

Improving the Accuracy	1 – Leap-Frog
$\mathbf{v}(t+h/2) = \mathbf{v}(t-h/2) + h \cdot \mathbf{v}(t+h)$ $\mathbf{x}(t+h) = \mathbf{x}(t) + h \cdot \mathbf{v}(t+h)$	a(t)Error $\mathcal{O}(h^3)$ time step h is significantly/2)larger compared to expl. Euler
Euler	Leap-Frog
 addForces(); //F(t) positionEuler(h); //x=x(t+h)=x(t)+ hv(t) velocityEuler(h); //v=v(t+h)=v(t)+ha(t) 	initV() // v(o) = v(o) – h/2a(o) addForces(h); //F(t) velocityEuler(h); //v=v(t+h)=v(t)+ha(t) positionEuler(h); //x=x(t+h)=x(t)+ hv(t+h)

Second-Order Runge-Kutta N (Midpoint Method)	Aethod ETH Zurich
Carl Runge: 1856 (Bremen) – 1927 (Goettingen) Wilhelm Kutta: 1867 (Pitschen) – 1944 (Fuerstenfeldbruck) $\mathbf{x}'(t) = \mathbf{v}(t)$	$\mathbf{x}(t) = \mathbf{a}(\mathbf{x}(t), \mathbf{v}(t)) = \frac{\mathbf{F}(t) - \gamma \mathbf{v}(t)}{m}$
Compute v at <i>t</i>	$\mathbf{k}_1 = \mathbf{v}(t)$
Compute a at <i>t</i>	$\mathbf{l}_1 = \mathbf{a}(\mathbf{x}(t), \mathbf{v}(t))$
Compute v at <i>t+h/2</i> (the midpoint)	$\mathbf{k}_2 = \mathbf{v}(t) + \mathbf{l}_1 \frac{h}{2}$
Compute a at $t+h/2$ with x and v at $t+h/2$	$\mathbf{l}_2 = \mathbf{a} \left(\mathbf{x}(t) + \mathbf{k}_1 \frac{h}{2}, \mathbf{k}_2 \right)$
Compute x at $t+h$ with its velocity at $t+h/2$	$\mathbf{x}(t+h) = \mathbf{x}(t) + h\mathbf{k}_2$
Compute v at <i>t+h</i> with the acceleration at <i>t+h</i>	$\mathbf{v}(t+h) = \mathbf{v}(t) + h\mathbf{l}_2$
M Teschner - Deformable Modeling	34

tegration methods for rst-order ODE's	Integration methods for Newton's motion equation
ıler	Verlet
eun	Velocity Verlet
nge Kutta	Beeman
mmonly used in	commonly used in
mputer Graphics applications	molecular dynamics

M Teschner - Deformable Modeling

A few References

86

- D. Terzopoulos, J. Platt, A. Barr, K. Fleischer, "Elastically Deformable Models," *SIGGRAPH'87, ACM Computer Graphics*, vol. 21, no. 4, pp. 205-214, 1987.
- D. Terzopoulos, K. Fleischer, "Modeling Inelastic Deformation: Viscoelasticity, Plasticity, Fracture," *SIGGRAPH'88, ACM Computer Graphics*, vol. 22, no. 4, pp. 269-278, 1988.
- Y. Lee, D. Terzopoulos, K. Waters, "Realistic Modeling for Facial Animation," *SIGGRAPH'95, ACM Computer Graphics*, vol. 29, no. 4, pp. 52-62, 1995.
- D. Baraff, A. Witkin, "Large Steps in Cloth Simulation," *SIGGRAPH'98, ACM Computer Graphics*, pp. 43-54, 1998.
- M. Desbrun, P. Schroeder, A. Barr, "Interactive Animation of Structured Deformable Objects," *Graphics Interface '99*, Kingston, Canada, 1999.
- G. Debunne, M. Desbrun, M. Cani, A. Barr, "Dynamic Real-Time Deformations using Space and Time Adaptive Sampling," *SIGGRAPHC'01, ACM Computer Graphics*, pp. 31-36, 2001.
- H. R. Schwarz, "Numerische Mathematik," B. G. Teubner Stuttgart,
- ISBN 3-519-32960-3, 1997.
- W Teschner Deformable Modeling

17