
1

T7 – SVM & Perceptrons

T7 -
SVM and Perceptrons

Christian Vögeli
cvoegeli@inf.ethz.ch

Based on slides by P. Orbanz & J. Keuchel

T7 – SVM & Perceptrons

Overview

• Supervised/Unsupervised Learning
• Perceptrons
• Support Vector Machines
• Kernels

T7 – SVM & Perceptrons

Supervised vs. 
Unsupervised Learning

• Task: Apply some machine learning method to
data from a given source

• The source has a characteristic distribution,
but we don’t know what it is.

T7 – SVM & Perceptrons

Supervised vs. 
Unsupervised Learning

• Def.: Training data
In a classification/regression problem, a sample from 
the data source with the correct classification/
regression results already assigned is called training 
data.

• Example: Training data for a classification problem is a 
data sample plus correct class labels.

• Training data is the knowledge about the data source 
which we use to construct the classifier/regressor.

T7 – SVM & Perceptrons

Supervised vs.
Unsupervised Learning

• Supervised Learning:
– Use training data to infer model
– apply model to test data
– e.g. Maximum likelihood, Perceptron, SVM

• Unsupervised Learning:
– No training data
– Model inference and application both rely on test

data exclusively
– e.g. k-means

We can not test 
our our model

we can test our 
model

T7 – SVM & Perceptrons

Supervised vs.
Unsupervised Learning

• Fish-example from lecture
• Supervised Learning:

– One bag with salmons
– One bag with sea bass

=> build model
– One mixed bag

=> please classify
• Unsupervised Learning:

– One mixed bag
=> build model

– Another mixed bag
=> please classify



2

T7 – SVM & Perceptrons

Supervised Example: 
classification

1. Choose a classifier model (e. g. family of
functions)

2. Use training data (pre-classified reference 
data) to choose a specific classifier (e. g.
compute parameter)

3. Using the classifier on new data (test data):
Apply classifier function to data value
-> Result: Class label

T7 – SVM & Perceptrons

Perceptron

• Idea: Separate data points from two classes C1,
C2 by a linear function (hyperplane)

• Identify hyperplane by normal vector a (in
generalized coordinates):

CG: homogeneous coordinates

T7 – SVM & Perceptrons

Perceptron

• Solution is not unique: possible normal vectors 
define a conic region (= intersection of n half 
spaces):

„in“ halfspace

T7 – SVM & Perceptrons

Perceptron
• For training: “normalization” of data points by 

mirroring points from C2 at the origin:

• Linear separation remains!
• New requirement:

angle between a and 
yi < 900

T7 – SVM & Perceptrons

Perceptron Algorithm

• Sequentially add “normalized” misclassified data 
points yi to a

• Moves a in the direction of the wider opening of the 
solution cone

• Terminates if a lies in the solution cone

Aufgabe 3

T7 – SVM & Perceptrons

Perceptron to SVM

• Introduce a margin aTyi >= b to reduce the 
cone of possible solutions (and move the
separating hyperplane more to the middle):



3

T7 – SVM & Perceptrons

SVM

• By definition, SVM is the maximum margin 
classifier defined in terms of the support 
vector approach.

• Real-world SVM implementations usually 
combine three techniques:

1. Maximum margin classifier (this is where convex 
optimization comes in).

2. Soft margin technique (slack variables).
3. Kernel trick.

T7 – SVM & Perceptrons

Maximum Margin 
Classifiers

• Background on maximum margin classifiers: Generalization 
error.

• V. Vapnik: Theory of ”Structural risk minimization”
• Approach: Classification error consists of two parts.

classification error = training error + generalization error

Flexible classifiers: small training error, but possibly large 
generalization error (overfitting).

badly trained does not generalize well

T7 – SVM & Perceptrons

Maximum Margin 
Classifiers

To keep the generalization error low (prevent 
from overfitting):

1. Use linear classifier. More complex/flexible
classifiers (curved surfaces etc) are more likely to
overfit.

2. When placing the hyperplane, choose the position 
which maximizes the margin.

Note: The only conceptual difference 
between the basic SVM and the 
perceptron is the rule for positioning
the hyperplane. T7 – SVM & Perceptrons

Support Vectors
• Support vector idea: The classifier hyperplane is 

determined only by the points which are closest to it
(the suppport vectors).

• Background: Region around class boundary is critical 
for classification. What happens “in the back” of the 
classes does not matter (classification density 
estimation).

• In theory, you may have millions of data points, but 
only three support vectors.

Aufgabe 2

T7 – SVM & Perceptrons

Aufgabe 2

• personal opinion:
– very nice task
– good for low level understanding

• a): simply draw a picture
• b) – d): this is not SVM, but LSQ

– used to illustrate the difference to SVM
• e) + f): SVM

T7 – SVM & Perceptrons

Soft Margin

• First problem of the SVM classifier: It requires 
data to be linearly separable.

• Solution: Soft margin approach.
– We allow training points on the wrong side of the 

classifier, but such points produce extra costs.
• The margin maximization is rewritten as a

minimization problem.
• The two problems are combined.

„maximum margin 
classifier“



4

T7 – SVM & Perceptrons

Soft Margin

• There are many ways to combine two cost terms into a 
cost function: Every expression that becomes larger as 
either of the two terms increases is valid.

• Note: Slack variables apply only to training data. 
Classification of test points depends only on which side of
the hyperplane they are on.

slack vars: the more the original
constraint is violated, the larger they get

T7 – SVM & Perceptrons

Optimization Theory

• The theory about convex optimization (KKT
conditions etc) only comes in because the 
maximum margin problem (with and without 
slack variables) can be cast in terms of a 
quadratic optimization problem.

• In machine learning, the convex optimization 
part is usually used as a black box. To program 
SVMs, we use libraries or matlab functions.

T7 – SVM & Perceptrons

Optimization Theory
• Why formulation as a convex optimization 

problem is so appealing:
– Convex problems have the best possible optimization 

properties (clearly defined optimum, no catches to
confuse computer algorithms).

– Convex structure allows to tie in constraints in a very 
neat fashion.

• The meaning of „can be formulated as convex 
optimization problem” is roughly equivalent to 
„the optimization involved will not give us any 
trouble”.

T7 – SVM & Perceptrons

Kernel trick: Motivation
• Problem with linear classifiers: Not very flexible.
• Two types of errors:

1. Classes overlap.
2. Boundary between classes is obviously non-linear.

The use of slack variables should be reserved for case (1).

• Consequence: We would like to be able to use ”curved”
classifiers.

• Curved classifiers: Nonlinear objects ! much more 
difficult mathematics.

„classifier still linear, but space transformed“

T7 – SVM & Perceptrons

Kernel Trick
Observation: Imagine some high-dimensional vector space

• Projection of a linear object (say, a hyperplane) onto a 
linear subspace is again linear.

• Projection of the same object onto a non-linear subset
(e. g. a curved surface) is non-linear.

• If we regard our data space as a non-linear subset of 
some high-dimensional space, we can ”simulate” non-
linear operations in data space by doing linear
operations in the highdimensional space.

T7 – SVM & Perceptrons

Kernel Trick
High-dimensional computations the hard way:

• Define transformation into high-dim. space RH.
• Parameterize data space RL (e. g. as parametric 

differentiable manifold).
• Perform linear classifier training in high-dim space RH.
• Project the classifier back onto RL.

RL RH RH RL

Nobody would think about this, if it was the only way 
and would not lead to...

T T-1(C)C



5

T7 – SVM & Perceptrons

Kernel Trick
• The key operation of our linear methods is the scalar 

product:
– Computes projections (needed for classification).
– Computes orientations (determines orthogonality/direction of

hyperplanes).

• Check the slides on optimization for SVMs: The only 
vector operation that appears is the scalar product.

• So: If we can represent the scalar product in RH as a
function in RL, we can simulate linear classification in 
RH without actually leaving RL.

=> we compute the scalar product of RL vectors in RH
T7 – SVM & Perceptrons

Kernel Trick
Recall linear algebra:
• A matrix A defines a scalar product if it is symmetric

positive definite:

has all the properties of a scalar product.
• For a function k(x, y), what do we have to require such 

that there is some space RH in which k is a scalar 
product?
Meaning: When do we have

brackets: scalar prod.

T7 – SVM & Perceptrons

Kernel Trick

• Answer: Mercer’s theorem.
If K : G RL× RL→ R continuous and symmetric 
for which

then K represents a scalar product in some high-
dimensional space.

• The Mercer condition is the functional analogy of 
positive definiteness for matrices (prev. slide)

We can use all these functions 
instead of the scalar product T7 – SVM & Perceptrons

Kernel Trick

Using the kernel trick:
• Start with some function K.
• Check whether it fulfills Mercer’s condition.
• Replace all scalar products in algorithm by K.
• The important part: See whether it works. 

Most of the time (i. e. for most kernels), it will 
not☺

T7 – SVM & Perceptrons

Why do SVM work so well?

• First of all: It’s an unsolved research problem.

• Some claims: Because of...
1. the maximum margin classifier.
2. the compression property (solution represented by 

small subset of points, the support vectors).
3. certain (still largely unproved) convergence 

properties of the kernel operator eigenvalues.

T7 – SVM & Perceptrons

Why do SVM work so well?

• Three very simple reason why SVMs are so
popular:

1. Of proven merit.
2. Lots of experience, literature etc exists.
3. Several easy-to-use, freely accessible, well-tested 

implementations are available (libsvm, svmlite
etc.)


