

Raycasting

Direct volume rendering

Volume rendering (sometimes called direct volume rendering) stands for methods that generate images directly from 3D scalar data.
"Directly" means: no intermediate geometry (such as an isosurface) is generated.

Volume rendering techniques

- depend strongly on the grid type
- exist for structured and unstructured grids
- are predominantly applied to uniform grids (3D images).

2D or 3D image data are uniform grids with cell-centered data.
Cell-centered data

- are attributed to cells (pixels, voxels) rather than nodes
- can also occur in (finite volume) CFD datasets
- are converted to node data
- by taking the dual grid (easy for uniform grids, n cells $\rightarrow n-1$ cells!)
- or by interpolating.

Raycasting

Raycasting is historically the first volume rendering technique.
It has common with raytracing:

- image-space method: main loop is over pixels of output image
- a view ray per pixel (or per subpixel) is traced backward
- samples are taken along the ray and composited to a single color Differences are:
- no secondary (reflected, shadow) rays
- transmitted ray is not refracted
- more elaborate compositing functions
- samples are taken at intervals (not at object intersections)

Raycasting

Sampling interval can be fixed or adjusted to voxels:

uniform sampling

Connectedness of "voxelized" rays:

Ray templates

A ray template (Yagel 1991) is a voxelized ray which by translating generates all view rays.

Ray templates speed up the sampling process, but are obviously restricted to orthographic views.

Algorithm:

- Rename volume axes such that z is the one "most orthogonal" to the image plane.
- Create ray template with 3D version of Bresenham algorithm, giving 26-connected rays which are functional in z coordinate (have exactly one voxel per z-layer)
- Translate ray template in base plane, not in image plane

Ray templates

Incorrect: translated in image plane

Correct: translated in base plane

Compositing

Two simple compositing functions can be used for previewing:

- Maximum intensity projection (MIP):
- maximum of sampled vaules
- result resembles X-ray image
- Local maximum intensity projection (LMIP):
- first local maximum which is above a prescribed threshold
- approximates occlusion
- faster \& better(!)

Comparison of techniques (Y. Sato, dataset of a left kidney): Isosurface vs. raycasting with MIP, LMIP, α-compositing

fast
(1 parameter)
-
-
lighting occlusion
(transparency)

fast parameter free full data range noise insensitive

fast
(1 parameter) -
full data range noise insensitive -
(occlusion)
-

-
full data range noise insensitive lighting occlusion transparency

α-compositing

Assume that each sample on a view ray has color and opacity:

$$
\left(C_{0}, \alpha_{0}\right), \cdots,\left(C_{N}, \alpha_{N}\right) \quad C_{i} \in[0,1]^{3}, \alpha_{i} \in[0,1]
$$

where the $0^{\text {th }}$ sample is next to the camera
and the $\mathrm{N}^{\text {th }}$ one is a (fully opaque) background sample:

$$
\begin{aligned}
& C_{N}=(r, g, b)_{\text {background }} \\
& \alpha_{N}=1
\end{aligned}
$$

α-compositing can be defined recursively:
Let C_{f}^{b} denote the composite color of samples $f, f+1, \ldots, b$
Recursion formula for back-to-front compositing:

$$
\begin{aligned}
& C_{b}^{b}=\alpha_{b} C_{b} \\
& C_{f}^{b}=\alpha_{f} C_{f}+\left(1-\alpha_{f}\right) C_{f+1}^{b}
\end{aligned}
$$

The first few generations, written with transparency $T_{i}=1-\alpha_{i}$

$$
\begin{aligned}
& C_{b}^{b}=\alpha_{b} C_{b} \\
& C_{b-1}^{b}=\alpha_{b-1} C_{b-1}+\alpha_{b} C_{b} T_{b-1} \\
& C_{b-2}^{b}=\alpha_{b-2} C_{b-2}+\alpha_{b-1} C_{b-1} T_{b-2}+\alpha_{b} C_{b} T_{b-1} T_{b-2} \\
& C_{b-3}^{b}=\alpha_{b-3} C_{b-3}+\alpha_{b-2} C_{b-2} T_{b-3}+\alpha_{b-1} C_{b-1} T_{b-2} T_{b-3}+\alpha_{b} C_{b} T_{b-1} T_{b-2} T_{b-3}
\end{aligned}
$$

reveal the closed formula for α-compositing:

$$
C_{f}^{b}=\sum_{i=f}^{b} \alpha_{i} C_{i} \prod_{j=f}^{i-1} T_{j}
$$

front-to-back compositing can be derived from the closed formula:
Let T_{f}^{b} denote the composite transparency of samples $f, f+1, \ldots, b$

$$
T_{f}^{b}=\prod_{j=f}^{b} T_{j}
$$

Then the simultaneous recursion for front-to-back compositing is:

$$
\begin{aligned}
C_{f}^{f} & =\alpha_{f} C_{f} \\
T_{f}^{f} & =1-\alpha_{f} \\
C_{f}^{b+1} & =C_{f}^{b}+\alpha_{b+1} C_{b+1} T_{f}^{b} \\
T_{f}^{b+1} & =\left(1-\alpha_{b+1}\right) T_{f}^{b}
\end{aligned}
$$

Advantage of front-to-back compositing: early ray termination when composite transparency falls below a threshold.

The emission-absorption model

How realistic is α-compositing?
The emission-absorption model (Sabella 1988) yields a basic volume rendering equation

$$
L(x)=\int_{x}^{x_{b}} \varepsilon\left(x^{\prime}\right) e^{-\int_{x}^{x} \tau\left(x^{\prime \prime}\right) d x^{\prime \prime}} d x^{\prime}
$$

The equation describes the radiance (power per unit area per solid angle $\left[\mathrm{W} / \mathrm{m}^{2} / \mathrm{sr}\right]$) arriving along a ray at the position x on this ray.

The emission function $\varepsilon(x)$ describes the photons "emitted" by the volume along the ray.
The absorption function $\tau(x)$ is the probability that a photon traveling over a unit distance is lost by absorption.

The emission-absorption model is based on Boltzmann's transport equation in statistical physics, but completely ignores scattering.

In more general models $\tau(x)$ is an extinction function having both an absorption term and a scattering term.

Instead, in the emission-absorption model:

- incident scattering is modeled by the emission function
- loss by scattering can be thought to be part of the absorption.

Discrete version of emission-absorption model

$$
L(x)=\sum_{i=0}^{n} \varepsilon_{i} \Delta x e^{-\sum_{i=0}^{i-1} \tau_{j} \Delta x}=\sum_{i=0}^{n} \varepsilon_{i} \Delta x \prod_{j=0}^{i-1} e^{-\tau_{j} \Delta x}
$$

matches the α-compositing formula

$$
C_{f}^{b}=\sum_{i=f}^{b} \alpha_{i} C_{i} \prod_{j=f}^{i-1}\left(1-\alpha_{j}\right)
$$

and gives interpretations of "opacity" and "color":

$$
\begin{gathered}
\alpha_{i}=1-e^{-\tau_{i} \Delta x} \\
\alpha_{i} C_{i}=\varepsilon_{i} \Delta x
\end{gathered}
$$

The product $\tilde{C}_{i}=\alpha_{i} C_{i}$ is called a premultiplied or associated color.

Transfer functions

Transfer functions map raw voxel data to opacities and colors as needed for the α-compositing.

Inputs of TF (one or more):

- voxel value $s(\mathbf{x})$
- gradient magnitude $\|\nabla s(\mathbf{x})\|$
- higher derivatives of $s(\mathbf{x})$

Opacity transfer function $\alpha(s(\mathbf{x}),\|\nabla s(\mathbf{x})\|, \cdots)$
Color transfer function $\quad C(s(\mathbf{x}),\|\nabla s(\mathbf{x})\|, \cdots)$

- or premultiplied: $\quad \tilde{C}(s(\mathbf{x}),\|\nabla s(\mathbf{x})\|, \cdots)$

In general TF don't depend on spatial location, exception: for focus+context techniques

Transfer functions

By choosing different opacity transfer functions different types of applications can be achieved.
Examples:

standard application

isosurface

3D edge detector

Transfer functions

Example of a bivariate (=2D) transfer function:

Transfer functions

Example: bivariate transfer function for isosurface of constant "thickness".

Transfer functions

The color transfer function allows to make a simple classification.

Example:

Transfer functions

Better (but more expensive) classification than with a transfer function is obtained by segmentation (typically slice by slice, semi-automatic).
Pre-classified volume data.
Example: "virtual frog" dataset (Lawrence Berkeley Labs).

Volume rendering of segmented volume data (from VTK book).

Example: classifications with different transfer functions (McGill Univ.)

In pre-classification, the voxels can also be lit:

- The gradient is perpendicular to the local isosurface. It can be used as a normal vector for a Phong lighting (without rendering the isosurface itself).
- Reflection coefficients can be assigned by a separate transfer function ("materials" instead of colors only).
- The diffuse lighting can be applied to the entire volume dataset as a pre-processing since it is independent of the viewing direction.

Pre- vs. post-classification

For quality reasons, current volume rendering implementations often use post-classification.

Pre-Classification:

1. Transfer functions are applied to voxels
2. Results are interpolated to sample locations.

Post-Classification:

1. Raw data are interpolated to sample locations.
2. Transfer functions are applied to sampled data.

Pre-classification:

- can be done as pre-processing, e.g. segmentation, diffuse lighting

Post-classification:

- Interpolation is in the correct space
- Additional samples can be interpolated on the fly to improve output quality

128 slices postclassification

128 slices preintegrated

Image credit: K. Engel, U. Stuttgart

Preintegration

Idea (Engel 2001):

- simulate infinitely many interpolated samples between two successive samples $s_{i}=s\left(\mathbf{X}_{i}\right)$ and $s_{i+1}=s\left(\mathbf{X}_{i+1}\right)$
- assuming:
- field $s(\mathbf{x})$ varies linearly between samples
- transfer functions don't depend on derivatives

The discrete formula for opacity at a sample was

$$
\alpha_{i}=1-e^{-\tau_{i} \Delta x}
$$

The continuous version, for a sample interval $\left[x_{i}, x_{i+1}\right]$, is

$$
\alpha_{i}=1-e^{-\int_{x_{i}}^{x_{i+1}} \tau(s(x)) d x}
$$

Assuming now $s(\mathbf{x})$ to be linear between samples, we get

$$
\alpha_{i}=1-e^{-\frac{d}{s_{i+1}-s_{i}} \int_{s_{i}}^{s_{i}+1} \tau(s) d s} \text { with } d=\left\|\mathbf{x}_{i+1}-\mathbf{x}_{i}\right\|
$$

which is called a preintegrated opacity transfer function.

Preintegration

The integral

$$
\int_{s_{i}}^{s_{i+1}} \tau(s) d s=\int_{0}^{s_{i+1}} \tau(s) d s-\int_{0}^{s_{i}} \tau(s) d s
$$

can be evaluated by two lookups in a precomputed table of

$$
\int_{0}^{s} \tau\left(s^{\prime}\right) d s^{\prime}
$$

Alternatively, the preintegrated opacity TF could be tabulated for all possible combinations of (s_{i}, s_{i+1}, d), especially if the sampling distance d is chosen constant.

The composite color of the same interval

$$
C_{i}=\int_{x_{i}}^{x_{i+1}} \varepsilon(s(x)) e^{-\int_{x_{i}}^{x} \tau\left(s\left(x^{\prime}\right)\right) d x^{\prime}} d x
$$

simplifies for linear $s(\mathbf{x})$ to

$$
C_{i}=\frac{d}{s_{i+1}-s_{i}} \int_{s_{i}}^{s_{i+1}} \varepsilon(s) e^{-\frac{d}{s_{i+1}-s_{i}} \int_{s_{i}}^{s} \tau\left(s^{\prime}\right) d s^{\prime}} d s
$$

which is a preintegrated color transfer function.
Again, it can be tabulated for all combinations of ($\left.s_{i}, s_{i+1}, d\right)$, or it can be approximately calculated from tabluated values of

$$
\int_{0}^{s} \tau\left(s^{\prime}\right) d s^{\prime} \text { and } \int_{0}^{s} \varepsilon\left(s^{\prime}\right) d s^{\prime} \begin{gathered}
\text { (moving the exponential term out } \\
\text { of the integral). }
\end{gathered}
$$

Raycasting hardware

Today's GPUs are well suited for volume rendering.
Object-space methods are more straight-forward, but also some raycasting implementations on GPUs have been done.

In contrast, two examples of special raycasting hardware:

- VIZARD (1997, U. Tübingen):
- FPGA-based system
- long pre-processing
- 10 Hz for 256^{3} volume
- perspective view raycasting

Raycasting hardware

volumePRO (1999, MERL):

- PCI board
- no pre-processing
- 30 Hz for 256^{3} volume
- orthographic raycasting
- ray templates
- shear-warp method

- z-supersampling

Example: with / without supersampling

ASIC chip of VolumePRO vg500 board has 4 parallel pipelines with stages:

- interpolation
- gradient estimation
- classification/shading
- compositing

Image is rendered in a single pass through the volume.

Off-chip memory for slices (shown in blue)

Raycasting hardware

Some special features:

- cropping
- clipping planes

some possible combinations of cropping and clipping planes

