

Tensors		
"Tensors are the language of mechanics"		
Tensor of order (0: scalar 1: vector 2: matrix 	rank)	(example: stress tensor)
Tensors can hav indicating diffe	e "lower" and "upper" rent transformation ru	indices, e.g. a_{ij}, a_i^j, a^{ij} , les for change of coordinates.
Ronald Peikert	SciVis 2007 - Tensor Fie	elds 9-2

Tensor field lines

Let $\mathbf{T}(\mathbf{x})$ be a (2nd order) symmetric tensor field.

 \rightarrow real eigenvalues, orthogonal eigenvectors

Tensor field line: by integrating along one of the eigenvectors Important: Eigenvector fields are not vector fields!

- eigenvectors have no magnitude and no orientation (are bidirectional)
- the choice of the eigenvector can be made consistently as long
 as eigenvalues are all different
- tensor field lines can intersect only at points where two or more eigenvalues are equal, so-called degenerate points.

Ronald Peikert

SciVis 2007 - Tensor Fields

9-13

Tensor field topology		
Separatrices are tensor field lines converging to the degenerate point with a radial tangent.		
They are straight lines in the special case of a linear tensor field.		
Double wedges have one "hidden separatrix" and two other separatrices which actually separate regions of different field line behavior.		
Single wedges have just one separatrix.		
Ronald Peikert SciVis 2007 - Tensor Fields 9-18		

DTI fiber bundle tracking

Method 3:

Tensor deflection (TEND) method (Lazar et al.)

Idea: if \boldsymbol{v} is the incoming bundle direction, use $\boldsymbol{T}\boldsymbol{v}$ as the direction of the next step.

Reasoning:

- $\mathbf{T}\mathbf{v}$ bends the curve towards the dominant eigenvector
- Tv has the unchanged direction of v if v is an eigenvector of T or a vector within the eigenvector plane if the two dominant eigenvalues are equal (rotationally symmetric T).

Ronald Peikert

SciVis 2007 - Tensor Fields

DTI fiber bundle tracking
Algorithmic steps
1. clustering based on geometric attributes: centroid, variance, curvature, ...
2. center line: find sets of "matching vertices" and average them
3. wrapping surface: compute convex hull in orthogonal slices, using Graham's Scan algorithm

SciVis 2007 - Tensor Fields

Ronald Peikert

5

9-28