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Deformable Objects

deformable mass-spring system

1. Discretization of an object into 
mass points

2. Representation of forces between 
mass points with springs

3. Computation of the dynamics

Movie

Movie

Teschner

3M Teschner - Deformable Modeling

ETH Zurich
Outline

Motivation
Model Components

Mass Points
Springs
Forces

Computation of the Dynamic Behavior
Explicit Numerical Integration
Implicit Numerical Integration
Higher-Order Numerical Integration

Stability and Performance Aspects
Performance
Time and Space Adaptive Sampling
Damping
Force-Deformation Relationship
Model Topology

4M Teschner - Deformable Modeling

ETH Zurich
Virtual Clothing

• Simulation of cloth based on
deformable surfaces
(polygonal mesh)

• Realistic simulation of cloth with
different fabrics such as wool,
cotton or silk for garment design 

Thalmann

Strasser

Baraff
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Virtual Clothing

Choi
Seoul National University
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Facial Animation

• Simulation of facial expressions based on
• deformable surfaces
• deformable volumes
• muscles

• Animation of face models from speech
and mimic parameters

Terzopoulos

Thalmann
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Medical Simulation

• Simulation of deformable soft tissue
• Surgical planning
• Medical training
• Swiss NCCR Co-Me www.co-me.ch

Prediction of the surgical outcome
in craniofacial surgery

Virtual
endoscopy

Kuehnapfel Laparoscopic (endoscopic) simulation Szekely

Teschner
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Artificial Life

Terzopoulos

• Simulation of systems consisting of
• sensors for perception
• behavioral rules
• physically-based representation

of motor functions 
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Games

Niederberger
Gross

• Deformable structures are challenging for computer games

Mueller
Novodex
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Mass Points

class POINT
{  

public:
float mass;
float position[3];

. . .
}
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Elastic Springs

Elasticity: Ability of a spring to return 
to its initial form when the deforming 
force is removed.

F
l

L

Spring stiffness is characterized by k
Initial spring length L
Current spring length l

Deformation linear proportional to force:

( )lLkF −= Hooke’s law
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Forces at Mass Points

Internal forces External forcesintF
extF

• Gravity
• All forces, which are

not caused by springs

Resulting force at point i
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Model - Summary

• Discretization of an object into mass points
• Definition of the connectivity

(topology, adjacencies of mass points)
• Model parameters:

• Points: mass, initial position, velocity
• Springs: stiffness, initial length
• Definition of external forces (gravity)
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Static Equilibrium

System of mass points  ( )TxxX 10,=
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From Statics to Dynamics

Motion equation for a system of mass points  

( ) ( ) ( )t(t)
dt

td

dt

td extFKX
X

D
X

M +=+
2

2

extFKX =− ( )t(t) extFKX +=0

Consideration of dynamics

( ) ( )t(t)
dt

td extFKX
X

M +=
2

2

Incorporation of damping
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Mass-Point Dynamics

( ) ( )
i

ii F
xx =+
dt

td

dt

td
mi γ

2

2

Motion equation for mass point      at time point  i t

• second-order differential equation
• Newton’s equation or motion equation in Langrange form
• force F is used for acceleration and damping    
• simplified form ma = F if damping is neglected

mass position damping
coefficient force at mass point

damping force
linear proportional
to velocity 
(Stokes friction)

acceleration 
force
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Rewriting the Problem

Reduction of an second-order  differential equation
to two coupled first-order differential equations. 

( ) ( )
i

ii F
xx =+
dt

td

dt

td
mi γ

2

2

( ) ( )t
dt

td
i

i v
x =

( ) ( ) ( )
im

tt

dt

td iii vFv γ−=

velocity acceleration
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Problem

( ) ( )t
dt

td
i

i v
x =

( ) ( ) ( )
im

tt

dt

td iii vFv γ−=

Goal: Computation of position x over time. 

We have: Initial position x
Initial velocity v
Derivative of position x with respect to time.
Derivative of velocity v with respect to time.
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Explicit Numerical Integration

t

f(t)

t0 +ht0

• Initial value f(t0)
• Compute the derivative at t0

• Move from t0 to t0 +h
using the derivative at t0

Error O(h2)
Leonard Euler:
1707 (Basel) – 1783 (Petersburg)

Euler Method
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Euler Method

( ) ( )tt vx =' ( ) ( ) ( )
m

tt
t

vF
v

γ−='

( ) 00 xx =t ( ) 00 vv =tStart with initial values

Compute ( ) ( )00 '' tt xv

Assume ( ) ( ) ( ) ( ) httttttt +≤≤== 0000 '''' xxvv

Compute

( ) ( ) ( ) ( ) ( ) ( )
m

tt
htththt 00

0000 '
vF

vvvv
γ−+=+=+

( ) ( ) ( ) ( ) ( )00000 ' thtththt vxxxx +=+=+

Compute

( F(t) is computed from x(t) and external forces! )
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Problems

(Taylor series)( ) ( ) ( ) ( )2' hOhtftfhtf ++=+

Inaccuracy can cause instability.

Numerical integration is inaccurate.

Euler step Error

t

f(t)

h

)("
2

0
2

htf
h

e +⋅<≤

Error
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• No general solution to avoid instability
for complex mass-spring systems.

• A smaller time step increases
the chance for stability.

• A larger time step speeds up
the simulation.

• Parameters and topology of the 
mass-spring system, and external forces 
influence the stability of a system.

Avoiding Instability ?
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Improving the Accuracy 1 – Leap-Frog

)()2/()2/( thhtht avv ⋅+−=+

)2/()()( hththt +⋅+=+ vxx

Euler

...
addForces();    //F(t)
positionEuler(h);   //x=x(t+h)=x(t)+hv(t)
velocityEuler(h);   //v=v(t+h)=v(t)+ha(t)
...

Error O(h3)
time step h is significantly
larger compared to expl. Euler

Leap-Frog

initV() // v(0) = v(0) – h/2a(0)

...
addForces(h);   //F(t)
velocityEuler(h); //v=v(t+h)=v(t)+ha(t)
positionEuler(h); //x=x(t+h)=x(t)+hv(t+h)
...
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Improving the Accuracy 2 

Euler Method

t

f(t)

t0 +ht0

• Compute the derivative at t0

• Move from t0 to t0 +h
using the derivative at t0

Error O(h2)

Runge-Kutta Method

t

f(t)

t0 +ht0 +h/2t0

1

2a

2b

• Compute the derivative at t0

• Move to t0 +h/2
• Compute  the derivative at t0 +h/2
• Move from t0 to t0 +h

using the derivative at t0 +h/2

Error O(h3)
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Second-Order Runge-Kutta Method 
(Midpoint Method)

( ) ( )tt vx =' ( ) ( ) ( )
m

tt
tt

vF
vxa

γ−=)(),(

)(tvk1 =

( ) ( )( )tt vxal1 ,=

2
)(

h
t 12 lvk +=

( ) 





 += 212 kkxal ,

2

h
t

( ) 2kxx htht +=+ )(

( ) 2lvv htht +=+ )(

Compute v at t

Compute a at t

Compute v at t+h/2 (the midpoint)

Compute a at t+h/2 with x and v at t+h/2

Compute x at t+h with its velocity at t+h/2

Compute v at t+h with the acceleration at t+h/2

Carl Runge: 
1856 (Bremen) – 1927 (Goettingen)
Wilhelm Kutta:
1867 (Pitschen) – 1944 (Fuerstenfeldbruck)

35M Teschner - Deformable Modeling

ETH Zurich
Comparison

Euler Method Runge-Kutta Method

• One computation of the
derivative per time step

• Error O(h2)

• Two computations of the
derivative per time step

• Error O(h3)

• Allows larger time steps

• Accuracy of Runge-Kutta per time step is higher.
• Computational complexity similar if time step

for Runge-Kutta is twice the time step for Euler.
• Does Runge-Kutta really allow faster 

simulations of mass-spring systems? 
)(0 )( xf

n

h
e n

n

⋅<≤
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Fourth-Order Runge-Kutta Method

t

f(t)

t0 +ht0

• Compute the derivative at t0 (1)
• Move from t0 to t0 +h/2

using the derivative at t0  (1)
• Compute the derivative at t0 +h/2 (2) 
• Move from t0 to t0 +h/2

using the derivative at t0 +h/2 (2)
• Compute the derivative at t0 +h/2 (3)
• Move from t0 to t0 +h

using the derivative at t0 +h/2 (3)
• Compute the derivative at t0 +h (4)
• Compute a weighted average 

of all derivates (1) – (4)
and use this value to move 
from t0 to t0 +h

Error O(h5)

t0 +h/2

1

2

3

4
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Implementation

Euler Method

Runge-Kutta Method

• Straightforward
• Compute spring forces
• Add external forces
• Update positions
• Update velocities

• Compute spring forces 
• Add external forces
• Compute auxiliary positions and velocities

• requires additional copies of data
• once for second-order
• three times for fourth-order

• Update positions
• Update velocities
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Implicit Integration – Theta Scheme

NicolsonCrank

Eulerimplicit

Eulerexlicit
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( ))1()()1()()1( +⋅+⋅−+⋅=+⋅ tthtmtm FFvv θθ
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Theta Scheme - Implementation
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rewriting the problem

linearization of force 

explicit form for v(t+h) 
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Theta Scheme – Conjugate Gradient

• linear system:

• gradient of a function

with

• iterative solution for v with initial value v0

Iteration:

A =⋅v b

bvAv −⋅=∇ )(f

0)( =∇ vf

))((1 kkk fw vvv ∇⋅+=+ α
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Higher-Order Numerical Integration

Integration methods for 
first-order ODE’s

Euler
Heun
Runge Kutta

commonly used in 
Computer Graphics applications

Integration methods for 
Newton’s motion equation

Verlet
Velocity Verlet
Beeman

commonly used in 
molecular dynamics
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Verlet Integration
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( ) ( ) ( ) ( ) ( )( )htfahtfatfa
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tfhtf 2''' 030201
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+=+

Other Integration Techniques

Burlisch-Stoer Methods

Predictor-Corrector Methods

• Polynomial function extrapolation based on midpoint method steps
• High accuracy with minimal computational effort
• Bad for non-smooth functions
• Not very promising, but has been used for mass-spring models

• Predicts a value from previous derivatives 

• Corrects the value using the derivative from the predicted value (implicit) 

( ) ( ) ( ) ( ) ( )( )htfbtfbhtfb
bbb

h
tfhtf −+++

++
+=+ 030201

321
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Numerical Integration - Summary

Motion equation for mass point
• second-order differential equation
• coupled system of first-order differential equation
• derivatives of velocity v and position x are described

Numerical integration
• known initial values at a certain time t for v and x
• approximative integration of v and x through time
• time step h
Integration techniques
• Euler, Leap-Frog
• Runge-Kutta
• Crank-Nicolson
• Verlet, velocity Verlet, Beeman
• predictor-corrector
• methods differ in accuracy and computational complexity
• size of time step h is trade-off between performance and robustness
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How to Measure Performance ?

• Frames per second 
(System updates per real-life second)

• Commonly used
• How many mass points?
• How many springs?
• Computational expenses for external forces?
• Other expenses like collision handling and rendering?
• Which numerical integration technique?
• What time step?

• Example: 0.1 – 1 s for 10,000 polygons per iteration using various 
integration techniques [Volino/Thalmann 2001]
cloth simulation

It is difficult !
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Comparison of Integration Methods

• Synthetic object under gravity
• 22320 springs (16875 tetras) Method      time step   comp. time    ratio

[ms]           [ms]

expl. Euler         0.5        9.3    0.05
Heun                  2.9      27.5        0.1
RK2            3.8       18.9          0.2
impl. Euler       49.0          172.0           0.28
RK4            17.0       50.0           0.34
Verlet                  11.5         8.5          1.35

Intel Pentium 4, 2GHz
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Performance - Example

• Numerical integration time step 5 ms
• Computational time 1.8 ms
• Performed tasks in a simulation environment per second

• 450 integrations a 1.8 ms
• 450 collision handlings a 0.2 ms 
• 23 visualizations a 1.7 ms

1349 mass points
6888 springs

Uterus
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Performance - Example

Vessel

• Numerical integration time step 1.9 ms
• Computational time 6.1 ms
• Performed tasks in 
a simulation environment per second

• 135 integrations a 6.1 ms
• 135 collision handlings a 1.1 ms 
• 7 visualizations a 3.7 ms

2949 mass points
15713 springs
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Adaptive Time Steps

• Minimizing computational expenses
by adaptively choosing time steps

• Small time steps if forces at mass points change significantly
• Larger time steps if forces do not change much
• Computational overhead for tracking force changes
• Example:

• Free falling sphere does not require small time steps.
• Any collision would require smaller time steps.
• Early detection of force changes necessary.

t

f(t)
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Space Adaptive Sampling

Debunne

• Hierarchical model representation (coarse sampling to fine sampling)
• Different numbers of mass points for different modeling accuracies
• Allows to focus the computational load on interesting regions 
• Problem: How to define regions of interest
• Problem: Relation between simulated mass points and object points
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Space Adaptive Sampling

• Combination of physically-based 
and geometric deformation

• Different degrees of freedom 
for deformation

surface/object points

mass point

• Definition of rules to switch between level of details in certain areas
• Update of the relation between mass points and surface points. 
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Space Adaptive Sampling

Debunne
Desbrun
Coti
Barr
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Damping

• Models the real fact, that friction costs energy
• Smoothens variations in velocities and positions of mass points
• Reduces instability risk

Damping is a force usually linear proportional to vn in opposite direction

• Coulomb F~v0 not applied for mass-spring systems

• Stokes F~v uniform damping, preferred

• Newton F~v2 non-uniform damping

It is not intended to bound velocities and positions! 
Not the magnitude, but variations influence the stability!
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Point Damping

( ) ( )
i

ii F
xx =+
dt

td

dt

td
mi γ

2

2

( ) ( ) ( )
im

tt

dt

td iii vFv γ−=

• Force at a point is used
for acceleration and damping

• Damping force is applied in opposite
direction to the velocity of the point

• Example: Falling mass point has a maximum speed, 
when gravity and damping are in an equilibrium 

damping force
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Spring Damping

• Damping force proportional
to the velocity of the spring

)(tl )( htl +

( )
)()(

)()()()(
)(

tt

tt

h

tlhtl
t

01

01
1 xx

xx
F

−
−−+−= γ

)(t0x

)(t1x

)( ht +0x

)( ht +1x

• Damps relative movements of mass points
• Reduces internal oscillations of the mass-spring model
• Requires computation of auxiliary point positions
• Problem: Which force direction is correct?
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Force-Deformation Relationships

( )
01

01
01

int
0 xx

xx
xxF

−
−−−= Lk

L
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1x
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22
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0101int
0 xx

xxxx
F
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 −−
=

n

L

L
k n odd ! Why ?

• Various computational complexity
• Influence on the function, which is integrated

• Definition of forces which work against deformation
• No deformation -> no force
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Spring Properties and Stability

• Behavior of force-deformation relation strongly influences stability.
• It’s difficult to simulate stiff structures.
• It’s difficult to represent non-oscillating deformable structures.
• Human soft tissue

• Large forces should be handled.
• No oscillations

spring
deformation

force

spring
deformation

forceforce

spring
deformation

force

spring
deformation

soft
stable

stiff
problematic

oscillating
stable

non-oscillating
don’t even think

of using it
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Model Properties and Stability

Movie

• Two different sets of parameters (mass and stiffness)
for the same topology

• Higher stiffness difficult
to handle

Movie

Teschner
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Topology and Stability –2D

• Design problem

• Stable model topologies
with respect to deformation

not stable

stable
but not
general

stable
can be generated automatically by
copying the surface to an inner layer
and connecting both – layered model

much more resistant in  
direction than in 
direction.
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Topology and Stability –3D

• Triangulated sphere surface
• Edges represented by springs
• Stable sphere model represented with two layers of springs
• Inner layer is a copy of the surface
• Both layers are connected by springs
• Stable, but many springs, many forces, computational expensive
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Topology - Ambiguity Problem

• Unappropriate topology
• No force penalty for shearing
• Diagonal springs are missing

• Appropriate topology
• However, self-collision problem

original equilibrium 1 equilibrium 2

model is attached 
to these two planes
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Topology and Stability –2D

• Generating pre-strained models for stability

additional
forces

new stable?
equilibrium

relaxed,
not stable

Problems:
• New equilibrium does not represent given model geometry.
• Initiated forces are dependent on surface changes and object transformation.
• Initiated forces could be bound to surface normals.
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Volumetric Models

2949 mass points
10257 tetras
15713 springs

1349 mass points
4562 tetras
6888 springs
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Performance Aspects - Summary

• Performance is difficult to assess!

• Varying time steps

• Model hierarchies, coarse to fine point sampling

• Point and spring damping.

• Force-deformation relationship. Soft and oscillating models are robust.

• Topology. How to connect mass points in an appropriate way?
Influence on the stability of the numerical integration

• Topology. How to avoid too many springs?
Influence on the performance of the numerical integration
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Other Forces

• Induction of internal forces by falsifying the initial spring length

consttL =)( )()( tftL =

• Simulation of muscle contraction (or fishes)
• L(t) has to be smooth for stability

)( 0tL

relaxed
spring

)( 0 htL +
no longer
relaxed
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Penalty Forces

• Penalty forces are additional momentum conserving 
external forces at mass points.

• Penetration of a mass point into another object can cause a penalty
force to resolve the collision.

• Volume variation of basic volumetric elements can cause forces to
preserve volume.

• Surface changes can cause penalty forces at mass points to
preserve certain characteristics of the surface.

• Proper relation of penalty, internal, and other external forces
has to be considered.

• Penalty force functions should be appropriate for numerical
integration.
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Penalty Forces

Collision Surface changes

1

2
Penalty

1

2

Penalty
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Dynamic Deformation - Summary

• Discretization of an object into mass points
• Definition of the connectivity

(topology, adjacencies of mass points, layers)
• Model parameters:

• Points: masses, initial positions, initial velocities
• Springs: force-deformation relationship and 

its parameters (stiffness)
• Damping: points and/or springs

(Stokes and/or Newton)
• External and penalty forces: definition of theses forces over time
• Restrictions: fixed points, restricted movement
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Dynamic Deformation - Summary

• Numerical integration technique:
• Euler, Leap-Frog
• Runge Kutta 
• Crank-Nicolson
• Verlet, Beeman
• Predictor-corrector methods

• Consider performance aspects!
• Find an appropriate time step 

to solve your specific problem !
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Cloth Simulation

Fedkiw
Stanford University
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Hand Simulation

Articulated
bone
structure

Deformable
pulp space
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