

Render particles (just some examples)

t t t t u(x,t)

with polygons: change aspect ratio over time

vertex

Re

ratio of height to width > 1.0

Hot gas as particles in user-defined velocity field u(x,t)

Model fire using particles:

Methods (1): particle-based

Advantages: faster (avoid solving very costly PDE), scalable, realistic, sharp outlines

 represent fire as a set of flames single flame as fire primitive

Methods (3): flame-based

in the next step, we will also need points *inside* the burning

 \Rightarrow for a given line segment, displace random point on segment just like boundary vertex, but with interpolated velocity and a time step [0..h]

 $\mathbf{p}_{i}(t+\Delta t)$

region

- \mathbf{v}_i is defined by local parameters. Allow only change in magnitude of \mathbf{v}_r not in direction, so that the burning zone doesn't shrink

Denis Steinemann - Simulation and Animation of Fire

17

Boundary vertices may become sparse/dense → insert/delete vertices if that's the case

Fire propagation

skeleton is a broken-line approximation of s(u)

 $s(u_1)$ s_1 s_2 s_2

in general, s(u) is hard to find analytically

Flame Genesis and Animation

solve numerically using Euler

skeleton vertices: s_i = s(u_i)

 $\mathbf{s}_{i+1} = \mathbf{s}_i + \frac{l(t)}{n} \mathbf{V}(\mathbf{s}_i)$

 $\mathbf{v}_{\mathbf{s}_{1}}^{\mathbf{s}_{2}}$

Denis Steinemann - Simulation and Animation of Fire

25

n predefined, (n<10); n+1 = # of vertices in skeleton
l(*t*) determines length of skeleton (see later)

Since detached flames have short life span, adjust their length

function

Skeletons are well-suited for quick previewing, which speeds up the iterative process of obtaining the desired effects

Demos:

[Beaudoin, Paquet, Poulin]

Flame skeletons on a burning sphere

Beaudoin

29

Denis Steinemann - Simulation and Animation of Fire

щ

use E(x'(x)) instead of E(x)

 $z(\mathbf{x})$

 $\mathbf{x}'(\mathbf{x}) = \mathbf{x} + \exp\left(\frac{2z(\mathbf{x})}{d} - \right)$

 $d = |\mathbf{s}_n - \mathbf{s}_0|$

 $z(\mathbf{x})$ and $r(\mathbf{x})$: cylindrical coords of \mathbf{x} relative to segment $(\mathbf{s_0}, \mathbf{s_n})$

near top of flame, **x** '(**x**) is farther away from the skeleton than **x** \rightarrow E(**x** '(**x**)) smaller than E(**x**) \rightarrow iso-surface closer to skeleton

 Problem: E(x) does not distinguish between root and top of flame, but flames are thin at the top and bulged at the root

 \rightarrow transform ${\bf x}$ to height-dependent ${\bf x}^{\,\prime}({\bf x})$:

X'(**X**)

Rendering and Modelling

Denis Steinemann - Simulation and Animation of Fire

Denis Steinemann - Simulation and Animation of Fire