

Tensors

"Tensors are the language of mechanics"

Tensor of order (rank)
0: scalar
1: vector
2: matrix
...

Tensors can have "lower" and "upper" indices, e.g. $a_{i j}, a_{i}^{j}, a^{i j}$, indicating different transformation rules for change of coordinates.

Tensor glyphs

In 3D, tensors are 3×3 matrices.
The velocity gradient tensor is nonsymmetric $\rightarrow 9$ degrees of freedom for the local change of the velocity vector.
A glyph developed by de Leeuw and van Wijk can visualize all these 9 DOFs:

- tangential acceleration (1): green "membrane"
- orthogonal acceleration (2): curvature of arrow
- twist (1): candy stripes
- shear (2): orange ellipse (gray ellipse for ref.)

- convergence/divergence (3): white "parabolic reflector"

Separate visualization methods for symmetric and nonsymmetric tensors.

Ronald Peikert
SciVis 2007 - Tensor Fields

Tensor glyphs

Symmetric 3D tensors have real eigenvalues and orthogonal eigenvectors \rightarrow they can be represented by ellipsoids.

$$
\text { Three types of anisotropy } \quad \text { Anisotropy measure: }
$$

- linear anisotropy

$c_{l}=\left(\lambda_{1}-\lambda_{2}\right) /\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)$
- planar anisotropy
$c_{p}=2\left(\lambda_{2}-\lambda_{3}\right) /\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)$
$C_{s}=3 \lambda_{3} /\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)$

Ronald Peikert

Tensor glyphs	
Combining advantages: superquadrics Superquadrics with z as primary axis:	
	$\cdots-2 \Delta \theta \Delta$
$\begin{gathered} \mathbf{q}_{z}(\theta, \phi)=\left(\begin{array}{c} \cos ^{\alpha} \theta \sin ^{\beta} \phi \\ \sin ^{\alpha} \theta \sin ^{\beta} \phi \\ \cos ^{\beta} \phi \end{array}\right) \\ 0 \leq \theta \leq 2 \pi, 0 \leq \phi \leq \pi \end{gathered}$	
with $\cos ^{\alpha} \theta$ used as shorthand for $\|\cos \theta\|^{\alpha} \operatorname{sgn}(\cos \theta)$	Superquadrics for some pairs (α, β) Shaded: subrange used for glyphs
Ronald Peikert ${ }^{\text {SciVs }} 2007$ - Tensor Fields	9.9

Tensor field lines

Let $\mathbf{T}(\mathbf{x})$ be a ($2^{\text {nd }}$ order) symmetric tensor field
\rightarrow real eigenvalues, orthogonal eigenvectors
Tensor field line: by integrating along one of the eigenvectors Important: Eigenvector fields are not vector fields!

- eigenvectors have no magnitude and no orientation (are bidirectional)
- the choice of the eigenvector can be made consistently as long as eigenvalues are all different
- tensor field lines can intersect only at points where two or more eigenvalues are equal, so-called degenerate points.

Ronald Peikert
SciVis 2007 - Tensor Fields

Tensor field topology

Based on tensor field lines, a tensor field topology can be defined, in analogy to vector field topology.

Degenerate points play the role of critical points: At degenerate points, infinitely many directions (of eigenvectors) exist.

For simplicity, we only study the 2D case.

For locating degenerate points: solve equations

$$
T_{11}(\mathbf{x})-T_{22}(\mathbf{x})=0, \quad T_{12}(\mathbf{x})=0
$$

Ronald Peikert
SciVis 2007 - Tensor Fields 9-15

Tensor field lines can be rendered as hyperstreamlines: tubes with elliptic cross section, radii proportional to $2^{\text {nd }}$ and $3^{\text {rd }}$ eigenvalue.

It can be shown:
The type of the degenerated point depends on

$$
\delta=a d-b c
$$

where

$$
\begin{array}{ll}
a=\frac{1}{2} \frac{\partial\left(T_{11}-T_{22}\right)}{\partial x} & b=\frac{1}{2} \frac{\partial\left(T_{11}-T_{22}\right)}{\partial y} \\
c=\frac{\partial T_{12}}{\partial x} & d=\frac{\partial T_{12}}{\partial y}
\end{array}
$$

- for $\delta<0$ the type is a trisector
- for $\delta>0$ the type is a wedge
- for $\delta=0$ the type is structurally unstable

Ronald Peikert
Scivis 2007 - Tensor Fields

Tensor field topology

Separatrices are tensor field lines converging to the degenerate point with a radial tangent.

They are straight lines in the special case of a linear tensor field.

Double wedges have one "hidden separatrix" and two other separatrices which actually separate regions of different field line behavior.

Single wedges have just one separatrix.

Tensor field topology

The angles of the separatrices are obtained by solving:

$$
d m^{3}+(c+2 b) m^{2}+(2 a-d) m-c=0
$$

If $m \in \mathbb{R}$, the two angles

$$
\theta= \pm \arctan m
$$

are angles of a separatrix. The two choices of signs correspond to the two choices of tensor field lines (minor and major eigenvalue)
If $d=0$, an additional solution is

$$
\theta= \pm 90^{\circ}
$$

There are in general 1 or 3 real solutions:

- 3 separatrices for trisector and double wedge
- 1 separatrix for single wedge

Ronald Peikert
SciVis 2007 - Tensor Fields

Saddles, nodes, and foci can exists as nonelementary (higherorder) degenerate points with $\delta=0$. They are created by merging trisectors or wedges. They are not structurally stable and break up in their elements if perturbed.

Ronald Peikert
Scivis 2007 - Tensor Fields

DTI fiber bundle tracking

Diffusion tensor imaging (DTI) is a newer magnetic resonance imaging (MRI) technique.
DTI produces a tensor field of the anisotropy of the brain's white matter.

Most important application: Tracking of fiber bundles.
Interpretation of anisotropy types:

- isotropy: no white matter
- linear anisotropy: direction of fiber bundle
- planar anisotropy: different meanings(!)

Fiber bundle tracking \neq tensor field line integration, because bundles may cross each other
Ronald Peikert Scivis 2007 - Tensor Fields

DTI fiber bundle tracking

Method 3:

Tensor deflection (TEND) method (Lazar et al.)

Idea: if \mathbf{v} is the incoming bundle direction, use Tv as the direction of the next step

Reasoning:

- Tv bends the curve towards the dominant eigenvector
- Tv has the unchanged direction of \mathbf{v} if \mathbf{v} is an eigenvector of \mathbf{T} or a vector within the eigenvector plane if the two dominant eigenvalues are equal (rotationally symmetric \mathbf{T}).

Ronald Peikert
SciVis 2007 - Tensor Fields

Clustering of fibers: Goal is to identify nerve tracts.
automatic clustering results

optic tract (orange) and
pyramidal tract (blue).

Ronald Peikert

Comparison:
Tensor field lines (l), TEND (m), weighted sum (r),
Stopping criteria: fractional anisotropy <0.15 or angle between successive steps >45 degrees

Ronald Peikert
image credit: M. Lazar

DTI fiber bundle tracking

Algorithmic steps

1. clustering based on geometric attributes: centroid, variance, curvature, ...
2. center line: find sets of "matching vertices" and average them
3. wrapping surface: compute convex hull in orthogonal slices, using Graham's Scan algorithm

Ronald Peikert
SciVis 2007 - Tensor Fields

