2

Contouring and Isosurfaces
What are contours?

Set of points where the scalar field s has a given value c:

$$\{ \mathbf{x} \in \mathbb{R}^n : s(\mathbf{x}) = c \}$$

Examples in 2D:

- height contours on maps
- isobars on weather maps

Contouring algorithm:

- find intersection with grid edges
- connect points in each cell
Example

2 types of degeneracies:
- isolated points ($c=6$)
- flat regions ($c=8$)
To avoid degeneracies, use symbolic perturbations:

If level \(c \) is found as a node value, set the level to \(c-\varepsilon \) where \(\varepsilon \) is a symbolic infinitesimal.

Then:

- contours intersect edges at some (possibly infinitesimal) distance from end points
- flat regions can be visualized by pair of contours at \(c-\varepsilon \) and \(c+\varepsilon \)
- contours are topologically consistent, meaning:

Contours are closed, orientable, nonintersecting lines.
Ambiguities of contours

What is the correct contour of \(c = 4 \)?

Two possibilities, both are orientable:

- values \(s(x) > c \) are on the left side
- values \(s(x) < c \) are on the right side

Answer: correctness depends on interior values of \(s(x) \).

But different interpolation schemes are possible.

Better question: What is the correct contour with respect to bilinear interpolation?
Contours in a quadrangle cell

- Local coordinates: \((0,0), (1,0), (0,1), (1,1)\)
- Function values: \(s_{00}, s_{10}, s_{01}, s_{11}\)
- Bilinear interpolant:

\[
s = (1 - x)(1 - y)s_{00} + x(1 - y)s_{10} + (1 - x)y s_{01} + x y s_{11}
\]

\[= A xy + B x + C y + D\]

If \(A=0\), contour equation is \(c = B x + C y + D\)
contours are straight lines, all parallel

If \(A \neq 0\), contour equation is
\[
c = A \left(x + \frac{C}{A} \right) \left(y + \frac{B}{A} \right) + D - \frac{BC}{A}
\]
contours are hyperbola, except for level \(c = D - \frac{BC}{A}\)
Contours in a quadrangle cell

Contour equation for special level:

\[0 = A \left(x + \frac{C}{A} \right) \left(y + \frac{B}{A} \right) \]

Contour is a pair of axis-aligned straight lines \(x = -\frac{C}{A} \) and \(y = -\frac{B}{A} \).

Applied to example:

- contour equation:
 \[c = -10(x - 0.3)(y - 0.5) + 4.5 \]
- special level \(c = 4.5 \)
- saddle point at \((0.3, 0.5)\)
Decision can be made without computing special level or saddle point, by comparing fractions of edges:

Using local coordinates, this works also for curvilinear and unstructured grids.
Contours in a quadrangle cell

Note: For drawing, straight lines are sufficient. Drawing hyperbola does not lead to better contours:

Reason: piecewise bilinear function is not C^1.
Basic contouring algorithms:

- **cell-by-cell** algorithms: simple structure, but generate disconnected segments, require post-processing
- **contour propagation** methods: more complicated, but generate connected contours

"Marching squares" algorithm (systematic cell-by-cell):

- process nodes in ccw order, denoted here as \(\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3 \)
- compute at each node \(\mathbf{x}_i \) the reduced field
 \[
 \tilde{s}(\mathbf{x}_i) = s(\mathbf{x}_i) - (c - \varepsilon)
 \] (which is forced to be nonzero)
- take its sign as the \(i^{th} \) bit of a 4-bit integer
- use this as an index for lookup table containing the connectivity information:
Contours in a quadrangle cell

Alternating signs exist in cases 6 and 9.
Choose the solid or dashed line?
Both are possible for topological consistency.
This allows to have a fixed table of 16 cases.
Contours in triangle/tetrahedral cells

Linear interpolation of cells implies piece-wise linear contours.

Contours are unambiguous, making "marching triangles" even simpler than "marching squares".

Question: Why not split quadrangles into two triangles (and hexahedra into five or six tetrahedra) and use marching triangles (tetrahedra)?

Answer: This can introduce periodic artifacts!
Illustrative example: Find contour at level $c=40.0$!
Contours in triangle/tetrahedral cells

3D example based on real (downsampled) dataset. Contour (=isosurface) in

original hexahedral grid vs. in tetrahedrized grid:
The marching cubes algorithm

Contours of 3D scalar fields are known as isosurfaces. Before 1987, isosurfaces were computed as
• contours on planar slices, followed by
• "contour stitching".

The marching cubes algorithm computes contours directly in 3D.
• Pieces of the isosurfaces are generated on a cell-by-cell basis.
• Similar to marching squares, a 8-bit number is computed from
 the 8 signs of \(\tilde{S}(x_i) \) on the corners of a hexahedral cell.
• The isosurface piece is looked up in a table with 256 entries.
The marching cubes algorithm

How to build up the table of 256 cases?

Lorensen and Cline (1987) exploited 3 types of symmetries:
• rotational symmetries of the cube
• reflective symmetries of the cube
• sign changes of \(\tilde{S}(x) \)

They published a reduced set of 14\(^*\) cases shown on the next slides where
• white circles indicate positive signs of \(\tilde{S}(x) \)
• the positive side of the isosurface is drawn in red, the negative side in blue.

\(^*\) plus an unnecessary "case 14" which is a symmetric image of case 11.
The marching cubes algorithm

case 0

case 1

case 2

case 3

case 4

case 5

case 6

case 7
The marching cubes algorithm

case 8
case 9
case 10
case 11
case 12
case 13
Do the pieces fit together?

- The correct isosurfaces of the **trilinear interpolant** would fit (trilinear reduces to bilinear on the cell interfaces)
- but the marching cubes polygons don't necessarily fit.

Example

- case 10, on top of
- case 3 (rotated, signs changed)

have matching signs at nodes but polygons don't fit.
The marching cubes algorithm

Reason for failure:
 Topology decision on faces with alternating signs.
Decision by original MC algorithm is not correct w.r.t. the interpolant, and not consistent.
A consistent decision would be: always cut off the positive corners!

Original MC table obeys this rule, but:
 It is lost when sign change is applied!
Consequence:
 Extend table by 14 complementary cases for changed signs!
The marching cubes algorithm

case 3

case 6

case 7

case 3c

case 6c

case 7c
The marching cubes algorithm

The remaining complementary cases are obtained simply by changing the orientation.

Example:

Based on the 28 cases, the full 256 cases are obtained by
- rotations of the cube
- reflections of the cube (and re-orienting of triangles)
The marching cubes algorithm

Summary of marching cubes algorithm:

Pre-processing steps:
• build a table of the 28 cases
• derive a table of the 256 cases, containing info on
 – intersected cell edges, e.g. for case 3/256 (see case 2/28):
 (0,2), (0,4), (1,3), (1,5)
 – triangles based on these points, e.g. for case 3/256:
 (0,2,1), (1,3,2).
The marching cubes algorithm

Loop over cells:
• find sign of $\tilde{S}(\mathbf{x})$ for the 8 corner nodes, giving 8-bit integer
• use as index into (256 case) table
• find intersection points on edges listed in table, using linear interpolation
• generate triangles according to table

Post-processing steps:
• connect triangles (share vertices)
• compute normal vectors
 – by averaging triangle normals (problem: thin triangles!)
 – by estimating the gradient of the field $s(\mathbf{x})$ (better)
The asymptotic decider algorithm

Motivation for a different isosurface algorithm:

Marching cubes can produce "bad" topology.

2D example (marching squares):

Asymptotic decider algorithm (Nielson and Hamann 1991):

• generate topologically correct contours (as oriented straight line segments) on the cell interfaces
• connect these around the cell, resulting in one or more polygons
• triangulate the polygons
In general, the AD algorithm generates better isosurfaces.

However,
• it cannot be easily implemented with a table like MC (too many cases)
• it generates polygons with up to 12 sides (MC: up to 7)
• the topology is correct w.r.t the trilinear interpolant, but the geometry can deviate
• some polygons cannot be "cleanly" triangulated

A few examples are given on the next slide, showing isosurfaces of the trilinear interpolant.
The asymptotic decider algorithm

8-sided polygon

9-sided polygon

12-sided polygon

The 8-sided polygon has no valid triangulation!
- either some triangles lie on faces of the cell
- or an extra vertex has to be used

~/avs/networks/SciVis/AD*net
Post-processing of isosurfaces

Example (VTK demo):
- pine root dataset

(1) unprocessed
- MC isosurface

Data: J. McFall, Center for In Vivo Microscopy, Duke University
Post-processing of isosurfaces

Example (VTK demo):

pine root dataset

(2) largest connected component only

Algorithm: connected component labeling
Post-processing of isosurfaces

Example (VTK demo):
pine root dataset

(3) decimated from
351,118 to
81,111 triangles

Purpose of decimation:
• data reduction
• improve mesh quality (thin/small triangles)

Algorithm (Schroeder):
• vertex removal
• feature edges kept
The dividing cubes algorithm

An early point-based algorithm (Crawford et al. '87): For each cell
• check whether it is intersected by the isosurface:
 \[\min_{i \in \text{cell}} s_i < c < \max_{i \in \text{cell}} s_i \]
• subdivide intersected cell into \(m \times m \times m \) subcells using trilinear interpolation
• draw the centers of all intersected subcells

Points can be lit:
• estimate the gradient and use it as the normal vector

50‘078 and 2‘506‘989 points
Optimized isosurface algorithms

Approaches to speeding up isosurface computation:

View dependent algorithms
• occluded triangles not computed
• GPU-based isosurface computation and rendering

Data preprocessing for fast computation of multiple isosurfaces (multiple levels), e.g. for interactive exploration of the data.
• many methods: octree, extrema graph, span space
• common goal: avoid computation in non-intersected cells.
The octree-based algorithm

Method by Wilhelms and van Gelder (1992) for (block-)structured grids.

Pre-processing:
• recursively split the grid in two subgrids, building up a binary tree of subgrids, stop splitting when single cells are reached.
• compute minimum and maximum of $s(x)$ per subgrid, store as an interval $[\text{min, max}]$ in the tree.

Computing the isosurface for a level c:
• starting at the root,
• descend recursively to subtrees if $\text{min}<c<\text{max}$
• if a leaf is reached, generate the isosurface for the respective cell with MC or AD.
The span-space algorithm

Pre-processing:
• for each cell compute \textit{min} and \textit{max},
• treat \textit{(min,max)} as a point in the \textit{span space} (Euclidean plane)
• store points in boxes, non-empty boxes organized as linked list
The span-space algorithm

Computing the isosurface for a level c:
• Find the intersected cells in the quadrant $min < c$, $max > c$

Performance gain for datasets with small local variation,
i.e. points in span space distributed mostly near diagonal
Limitations of isosurfaces

Isosurfaces represent only a single level within the data range. In practical data, there is often not a single "interesting" level.

Example: Von Kármán vortex street, colored by entropy.

"interesting" level: red on the left, green on the right. How should a 3D version of these data be visualized?
Limitations of isosurfaces

Transparent rendering of multiple isosurfaces is possible, but:
• limited to a small number by visibility
• alpha-blending requires depth sorting

Alternatives:
• feature extraction methods, e.g. detecting "blobs" (maximal ellipse-like contours).
• volume rendering can show ranges of "interesting" levels of the field and/or its gradient.