
A Polygonal Approximation to Direct Scalar Volume Renderin g

Peter Shirley

	

Allan Tuchman t

Center for Superconiputiug Research and Developmen t

305 Talbot La b

University of Illinoi s

Urbana, Illinois 6180 1

Abstrac t

One method of directly rendering a three-dimensional vol-
ume of scalar data is to project each cell in a volume ont o

the screen . Rasterizing a volume cell is more complex tha n

rasterizing a polygon . A method is presented that approx-
imates tetrahedral volume cells with hardware renderabl e

transparent triangles . This method produces results wliiel i
are visually similar to more exact methods for scalar volum e

rendering, but. is faster and has smaller memory require-
ments . The method is best suited for display of smoot hly-
changing data .

CR. Categories and Subject Descriptors : 1 .3 .0 [Com-

puter Graphics] : General ; I .3 .5 [Computer Graphics] : Com-

putational Geometry and Object Modeling .

Additional Key Words and Phrases : A ' oluHis' rend(i

ing, scientific visualization .

1 Introduction

Display of three-dimensional scalar volumes has recently be-

come an active area of research . A scalar volume is describe d

by some function f (:r, y, z) defined over some region 1? o f

three-dimensional space. In many scientific applications . I ?
will be some fairly simple region such as a cube or defot tile d

cube, and f will be defined at a finite set of points wit In n

I?, with an interpolation function filling in the gaps ht twit(n

points . In many applications . such as those that employ fi-

nite element techniques, R will he morn- complex . e .g . th e

interior of a mechanical part .

"Cu rrent Address : Department of Computer Science, land -
ley 1-Tall, Indiana University, Bloomington, IN)7-105 . Entail :
sit irley©cs .indiana .edu .

l Email : tuchman©csrd .uiuc .edu .

Permission to cop} without fee all or part of this material is granted provided that the copie s
are not made or distributed for direct commercial advantage, the ACM copyright notice and th e
tide of the publication and its date appear, and notice is given that copying is by permission
of the Association for Computing Machinery . To copy otherwise, or or republish, requires a fee
and/or specific permission .
01990 ACM 0-89791-417- 1/90/0012/00635I .SO

The ntost intuitive strategy for displaying f is to choose som e

particular value k and display all points where f (z, y, z) = k .

For centinnons f this will yield a set. of well defined iso-
rolic surfaces or i .sosurfaces[LC87] . Another method, th e
method of interest in this paper, is t.o display f as a three-
dilnensional cloud . This idea of displaying volumes as cloud s

is conrnronly called direct tn olurne rendering[Sab88, U1(88] .

To generate directly rendered images of f, two basic meth-
ods have been used : ray tracing[Bli82, K1184, Lev88, Sab88 ,
f' N88, SN89] and direct projection[FGR85, LGLD86, UK88 ,
DC1188, AVes90] . Upson and Keeler discuss the relative mer-
its of ray tracing and direct cell projection in their V-buffe r

paper[UK88] . In ray tracing, viewing rays are sent through
each pixel and integrated through the volume . In direct pro-
jection, each cell of the volume is projected onto the screen .

Because each cell is partially transparent, a painter's dept h

ordering algoritlun is used for direct projection . Unfortu-

natelVy . current graphics workstations do not support sca n

conversion of volumetric primatives .

Kaufman describes a hardware design that scan converts vol-
ume psintativcs into a three dimensional grid, and then per -
forms ray tracing to produce an image[Kau87] . Kaufman' s
design has the advantage of implicitly correct depth order-
ing, so that. unstructured grids may be rendered, and th e
further advantage that curvilinear cells are approximated by
tricuhie paranict .ric volumes rather than polyhedrons, bu t
such a system is not currently commercially available .

Ilihl,ard and 5antck used parallel stacks of transparen t
pol)-gontal sheets to approximate volume cells, but thei r
method is a 'quick and dirty' way to get pictures, and the y
reported noticeable errors for off normal viewpoints[1IS89] .

In this paper, we present, the Projected Tetrahedra (PT) al-
gorithm, a method of approximating directly projected vol-
ume cells with sets of partially transparent polygons tha t
can then be rendered relatively quickly on a graphics work -
station . These polygonal sets are recalculated for each ne w
viewpoint, but a-re a more accurate approximation to direc t
projection volume than IIibbard and Santek's view indepen-
dent technique .

Computer Graphics • Volume 24 • Number 5 • November 1990/63

2 Algorithm

The Projected Tet,rahedra algorithm operates with any se t
of three-dimensional data that, has been tetrahedralal.ed, th e
three-dimensional analogue of triangulated data in the plane .
Since a large class of data is sampled or computed on a lattic e
of six-sided cells or cubes, we include this decomposition i n
our description. The tetrahedra are ultimately described a s
partially transparent, triangular elements for hardware ren-
dering .

We chose to begin with tetrahedra both to demonstrate th e
high-quality images that can be produced as well as to ac-
commodate volumes more general than rectilinear grids .

The algorithm proceeds as follows :

1. Decompose the volume into tetrahedral cells with val-
ues of f stored at each of the four vertices . Inside eac h
tetrahedron, f is assumed to be a linear combination o f
the vertex values (Section 2 .1) .

2. Classify each tetrahedron according to its projecte d
profile relative to a viewpoint (Section 2 .2) .

3. Find the positions of the tetrahedra vertices afte r
the perspective transformation has been applied (Sec-
tion 2 .3) .

4. Decompose projections of the tetrahedra into triangle s
(Section 2 .4) .

5. Find color and opacity values for the triangle vertice s
using ray integration in the original world coordinate s
(Section 2 .5) .

6. Scan convert the triangles on a graphics workstatio n
(Section 2 .6) .

The idea of Projected Tetrahedra is that the image com-
posed of the triangles drawn in the last, step will he simila r
in appearance to a full direct volume rendering of' the in -
put tetrahedra . Because the triangles are semi-transparent. ,
they must either be rendered in depth order, or an en-
hanced frame buffer such as the A-buffer[Car8i] must b e
used . Using an A-buffer may not, be feasible for large vol-
umes where each pixel might have hundreds of overlappin g
transparent polygons . Depth ordering for rectilinear grid s
is discussed by Frieder et al .[FGR85] and by Upson an d
Keeler[UK88], and for non-rectilinear grids is discussed h t
Williams and Shirley[WS90] and Max et . al .[MlIC90] . t!n-
fortunately, a non-rectilinear mesh, even if its boundary i s
convex, may have cycles that make a correct depth orderin g
impossible[WS90] . The frequency of such cycles in compu-
tational meshes is unknown .

Throughout our discussion it is assumed that a perspectiv e
projection is used . An orthographic projection can be sub-
stituted by modifying step 2 . Instead of using the viewpoint .
for classification, each face must be classified from a poin t
on the view plane. This point . can be the orthographic pro-
jection of any vertex on that face .

Figure I Decomposition of a cube into five tetrahedr a

2 .1 Decomposition into Tetrahedra

If the volume is rectilinear or curvilinear, then each rectilin-
ear or curvilinear cell must be partitioned into tetrahedra l
elements with an original data point at each vertex . Fig-
ure 1 shows the decomposition of a cube into 5 tetrahedra,
the smallest number of tetrahedra possible . This decom-
position applies t,o any curvilinear cell (cube deformation s
without. self intersections) . There are only two rotational
states of this decomposition . If two adjacent curvilinea r
cells are to he subdivided in this way, care must be take n
to avoid the cracking problem, so that every point will b e
u eaaclhl one tetrahedron . This problem is similar to th e
Iwo-dimensional cracking problem encountered when splin e
surfaces are polygonalized . Problems can occur if the fou r
vertices on a face of a six sided cell are not coplanar in a
curvilinear mesh . In Figure 2, two curvilinear cells share
a boundary surface which is not planer . If this surface i s
approximated by two triangles, then there are two possibl e
options for which triangles are used, as shown on the bot-
tom of Ilie figure . The same pair of triangles must be use d
by each of the cells or cracking (an overlap or gap betwee n
cells) will occur . This implies that adjacent cells must us e
opposite rotational states of the decomposition shown in Fig-
ure 1 . This will produce a three-dimensional checkerboar d
pattern of decomposition, with alternating rotational states ,
and thus no cracking can occur .

2 .2 Classification

A tetrahedron may have any of four silhouettes depending o n
the viewpoint and the orientation of the tetrahedron . Sinc e
the goal is to approximate this volume element with trian-
gles, we first classify the tetrahedron based on its projecte d
shape .

	

Figure 3 enumerates the four possible projecte d

64/Computer Graphics • Volume 24 • Number 5 • November 1990

Figure 3 : Classification of Tetrahedra Projection s

2 .3 Projection

4 vertices on face are not coplane r

option 1

	

option 2

class
+b

	

-clas
s — + 0

3 b

class 2

	

class 4
+

	

+ - 0 0

class l a
+ + - -

class 3 a

Figure 2 : Two adjacent curvilinear cells sharing a HOn-
planer boundary should have the same polygonalization o f
the boundary to avoid the three-dimensional cracking prob-
lem .

shapes arising from six possible cases . We note that each
case can be distinguished by examining the surface norma l
vectors of each face and comparing them with the viewer' s
eye position or viewpoint . We only care whether the aul fac e
normal points toward, points away from, or is perpendicula r
to the view vector, so we use the notation ' + ' , • or '0 t o

mark each face . Classes la and lb have the same shape .

but in one case (la) the eye looks directly at three laces an d
away from one, so is marked '+++-', whereas in the othe r
(1b), three faces are not visible to the eye and it is marke d
---+' . The number of ', '-' and '0' faces are counted an d
these values used as a table index to classify each tetrahe-
dron into one of the 6 classes shown in Figure 3 .

Clearly, classes 3 and 4 are degeneracies class 1 or class 2 . W e
treat them as separate since they are easy to identify durin g
this classification step and less efficient to test for later . li v
doing so we are also able to avoid generating clegc nc rat e

polygons .

In some cases, the surface normal ntav not be intntediatel y
available or its direction may he ambiguous (sinc(' each face
will have two opposing normal vectors) . Therefore we use
the plane equation F for each face which is directly ;ivailahl e
from the 3 vertices that make up the plane . If tettahedro n
T is defined by vertices P i , P2 , P3 , and then find the
equation of plane P I P2 P3 . If F(c,rr/c) is zero, then the eye i s
collinear with the plane and allows that face to he marked

`0' . If non-zero, the value of F(P.i) is computed . If Ibis valv e
has the same sign as the h'(eye), then the plane points. awrly .
otherwise it points toward the view point

The tetr ahedra must, be decomposed into triangles, i n
essence t riangulating the projection of the tetrahedron . To
do this we define the transformation from the 3-dimensional
viewing frustruni to a 3-dimensional rectangular paral-
lelepiped as a mapping from world coordinates to perspectiv e
coordinates . For an orthographic projection this transfor-
mation is the identity . It preserves the relative distance o f
points along the axis of the viewing coordinate system whic h
is aligned with the view direction vector .

It is easier to transform each tetrahedron to the perspec-
tive (or orthographic) viewing coordinate system and the n
intersect 2-dimensional lutes (formed by discarding the Z
coordinate) than to do similar calculations in the origina l
world coordinate system . Also, this transformation must b e
perforated anyway .

The viewing transformation is a simple one composed of a
translation to the origin, a rotation from the world coor-
dinate system to the viewing coordinates, and an optiona l
perspective transformation . The viewing transformation i s
applied to each vertex of the tetrahedron .

In this step and the decomposition step described in th e
nest section, bout the viewing matrix and its inverse ar e
needed . The matrices that perform these transformation s
are described in the Appendix of this paper .

2 .4 Decomposition into Tr iangles

Each projected tetrahedron is decomposed into one to fou r
triangles . The projection may be used to find the coordi-
nates of each triangle, as shown in Figure 4 .

For each triangle . the tetrahedron has zero thickness (an d
t hc'reforc opacity) around its outline . The maximum bright-
ness and opacity occur where the tetrahedron is thickest .

l ' his thickest point and its attributes must be computed . In

Computer Graphics • Volume 24 • Number 5 • November 1990/65

v
i0

3 triangles

P B

Figure 5 : Example of Class 1 Decomposition .

Triangle Decompositio n

4 triangles

2 triangles

Figure 6 : Example of Class 2 Decomposition .

l

triangl e

Figure 4 : Decomposition of Projected Tetrahedra into Tri-
angle s

class 4, the point is just the original two vertices collinea r
with the view point . In classes 2 and 3, a line intersection i s
performed, and in class 1 a bilinear interpolation of the nea r
or far point on the opposite face is used . In each case, th e
intersection point is mapped by the inverse viewing trans -
formation, V –1 , to find the resulting decomposed triangl e

vertices . The thickness of the tetrahedron is determined at.
this intersection point by the Euclidean distance formula .
The opacity at this vertex is obtained from the thickness o f
the tetrahedron and the scalar values at the vertex and th e
intersection point. .

For example, a class i projection has one interior point . P r
and three boundary points, P,4 , Pu, and Pc' (all in the per-
spective coordinate system) . As shown iu Figure 5, the vec-
tor from the eye through Pr pierces (lte plane P,. 1 P BPc a t

point PT . The and y coordinates of PT are the same a s

those of Pr . A bilinear interpolation is used to find th e

coordinate . We defin e

PT =PA + U(PB — P21) + t'(P,-- P :4)

and solve this vector equation in .s and y for the parameter s

v-, v . From u and a we can solve for both the .t.-coordinate

of PT and the interpolated value of the the scalar function .
PT is then mapped via V 1 to world coordinates and it s
distance from V –1 Pi (the untransformed Pi) is computed .
Figure 6 shows a ray passing through a class 2 tetrahedron .
In this case we need to find PF , the point on the front-facin g
edge . and Pty . the point Oil the back facing edge .

2 .5 Ray Integration

We next describe the rules for ray integration at the thickes t
point of a tetrahedron . We assume that linear interpolatio n
of the brightness and opacity across each triangle decom-
posed from a tetrahedron is acceptable, so a ray integratio n
is needed only at the thickest point . This approximation i s
reasonable for tetrahedra with small opacity .

I'o develop Ilie rules for direct volume rendering, we assum e
a density volume scat.terplot. model that uses particles o f
cross sectional area A , . We also assume that for each scala r
value p that . f might take, there is a corresponding particl e
number density :Ac r,(p), and a corresponding particle colo r
Ct,(p) . The particle color C5 (p) is assumed to be the sam e
for all viewing angles . Typically, N5 and C, are stored a s
tables .

To determine how the small particles change the color see n
along a viewing ray, consider the color of the ray as a functio n
C(I) of t he distance along the ray, where t increases as w e
advance along the ray toward the viewer . To generate a
differential equation for how the particles interact with a

Tetrahedron Projection

classes la & l b

class 2

f C
classes 3a & 3 b

class 4

66/Computer Graphics • Volume 24 • Number 5 • November 1990

ray, consider the change in color that occurs as we advanc e
a small distance At toward the viewer :

C(t + At) = (1 — N 5(t) A 0 ,At) C (t) -1- .N,,(t)A1,A/Ci,(I) (1)

old

	

new

The subexpression marked as old is the color at t attenu-
ated by the opaque particles between 1. and t + At . The
amount of attenuation N,(/)'lAt is simply the fraction o f
area that is covered by particles as opposed to background .
The subexpression mew' is the color contributed by the par-
ticles between t and t + At . Taking At to be differentia l
yields :

dC(t) +
Np(t)Ap [C(t.)

	

C,(t)] = 0
d t

This differential equation cannot be solved in closed form
for arbitrary Np and C . Ilowever, if we assume constan t
particle color Co, a known value for C(to), and tha t
varies linearly between known values No and V at to and
t i , we can solve for C(t t) :

c(t i) = C(to)e — .tyeei—eo)'vo+
:v

+

Co 1 — c. :t,,Uc—col

	

-

We can view this equation as stating that the region alon g
the ray between to and t i has a color C = Co and an opacit y
a defined by :

a =

	

— e A r(c t ~o)'o+n' i
-

If even less accuracy is acceptable, then Equation 1 can h e
used directly for alpha :

No + :V
a = A,,(t i — to)

	

2

Approximating Co by the average particle color between t o
and t1, color can be calculated as :

C(It) = aC,,(to)-I-Cp(ti)
+(1 —cr)C (t o)2

Note that this is just alpha composit .ing as described by

Porter and Duff[PD84] (it. is the atop operation in their I(N

minology) . The preceding discussion shows the motivatio n

for the use of alpha . composititig in direct. volume• rendering .

2.6 Rendering

Once the triangles are generated, with each vertex havin g
an associated color C and opacity a, they can be rendere d
back to front in painter's algorithm order with C-' and a
being linearly interpolated in between the vertices (simila r
to Gouraud shading) . The opacity at the zero thickness

vertices will be zero, but the color will be determined fro m
the color function S(p) discussed in Section 2 .5 . Each pixe l
value in the frame buffer will change according to thi • rule• :

C„, , : = a-C.' + (1 — a) Csc <t

where C,,,,,,, is the new pixel color, C is the interpolated colo r
of the polygon at that pixel, a is the interpolated opacity ,
and where Cor d is the current pixel value, originally just th e
background color .

Since this process will generate a large number of adjacen t
partially transparent polygons, the graphics engine should
be of a type that will not duplicate edges for adjacent poly-
gons, or visual artifacts may occur at every shared edge .

Another possible problem can arise when the frame buffe r
uses one byte to store a . If a is reasonable small, precision
errors could greatly damage image quality.

3 Result s

[he Projected Tetrahedra algorithm has been implemented
n C and tuns on several different workstations . With an
nitial version of the program running on a Sun 4/490 work -

station we process about 3900 tetrahedra per second int o
triangles . The number of triangles created varies with th e
view point, but is close to 13,000 triangles per second . Fo r
our timings we include the time to input the tetrahedra ,
since they are likely to be produced in the proper back-to-
front order by another program . We do not include the tim e
to output. the triangles since we will generally pass them
directly to a rendering library .

A medium sized volume from a simulation of a binary sta r
formation is defined on a rectilinear grid of 33 x 33 x 1 5
nodes, or :12 x 32 x 11 cells, giving 14,336 voxels or 71,68 0
tetrahedra . We used this volume on a Sun 4/490 (Sparc) t o
create our color image . Color Plate 1 (shown in grey leve l
in Figure 7) compares the Projected Tetrahedra algorith m
to more exact volume rendering . Both images in the colo r
figure (and grey version) were rendered at 256 x 192 pixe l
resolution . The upper image in Figure 7 was generated wit h
the P'1 method in about 19 seconds plus rendering time, in-
cluding input and all steps described in Sections 2 .1 throug h
2 .5 . The tinting is independent of image size . The lower
mage in Figure 7 was rendered on the same computer i n

ahont 7 minutes with volumetric ray tracing program usin g
techniques similar to those in [UK88] . The ray traced imag e
time is directly proportional to the number of pixels in th e
resulting image . The MPDO algoritlrm[WS90] was used t o
generate the back to front. ordering of tetrahedra for the PT
version . This step took approximately 3 seconds includin g
output of the tetrahedra .

Also note the background white lines equally spaced bot h
horizontally and vertically in Figure 7 . The image buffe r
was initialized to this pattern of lines on a black background .
The lines accentuate the transparent components of the ren-
dered image . This is a computationally free way to highligh t
the areas of low opacity but high brightness and to distin-
guish them from areas of high opacity but low brightness .
The initial pattern can be defined procedurally or by loadin g
a pre-computed image .

Computer Graphics • Volume 24 • Number 5 • November 1990/67

; "

	

'
lo

an
411111
ailn
41II

mosmaumssinimumumsamsmisisem.mmain .m .mmil

Figure 7: Binary Star Formation Simulation . Top: ray
traced image . Bottom : Projected Tetrahedra imag e

Editor's note : This image is reproduced in color onfront corer .

4 Future Wor k

It is sometimes useful to embed opaque geometric primitive s
in the volume . We have found it. helpful for visual interpreta-
tion to place grid ba rs within a ray traced cloud-like volume .
Grid bars arc long thin opaque cylinders or rectangular par-
allelepipeds embedded in a volume . A few bars are usually
defined evenly spaced along each axis of the cartesian coor-
dinate system, forming a hounding box of the original grid .
The images would provide more visual cues than those ob-
tained using the background grid described in Section .i .

There are several examples of more important application s
for embedded opaque geometry prinritives . The geometri c
model of a wing or other structure may be embedded in a
volume computed by a computational fluid dynamics simu-
lation to aid visualization of the flow . Flow ribbons trackin g
a vector-valued function in the same region as the scala r
may be shown by calculating the ribbon paths and render-
ing these polygons in the volume[SP89] .

One possible way to combine the Projected Tetrahedra algo-
rithm with opaque surface primitives would be firs' to rende r
the opaque surfaces with a Z-huffer[hvf)PI190], and then t o
render each transparent polygon in depth order, omittin g
any contribution to a pixel if the z-value of the triangle a l
that pixel is deeper than the z-value stored in the Z-huller .
This would introduce additional error only for tetrahedr a
that contain surfaces .

Embedded transparent iso-surfaces are sometime useful .
Once the cells have been divided into tetrahedra, it woul d
be possible to extract isovalued surfaces in a nun rrer simi-
lar to the marching cubes algorithnt[LC87] . Such a marcA -

ing tetrahedra algorithm would gene rate three and four-sided
polygons tlra .t. could be rendered separately or embedded i n
the volume. The surfaces can be rendered with any degre e
of transparency .

The greatest promise of the Projected Tetrahedra techniqu e
is its potential for faster volume rendering useful in preview-
ers and interactive systems . As the rendering can be don e
in hardware, the bottlenecks will be either the conversion o f
volume elements to polygonal approximations, described i n
this paper, or the generation of the tetrahedra in a back-to-
front order . Our current implementation certainly canno t
generate triangles fast enough to keep up with a 100,000
polygon per second graphics workstation, but is reasonabl y
fast and is linear in the number of input tetrahedra .

5 Conclusion

The Projected Tetrahedra algorithm presented in this pape r
approximates the volume rendering of tetrahedral cells b y
hardware renderable partially transparent triangles . This
approximation is accomplished by finding triangles with th e
same silhouette as a tetrahedron, and linearly interpolatin g
color and opacity on the triangles from the fully transparen t
silhouette edges to the values at the thickest part of the
tetrahedron, as seen by the viewer .

The strengths of the method are that the triangles can b e
rendered in hardware, that perspective or orthographic view-
ing can be used, and that unstructured mesh geometry ca n
be used provided that a painter ' s depth ordering is known
(or an A-buffer with sufficient levels of transparency is avail -
able) . The voxels and thus the tetrahedra can be processe d
independently, so the Projected Tetrahedra algorithm may
be implemented in parallel . This algorithm also has ver y
small memory requirements since the only data needed ar e
for the tetrahedron currently being processed .

The weaknesses of the Projected Tetrahedra method includ e
the restriction to tetrahedral cells and possible precision
problems in the scan conversion . In Section 4 we mentione d
that conventional geometric primitives could be embedde d
in the volume with an appropriate depth sort . Ever with
such a sort there would be visibility errors wherever the ge-
ometric primitive intersected a volume element . This woul d
at hest limit the number and complexity of embedded prim-
itivices . The visibility errors would be more pronounced tha n
the other approximation artifacts introduced by the PT al-
gorithm . The primary approximation used in the Projecte d
"Tetrahedra method is the low particle number density as -
sit rn pt in ii of the ray integration section (which implies th e
linear interpolation used on the triangles) . This approxi-
mation can cause problems irr datasets where the particl e
density is high . An example of such a high particle den-
sity dataset is the medical dataset used by Levoy[Lev88] ,
where pseudo-surfaces are generated . The PT method i s
also suspect . for very large datasets, because one of the pri-
mary reasons for generating the triangles is to avoid havin g
to perform ray integration at every pixel covered by a tetra-
hedron . Por very large datasets most tetrahedra would cove r
at most a few pixels, so the triangles would not yield muc h
time savings .

--

	

MIMI

III

nmNINIKO

n lil~~ll~~ ;l '

68/Computer Graphics • Volume 24 • Number 5 • November 1990

The limitations above seem to indicate that the Projecte d
Tetrahedra method presented in this paper is primarily use-
ful for medium size datasets (on the order of millions of cell s
or fewer) that have reasonably smooth variations (e .g . no
surface-bone interfaces) . Such data include man) fluid flow
and stress analysis calculations . With hardware Triangle ren-
dering this algorithm for direct . volume rendering should als o
find a place in interactive volume visualization environments .

6 Acknowledgement s

We are very grateful to Peter Williams for developing a n
algorithm for producing a back-to-front traversal of an arbi-
trary three-dimensional volume of data . Thanks also to Den-
nis Gannon and Henry Neeman for their help and encourage-
ment . We would like to thank Richard Dnrison, Departmen t
of Astronomy, Indiana University, Bloomington for the sta r
simulation data . We would also like to thank the anony-
mous reviewer for the careful reading of this paper and th e
suggestions for improvement . This work was partially sup -
ported by the Air Force Office of Scientific Research Gran t
AFOSR.-90-0044 .

Appendix : Viewing Matrices

If u,, v, and a are the normalized orthogonal basis vectors fo r
the viewing coordinate system in (z•, y, z) world coordinates ,
then the rotation matrix is straightforward to compute . Th e
perspective transformation is not a projection t.o a two -
dimensional plane, but. to :3-dimensions . Thus the itiyers e
transformation can be applied to the intersection points w e
compute during the triangle decomposition . The projectio n
matrix P (below) transforms the viewing frustrum aligned
with the z-axis to a rectangular parallelepiped . We late r
discard the z component of the transformed coordinate t o
project to the view plane. The three matrices are deter-
mined from initial view data and are multiplied to produc e
a viewing transformation matrix as follows :

	

1

	

0

	

(I

	

0

	

1

	

0

	

0

	

(1

	

1

	

- .1' ,y,

	

— , .,i-

	

a,

	

c ,„

	

toy

	

t l

	

'a y

	

t'y

	

W,3

	

0

	

v,

	

n,

	

tn :

	

(1

	

0

	

0

	

0

	

1 _
1

	

0

	

0

	

0 -

	

0

	

1

	

0

	

0

	

0

	

0

	

(n.-1-f)t

	

t

	

0

	

it

	

—fitt

	

It -

where n is the distance from the eye to the near clippin g
plane, f is the distance to the far clipping plane, t is th e
field of view, and t = tau(0)/2 . The viewing Iransformation

is the product of these matrices

V = TRP

The inverse of this matrix is needed and is easily determined
also : t he inverse of the orthogonal matrix R is its transpose
and P is composed of a 2 x 2 identity and a 2 x 2 block .

1

	

0

	

0

	

0
0

	

1

	

0

	

0
0

	

0

	

1

	

0

Reference s

[131i82] James F . Blinn . Light reflection functions fo r
simulation of clouds and dusty surfaces . Com-
puter Graphics, 16(3) :21-30, July 1982 . ACM
Siggraph '82 Conference Proceedings .

[Car8I] Loren Carpenter . The A-buffer, an antialiase d
hidden surface method . Computer Graphics ,
18(3) :103-108, July 1984 . ACM Siggraph '8 4
Conference Proceedings .

[DCII88] Robert A . Drebin, Loren Carpenter, and Pa t
IIanrahan. Volume rendering . Computer Graph-
ics, 22(4) :65-74, July 1988 . ACM Siggraph '8 8
Conference Proceedings .

[FGR85] Gideon Frieder, Dan Gordon, and Anthony
Reynolds . Back-to-front display of voxel-base d
objects . IEEE Computer Graphics and Appli-
co tt o n .s . 5(l) :52-60, January 1985 .

[Fvl)1'llst0] .lames D . Foley, Andries van Dam, Steven K .
Feiner, and John F . Hughes . Computer Graph-
a's : Principles and Practice . Addison-Wesley ,
Reading, MA, second edition, 1990 .

[I1S89] William Hibbard and David Santek . Interac-
tivity is the key . In Proceedings of the Chape l
(fill Workshop on Volume Visualization, pages
39-43, May 1989 .

[Kau83]

	

Arie Kaufman . Efficient algorithms for 3d scan -
conversion of parametric curves, surfaces, an d
volumes . Computer Graphics, 21(4) :171-179 ,
July 1987 . ACM Siggraph '87 Conference Pro-
ceedings .

The inverse viewing transformation is the produc t
matrices

= P -' R-' T -'

of thes e

T =

R. =

P =

R 1 =

%eye

	

Yee

	

Zeye

	

1
ill

	

uy

	

uz

	

0
U ,

	

vy

	

v,

	

0
4Ur

	

2Uy

	

tUz

	

0
0

	

0

	

0

	

1 _
1

	

0

	

0

	

0
0

	

1

	

0

	

0
0 0

	

0

	

-1/fn t
0 0

	

1/t

	

(n-{- f)t/fnt 2

Computer Graphics • Volume 24 • Number 5 • November 1990/69

[h184] James T . Kajiya and I3 . P. Von Ilerzen . Ray

tracing volume densities . Computer Graphics ,
I8(4) :165-174, July 1984 . ACM Siggraph 8 1

Conference Proceedings .

[LC87]

	

William E. Lorensen and Harvey R . ('line .

Marching cubes : A high resolution 3d surface

construction algorithm . Computer (;ropinr ., ,

21(4) :1((3-169, July 1987 . AC\I Siggrapli '8 7
Conference Proceedings .

[Lev88] Mark Levoy . Display of surfaces from volume
data . IEEE Computer Graphics and pplicn-
tions, 8(3) :29-37, 1988 .

[LGLD86] Reiner Lenz, Bjorn Gudnumdsson, Bjorn Lind-
skog, and Per Danielsson . Display of densit y

volumes . IEEE Computer Graphics and Appli-
cations, 6(7), July 1986 .

[MHC90] Nelson Max, Pat. Ilanrahaat, and Roger Crawl's .
Area and volume cOhercuce for efficient visual-
ization of 3d scalar functions . (.'oucpalrr Goy/l-

ies, 24(5), December 1990 . San Diego Volum e

Visualization Conference Proceedings .

[PD84] Thomas Porter and Tom Duff . Composiling dig-

ital images . Computer Graphics, 18(4) :253 2(1(1 ,

July 1984 . ACM Siggraph ' 84 Conference Pro-

ceedings .

[Sab88] Paolo Sabella . A rendering algorithm for vi-
sualizing 3d scalar fields . Computer Craphir< ,

22(4) :51-58, July 1988 . AC\1 Siggraph ' 88 ('on-

ference Proceedings .

[SN89] Peter Shirley and Henry Necntan . Volume v eal-

alizat.ion at the Center 1or Supercontpnliug Re -
search and Development . In Proccrrlinq_, of i/o

Chapel Ilili Work_,hop on Volume 1 i .,uoli . oliou ,
pages 17-20, May 1989 .

[UK88] Craig Upson and Micheal Keeler . \ ' -buffer :
Visible volume rendering . Computer Graphics ,
22(4) :59-64, July 1988 . ACM Siggraph '88 Con-
ference Proceedings .

[Wes9O] Lee Westover . Footprint evaluation for volum e

rendering . Computer Graphics, 24(1) :367-376 ,

August 1990 . ACM Siggraph ' 90 Conference.

Proceedings .

[\WS90] Peter L . Williams and Peter Shirley . Ana pri-
ori depth ordering algorithm liar meshed polyhe-
dra . Technical Report 1(118, Center lot Super-
computing Research and Development ., Univer-

sity of Illinois at Urbana-Champaign, Septem-
ber 1990 .

70/Computer Graphics • Volume 24 • Number 5 • November 1990

