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Tensors

"Tensors are the language of mechanics"

T f d ( k)Tensor of order (rank)
0: scalar
1: vector1: vector
2: matrix
… (example: stress tensor)

Tensors can have "lower" and "upper" indices, e.g.               ,
indicating different transformation rules for change of coordinates

, ,j ij
ij ia a a

indicating different transformation rules for change of coordinates. 
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Tensors

Visualization methods for tensor fields:
• tensor glyphs

t fi ld li h t li• tensor field lines, hyperstreamlines
• tensor field topology
• fiber bundle trackingfiber bundle tracking

Tensor field visualization only deals with 2nd order tensors 
(matrices).

→ eigenvectors and eigenvalues contain full information.

Separate visualization methods for symmetric and nonsymmetric 
tensors.
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Tensor glyphs

In 3D, tensors are 3x3 matrices. 

The velocity gradient tensor is nonsymmetric → 9 degrees of 
f d f th l l h f th l it tfreedom for the local change of the velocity vector.

A glyph developed by de Leeuw and van Wijk can visualize all 
these 9 DOFs:these 9 DOFs:

• tangential acceleration (1): green "membrane"

• orthogonal acceleration (2): curvature of arroworthogonal acceleration (2): curvature of arrow

• twist (1): candy stripes

• shear (2): orange ellipse (gray ellipse for ref.)( ) g p (g y p )

• convergence/divergence (3): white "parabolic reflector"
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Tensor glyphs

Example:

NASA "bluntfin" dataset, glyphs shown on points on a streamline. 
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S t i 3D t h l i l d th l

Tensor glyphs

Symmetric 3D tensors have real eigenvalues and orthogonal 
eigenvectors → they can be represented by ellipsoids.

Three types of anisotropy:               Anisotropy measure:yp py py
• linear anisotropy

• planar anisotropy

( ) ( )
( ) ( )
1 2 1 2 3

2 3 1 2 32
l

p
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λ λ λ λ λ

λ λ λ λ λ

= − + +

= − + +

• isotropy (spherical)
( ) ( )

( )
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Tensor glyphs

Problem of ellipsoid glyphs: 

• shape is poorly recognized in projected view

Example: 8 ellipsoids, 2 views
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Tensor glyphs

Problem of cuboid glyphs:

• small differences in 

Problems of cylinder glyphs:

• discontinuity at cl = cp

eigenvalues are over-
emphasized

• artificial orientation at cs = 1
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Tensor glyphs

Combining advantages: superquadrics

Superquadrics with z as primary axis:

( )
cos sin
sin sin

α β

α β

θ φ
θ φ θ φ

⎛ ⎞
⎜ ⎟

= ⎜ ⎟q ( ), sin sin
cos

0 2 0

z
β

θ φ θ φ
φ

θ π φ π

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

≤ ≤ ≤ ≤

q

with              used as shorthand for                    

0 2 , 0θ π φ π≤ ≤ ≤ ≤

Superquadrics for some 
pairs (α β)

cosα θ
pairs (α,β)

Shaded: subrange used 
for glyphs

cos sgn(cos )αθ θ
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Tensor glyphs

Superquadric glyphs (Kindlmann): Given cl , cp , cs

• compute a base superquadric using a sharpness value γ:

⎧
( )

( ) ( ) ( )

( ) ( ) ( )
if : , with 1 and 1

,
if : with 1 and 1

l p z p lc c q c c
q

c c q c c

γ γ

γγ

θ φ α β
θ φ

θ φ α β

⎧ ≥ = − = −⎪= ⎨
⎪ < = − = −⎩

• scale with cl , cp , cs along x,y,z and rotate into eigenvector frame

( ) ( ) ( )if : , with 1 and 1l p x l pc c q c cθ φ α β⎪ < = =⎩

c = 1 c = 1 c = 1cs = 1 cs = 1 cs = 1
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Tensor glyphs

Comparison of shape perception (previous example)

• with ellipsoid glyphs

• with superquadrics glyphs
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Tensor glyphs

Comparison: Ellipsoids vs. superquadrics (Kindlmann)
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Tensor field lines

Let T(x) be a (2nd order) symmetric tensor field.

→ real eigenvalues, orthogonal eigenvectors

Tensor field line: by integrating along one of the eigenvectors

Important: Eigenvector fields are not vector fields!

• eigenvectors have no magnitude and no orientation (are 
bidirectional)

• the choice of the eigenvector can be made consistently as long 
as eigenvalues are all different

• tensor field lines can intersect only at points where two or more 
eigenvalues are equal, so-called degenerate points.
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Tensor field lines

Tensor field lines can be rendered as hyperstreamlines:
tubes with elliptic cross section, radii proportional to 2nd and 3rd

eigenvalue.eigenvalue.
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Tensor field topology

Based on tensor field lines, a tensor field topology can be defined, 
in analogy to vector field topology.

Degenerate points play the role of critical points:

At degenerate points, infinitely many directions (of eigenvectors) 
exist. 

For simplicity, we only study the 2D case.

For locating degenerate points: solve equations

( ) ( ) ( )
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Tensor field topology

It can be shown:

The type of the degenerated point depends on

where

ad bcδ = −

( ) ( )11 22 11 221 1
2 2

T T T T
a b

x y
∂ − ∂ −

= =
∂ ∂

12 12T Tc d
x y

∂ ∂
= =

∂ ∂

• for δ<0 the type is a trisector

• for δ>0 the type is a wedge
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• for δ=0 the type is structurally unstable



Types of degenerate points illustrated with linear tensor fields

Tensor field topoloy

Types of degenerate points, illustrated with linear tensor fields.
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Tensor field topology

Separatrices are tensor field lines converging to the degenerate 
point with a radial tangent.

They are straight lines in the special case of a linear tensor field.

Double wedges have one "hidden separatrix" and two other 
separatrices which actually separate regions of different field line p y p g
behavior.

Si l d h j t t iSingle wedges have just one separatrix.
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Tensor field topology

The angles of the separatrices are obtained by solving:

3 2( 2 ) (2 ) 0dm c b m a d m c+ + + − − =

If            , the two angles 
arctanmθ = ±

( ) ( )

m∈

are angles of a separatrix. The two choices of signs correspond 
to the two choices of tensor field lines (minor and major 
eigenvalue). g )

If d = 0, an additional solution is
90θ = ± °

There are in general 1 or 3 real solutions: 
• 3 separatrices for trisector and double wedge
• 1 separatrix for single wedge

Ronald Peikert SciVis 2007 - Tensor Fields 9-19

1 separatrix for single wedge



Tensor field topology

Saddles, nodes, and foci can exists as nonelementary (higher-
order) degenerate points with δ=0. They are created by merging 
trisectors or wedges. They are not structurally stable and break g y y
up in their elements if perturbed.
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Tensor field topology

The topological skeleton is defined as the set of separatrices of 
trisector points.

Example: Topological transition of the stress tensor field of a flowExample: Topological transition of the stress tensor field of a flow 
past a cylinder
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DTI fiber bundle tracking

Diffusion tensor imaging (DTI) is a newer magnetic resonance 
imaging (MRI) technique.

DTI produces a tensor field of the anisotropy of the brain's whiteDTI produces a tensor field of the anisotropy of the brain s white 
matter. 

Most important application: Tracking of fiber bundles.
Interpretation of anisotropy types:
• isotropy: no white matter
• linear anisotropy: direction of fiber bundlelinear anisotropy: direction of fiber bundle
• planar anisotropy: different meanings(!)

Fiber bundle tracking ≠ tensor field line integration because
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Fiber bundle tracking ≠ tensor field line integration, because  
bundles may cross each other



DTI fiber bundle tracking

Method 1:
Best neighbor algorithm (Poupon), based 

on idea of restricting the curvature:on idea of restricting the curvature:
• at each voxel compute eigenvector of 

dominant eigenvalue
"di ti "→ "direction map"

• at each voxel M find "best neighbor 
voxel" P according to angle criterion g g
(mimimize max of α1,α2, α3 over 26 
neighbors)
→ "tracking map"→ tracking map

• connect voxels (within a "white matter
mask") with its best neighbor. Image credit: C. Poupon
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DTI fiber bundle tracking

Method 2:
Apply moving least squares filter which favors current direction of 

the fiber bundle (Zhukov and Barr)the fiber bundle (Zhukov and Barr).

filt d il id filter domainvoxel grid

interpolated
tensor datat k d b dl

Image credit: Zhukov/Barr

tensor datatracked bundle
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Image credit: Zhukov/Barr



DTI fiber bundle tracking

Method 3:
Tensor deflection (TEND) method (Lazar et al.)

Idea: if v is the incoming bundle direction, use Tv as the direction of 
the next step. 

Reasoning:
• Tv bends the curve towards the dominant eigenvector
• Tv has the unchanged direction of v if v is an eigenvector of T or 

a vector within the eigenvector plane if the two dominanta vector within the eigenvector plane if the two dominant 
eigenvalues are equal (rotationally symmetric T).  
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DTI fiber bundle tracking

Comparison:
Tensor field lines (l), TEND (m), weighted sum (r),
Stopping criteria: fractional anisotropy < 0 15 or angle betweenStopping criteria: fractional anisotropy < 0.15 or angle between 

successive steps > 45 degrees
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DTI fiber bundle tracking

Clustering of fibers: Goal is to identify nerve tracts.

automatic clustering results optic tract (orange) andautomatic clustering results optic tract (orange) and 
pyramidal tract (blue).
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image credit: Merhof et al. / Enders et al.



DTI fiber bundle tracking

Algorithmic steps
1. clustering based on geometric attributes: centroid, variance, 

curvaturecurvature, …
2. center line: find sets of "matching vertices" and average them
3. wrapping surface: compute convex hull in orthogonal slices, 

using Graham's Scan algorithm
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