elliptic cross section, radii proportional to 2nd and 3rd

eigenvalue.

Tensor field lines
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Image credit: W. Shen

Based on tensor field lines, a tensor field topology can be defined, 
in analogy to vector field topology.

Degenerate points play the role of critical points:

At degenerate points, infinitely many directions (of eigenvectors) 

Tensor field topology
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exist. 

For simplicity, we only study the 2D case.

For locating degenerate points: solve equations
( ) ( ) ( )11 22 120, 0− = =x x xT T T

It can be shown:

The type of the degenerated point depends on

where

Tensor field topology

( ) ( )11 22 11 221 1T T T T
a b

∂ − ∂ −

ad bcδ = −
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• for δ<0 the type is a trisector

• for δ>0 the type is a wedge

• for δ=0 the type is structurally unstable
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Types of degenerate points, illustrated with linear tensor fields.

Tensor field topoloy
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Separatrices are tensor field lines converging to the degenerate 
point with a radial tangent.

They are straight lines in the special case of a linear tensor field.

D bl d h "hidd t i " d t th

Tensor field topology
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Double wedges have one "hidden separatrix" and two other 
separatrices which actually separate regions of different field line 
behavior.

Single wedges have just one separatrix.
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The angles of the separatrices are obtained by solving:

If            , the two angles 

are angles of a separatrix. The two choices of signs correspond 
t th t h i f t fi ld li ( i d j

Tensor field topology

arctanmθ = ±

3 2( 2 ) (2 ) 0dm c b m a d m c+ + + − − =

m∈
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to the two choices of tensor field lines (minor and major 
eigenvalue). 

If d = 0, an additional solution is

There are in general 1 or 3 real solutions: 
• 3 separatrices for trisector and double wedge
• 1 separatrix for single wedge

90θ = ± °

Saddles, nodes, and foci can exists as nonelementary (higher-
order) degenerate points with δ=0. They are created by merging 
trisectors or wedges. They are not structurally stable and break 
up in their elements if perturbed.

Tensor field topology
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The topological skeleton is defined as the set of separatrices of 
trisector points.

Example: Topological transition of the stress tensor field of a flow 
past a cylinder

Tensor field topology
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Image credit: T. Delmarcelle

Diffusion tensor imaging (DTI) is a newer magnetic resonance 
imaging (MRI) technique.

DTI produces a tensor field of the anisotropy of the brain's white 
matter. 

Most important application: Tracking of fiber bundles.
Interpretation of anisotropy types:

isotropy: no white matter

DTI fiber bundle tracking
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• isotropy: no white matter
• linear anisotropy: direction of fiber bundle
• planar anisotropy: different meanings(!)

Fiber bundle tracking ≠ tensor field line integration, because  
bundles may cross each other

Method 1:
Best neighbor algorithm (Poupon), based 

on idea of restricting the curvature:
• at each voxel compute eigenvector of 

dominant eigenvalue
→ "direction map"

• at each voxel M find "best neighbor

DTI fiber bundle tracking
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• at each voxel M find best neighbor 
voxel" P according to angle criterion 
(mimimize max of α1,α2, α3 over 26 
neighbors)
→ "tracking map"

• connect voxels (within a "white matter
mask") with its best neighbor. Image credit: C. Poupon

Method 2:
Apply moving least squares filter which favors current direction of 

the fiber bundle (Zhukov and Barr).

DTI fiber bundle tracking

filter domainvoxel grid
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Image credit: Zhukov/Barr

interpolated
tensor datatracked bundle
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Method 3:
Tensor deflection (TEND) method (Lazar et al.)

Idea: if v is the incoming bundle direction, use Tv as the direction of 
the next step. 

DTI fiber bundle tracking
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Reasoning:
• Tv bends the curve towards the dominant eigenvector
• Tv has the unchanged direction of v if v is an eigenvector of T or 

a vector within the eigenvector plane if the two dominant 
eigenvalues are equal (rotationally symmetric T).  

Comparison:
Tensor field lines (l), TEND (m), weighted sum (r),
Stopping criteria: fractional anisotropy < 0.15 or angle between 

successive steps > 45 degrees

DTI fiber bundle tracking
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image credit: M. Lazar

Clustering of fibers: Goal is to identify nerve tracts.

automatic clustering results optic tract (orange) and 
pyramidal tract (blue).

DTI fiber bundle tracking
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image credit: Merhof et al. / Enders et al.

Algorithmic steps
1. clustering based on geometric attributes: centroid, variance, 

curvature, …
2. center line: find sets of "matching vertices" and average them
3. wrapping surface: compute convex hull in orthogonal slices, 

using Graham's Scan algorithm

DTI fiber bundle tracking
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