
Lagrangian-Eulerian Advection
for Unsteady Flow Visualization

Bruno Jobard, Gordon Erlebacher, and M. Yousuff Hussaini

School of Computational Science and Information Technology
Florida State University, USA

Abstract
In this paper, we propose a new technique to visualize dense rep-
resentations of time-dependent vector fields based on a Lagran-
gian-Eulerian Advection (LEA) scheme. The algorithm produces
animations with high spatio-temporal correlation at interactive
rates. With this technique, every still frame depicts the instanta-
neous structure of the flow, whereas an animated sequence of
frames reveals the motion a dense collection of particles would
take when released into the flow. The simplicity of both the
resulting data structures and the implementation suggest that LEA
could become a useful component of any scientific visualization
toolkit concerned with the display of unsteady flows.

1. Introduction
Traditionally, unsteady flow fields are visualized as a collection of
pathlines or streaklines that originate from user-defined seed
points [7,8]. More recently, several authors have developed tech-
niques based on dense representations of the flow to maximize
information content [3,5,6,10-12]. The fundamental challenge
faced by this class of algorithms is to produce smooth animations
with good spatial and temporal correlation.

In this paper, we propose a new visualization algorithm based on
dense representations of time-dependent vector fields. The
method combines the advantages of the Lagrangian and Eulerian
formalisms. A dense collection of particles is integrated backward
in time (Lagrangian step), while the color distribution of the im-
age pixels are updated in place (Eulerian step). The dynamic data
structures normally required to track individual particles, pathli-
nes, or streaklines are no longer necessary since all information is
now stored in a few two-dimensional arrays. The combination of
Lagrangian and Eulerian updates is repeated at every iteration. A
single time step is executed as a sequence of identical operations
over all array elements. By its very nature, the algorithm takes
advantage of spatial locality and instruction pipelining and can
generate animations at interactive frame rates.

The rest of the paper is organized as follows. Section 2 gives an
overview of related work. The general approach is described in
Section 3 while the algorithm is examined in Section 4. Post-
processing options are proposed in Section 5. Timing results are
presented in Section 6. Conclusions are drawn in Section 7.

2. Related Work
Several techniques have been advanced to produce dense repre-
sentations of unsteady vector fields. Best known is perhaps

UFLIC (Unsteady Flow LIC) developed by Shen [12], and based
on the Line Integral Convolution (LIC) technique [2]. The algo-
rithm achieves good spatial and temporal correlation. However,
the images are difficult to interpret: the paths are blurred in re-
gions of rapid change of direction, and are thickest where the flow
is almost uniform. The low performance of the algorithm is ex-
plained by the large number of particles (three to five times the
number of pixels in the image) to process for each animation
frame.

The spot noise technique, initially developed for the visualization
of steady vector fields, has a natural extension to unsteady flows
[3]. A sufficiently large collection of elliptic spots is chosen to
entirely cover an image of the physical domain. The position of
these spots is integrated along the flow, bent along the local path-
line or streamline, and finally blended into the animation frame.
The rendering speed of the algorithm can be increased by decreas-
ing the number of spots in the image. The control of pixel cover-
age is done by assigning a fixed lifespan to each spot.

Max and Becker [10] propose a texture-based algorithm to repre-
sent steady and unsteady flow fields. The basic idea is to advect a
texture along the flow either by advecting the vertices of a trian-
gular mesh or by integrating the texture coordinates associated
with each triangle backward in time. When texture coordinates or
particles leave the physical domain, an external velocity field is
linearly extrapolated from the boundary. This technique attains
interactive frame rates by controlling the resolution of the under-
lying mesh.

A technique to display streaklines was developed by Rumpf and
Becker [11]. They precompute a two-dimensional noise texture
whose coordinates represent time and a boundary Lagrangian
coordinate. Particles at any point in space and time that originate
from an inflow boundary are mapped back to a point in this tex-
ture.

More recently, Jobard et al. [5,6] extend the work of Heidrich et
al. [4] to animate unsteady two-dimensional vector fields. The
algorithm relies heavily on extensions to OpenGL proposed by
SGI, in particular, pixel textures, additive and subtractive blend-
ing, and color transformation matrices. They pay particular atten-
tion to the flow entering and leaving the physical domain, leading
to smooth animations of arbitrary duration. Excessive discretiza-
tion errors associated with 12 bit textures are addressed by a tiling
mechanism [5]. Unfortunately, the graphics hardware extension
this algorithm relies on most, the pixel texture extension, was not
adopted by other graphics card manufacturers. As a result, the
algorithm only runs on the SGI Maximum Impact and the SGI
Octane with the MXE graphics card.

3. Lagrangian- Eulerian Approach
We wish to track a collection of particles ip , along a prescribed
time-dependent velocity field, that densely covers a rectangular
region. If we assign a property � �iP p to the thi particle ip , the
property remains constant as the particle follows its pathline. At
any given instant t , each spatial location x has an associated
particle, labeled � �tp x . One expresses that the particle property
is invariant along a pathline by

� �� �

� � � �� � 0
t

t t
P p

P p
t

w
� ��

w

x
v x x (1)

The property attached to each particle takes on the role of a pas-
sive scalar. Its value is therefore not affected by diffusion or
source terms (associated with chemical or other processes). This
equation has two interpretations. In the first, the trajectory of a
single particle, denoted by � �t px where p tags the particle,
satisfies

 � �
()

,
t

t td p
p

dt

x
v x (2)

In this Lagrangian approach, the trajectory of each particle is
computed separately. The time evolution of a collection of parti-
cles is displayed by rendering each particle by a glyph (point,
texture spot [3], arrows). Except for recent work of Jobard et al.
[5,6], current time-dependent algorithms are all based on particle
tracking, e.g. [1,3,8,9,12]. While Lagrangian tracking is well
suited to the task of understanding how dense groups of particles
evolve in time, it suffers from several shortcomings. In regions of
flow convergence, particles may accumulate into small clusters
that follow almost identical trajectories, leaving regions of flow
divergence with a low density of particles. To maintain a dense
coverage of the domain, the data structures must support dynamic
insertion and deletion of particles [12], or track more particles
than needed [3], which decreases the efficiency of any implemen-
tation.

Alternatively, an Eulerian approach solves (1) directly. Particles
lose their identity. However, the particle property, viewed as a
field, is known for all time at any spatial coordinate. Unfortu-
nately, any explicit discretization of (1) is subject to a Courant
condition1, so that in practice, the numerical integration step is
limited to at most 1-2 cell widths. In turn, this imposes a maxi-
mum rate at which flow structures can evolve.

In our approach, we choose a hybrid solution. Between two suc-
cessive time steps, coordinates of a dense collection of particles
are updated with a Lagrangian scheme whereas the advection of
the particle property is achieved with an Eulerian method. At the
beginning of each iteration, a new dense collection of particles is
chosen and assigned the property computed at the end of the pre-
vious iteration. We refer to the hybrid nature of this approach as a
Lagrangian-Eulerian Advection (LEA) method.

To illustrate the idea, consider the advection of the bitmap image
shown in Figure 1a by a circular vector field centered at the lower

1 If the discrete time step exceeds some maximum value, severe

numerical instabilities result.

left corner of the image. With a pure Lagrangian scheme, a dense
collection of particles (one per pixel) is first assigned the color of
the corresponding underlying pixel. Each particle advects along
the vector field and deposits its color property in the correspond-
ing pixel in a new bitmap image. This technique does not ensure
that every pixel of the new image is updated. Indeed, holes usu-
ally appear in the resulting image (Figure 1b).

A better scheme considers each pixel of the new image as a parti-

cle whose position is integrated backward in time. The particle
position in the initial bitmap determines its color. There are no
longer any holes in the new image (Figure 1c). Repeating the
process at each iteration, any property can be advected while
maintaining a dense coverage of the domain.

The core of the advection process is thus the composition of two
basic operations: coordinate integration and property advection.

Given the position � � � �0 , ,i j i j x of each particle in the new
image, backward integration of Equation (2) over a time interval
h determines its position

 � � � � � �� �0

0

, , ,
h

h ti j i j i j dW W

W

�

� �

 � �x x v x (3)

at a previous time step. h is the integration step, � �,i jWx repre-
sents intermediary positions along the pathline passing through

� �,t i jx , and Wv is the vector field at time W .

An image of resolution W Hu , defined at a previous time t h� ,
is advected to time t through the indirection operation

 � �
� �� � � � � �, 0, 0,

,
user-specified value otherwise

t h h h
t i j W H

i j
� � � � � u°

 ®
°̄

I x x
I (4)

which allows the image at time t to be computed from the image
at any prior time t h� . This technique was used by Max[10].
However, instead of integrating back to the initial time to advect
the same initial texture[10], we choose h to be the interval be-
tween two successive displayed images and always advect the last
computed image. This minimizes the need to access coordinate
values outside the physical domain. Notice that at least a linear
interpolation of t h�I pixels at the positions h�x is necessary to
obtain an image of acceptable quality.

(a)

(b) (c)

(a)

(b) (c)

Figure 1. Rotation of bitmap image about the lower left
corner. (a) Original image, (b) Image rotated with La-
grangian scheme, (c) Image rotated with Eulerian scheme.

4. Algorithm
With our Lagrangian-Eulerian approach, a full per-pixel advec-
tion requires manipulating exactly W Hu particles. All informa-
tion concerning any particle is stored in two-dimensional arrays
with resolution W Hu at the corresponding location � �,i j .
Thus, we store the initial coordinates � �,x y of those particles in
two arrays � �,x i jC and � �,y i jC . Two arrays xcC and ycC contain
their x and y coordinates after integration. A first order integra-
tion method requires two arrays xV and yV that store the veloc-
ity field at the current time. Similarly to LIC, we choose to advect
noise images. Four noise arrays N , cN , aN and bN contain
respectively the noise to advect, two advected noise images, and
the final blended image.

Figure 2 shows a flowchart of the algorithm. After the initializa-
tion of the coordinate and noise arrays (Section 4.2), the coordi-
nates are integrated (Section 4.3) and the initial noise array N is
advected (Section 4.4). The first advected noise array, cN is then
prepared for the next iteration by subjecting it to a series of treat-
ments (left column in Figure 2). Care is first taken to ensure that
no spurious artifacts appear at boundaries where flow is entering
the domain (Section 4.5). This is followed by an optional masking
process to allow for non-rectangular domains (Section 4.6). A low
percentage of random noise is then injected into the flow to com-
pensate for the effects of pixel duplication and flow divergence
(Section 4.7). Finally, the coordinate arrays are reinitialized to
ready them for the next iteration (Section 4.8). The right column
in the flowchart describes the sequence of steps that transform the
second advected noise array aN into the final image. aN is first
accumulated into bN via a blending operation to create the nec-
essary spatio-temporal correlation (Section 4.9). Two optional
post-processing phases are then applied to bN before its final
display: a line integral convolution filter removes aliasing effects
(Section 5.1) and features of interest are emphasized via an opac-
ity mask (Section 5.2).

4.1 Notation
Array cell values are referenced by the notation � �,i jA with i
and j integers in ^ ` ^ `0,.., 1 0,.., 1W H� u � . We adopt the con-
vention that an array � �,x yA with real arguments is evaluated
from information in the four neighboring cells using bilinear in-
terpolation. A constant interpolation is explicitly noted
� �,x y« » « »¬ ¼ ¬ ¼A , where x« »¬ ¼ is the largest integer smaller than or

equal to x . To simplify the notation, array operations such as
 A B apply to the entire domain of (,)i j .

The indirection operation � � � � � �� �, , , ,i j r i j s i j A B C D , where
(,)i jC and (,)i jD lie in the range � �0, 1W � and � �0, 1H �

respectively and r and s are scalars, is denoted by
� �,r s A B C D .

4.2 Coordinate and Noise Initialization
We first initialize the coordinate arrays xC , yC and the noise
arrays N and bN . Coordinates are defined as

� � � �

� � � �

, rand 1

, rand 1

x

y

i j i

i j j

 �°
®

 �°̄

C

C
 (5)

where rand(1) is a real number in � �0,1 . The random offset dis-
tributes coordinates on a jitter grid to avoid regular patterns that
might otherwise appear during the first several steps of the advec-
tion. Note that the integer part of the coordinates identifies the
cell.

N is initialized with a two-valued noise function (0 or 1) to en-
sure maximum contrast and its values are copied into bN . Coor-
dinates and noise values are stored in floating point format to
ensure sufficient accuracy in the calculations.

4.3 Coordinate Integration
A first order discretization of Equation (3) is used to integrate the
particle coordinates. After discretization with a constant time step
h over the entire domain, (3) becomes

� � � �

� � � �

max

max

/ ,

/ ,

V V

V V

x x x W x H y

y y y W x H y

h V r r

h V r r

 c �
°
®

c �°̄

C C V C C

C C V C C
 (6)

where maxV is the maximum velocity magnitude in the whole
dataset, � �1 /

VW Vr W W � and � �1 /
VH Vr H H � for a vector

field resolution of VW by HW . The two scaling factors
VWr and

VHr ensure that the coordinates of the velocity arrays stay within
proper bounds.

The velocity arrays at the current time are linearly interpolated
between the two closest available vector fields. Therefore, h
represents the maximal possible displacement of any particle over
all iterations. The actual displacement of a particle is proportional
to the local velocity and is measured in units of cell widths.

A useful property of a first order formulation is that the velocity is
never required outside the physical domain. We have imple-
mented a second order discretization, but found no noticeable
effect due to the small extent of the spatio-temporal correlations
in the final display.

Initialization

Coordinate Integration

Edge Treatment

Arbitrary Domain

Noise Injection

Coordinate Re-Init.

Noise Blending

Post Processing

Display / Save

Noise Advection

cN aNwith with

Next
Iteration

Initialization

Coordinate Integration

Edge Treatment

Arbitrary Domain

Noise Injection

Coordinate Re-Init.

Noise Blending

Post Processing

Display / Save

Noise Advection

cN aNwith with

Next
Iteration

Figure 2. Flowchart of LEA algorithm.

4.4 Noise Advection
The advection of noise described by Equation (4) is applied twice
to N to produce two noise arrays cN and aN , one for advection,
one for display. cN is an internal noise array whose purpose is to
carry on the advection process and to re-initialize N for the next
iteration. To maintain a sufficiently high contrast in the advected
noise, cN is computed with a constant interpolation. Before cN
can be used in the next iteration, it must undergo a series of cor-
rections to account for edge effects, the presence of arbitrary do-
mains, and the deleterious consequences of flow divergence.

aN serves to create the current animation frame and no longer
participates in the noise advection. It is computed using linear
interpolation of N to reduce spatial aliasing effects. aN is then
blended into bN (Section 4.9).

A straightforward implementation of Equation (4) leads to condi-
tional expressions to handle the cases when

 � � � �� �, , ,x yi j i jc c c x C C

is exterior to the physical domain. A more efficient implemen-
tation eliminates the need to test for boundary conditions by sur-
rounding N and cN with a buffer zone of constant width. From
equation (6), cx refers to cells located at a maximum distance of
b h ª º« » cell width away from the array borders. An expanded
noise array of size � � � �2 2W b H b� u � is therefore sufficient to
ensure that out of bound array accesses do not occur (see Figure
3). The advected arrays cN and aN are computed according to

� � � � � �� �

� � � � � �� �

, , , ,

, , , ,

x y

a W x H y

i b j b i j b i j b

i j r i j b r i j b

 c c c« »� � « » � �¬ ¼° ¬ ¼
®

c c � �°̄

N N C C

N N C C
 (7)

for all � � ^ ` ^ `, 0,.., 1 0,.., 1i j W H� � u � , where � �1 /Wr W W �
and � �1 /Hr H H � . The two scaling factors Wr and Hr ensure a
properly constructed linear interpolation.

4.5 Edge Treatment
A recurring issue with texture advection that must be addressed is
the proper treatment of information flowing into the physical
domain. Within the context of this paper, we must determine the
user-specified value in Equation (4). To address this, we recall
that the advected image contains a two-valued random noise with
little or no spatial correlation. We take advantage of this property

to replace the user-specified value by a random value (0 or 1). At
each iteration, we simply store new random noise in the buffer
zone, at negligible cost.

At the next iteration, N will contain these values and some of
them will be advected to the interior of the physical domain by
Equation (7). Since random noise has no spatial correlation, the
advection of the surrounding buffer values into the interior region
of cN produces no visible artifacts.

To treat periodic flows in one or more directions, the noise values
are copied from an inner strip of width b along the interior edge
of cN onto the buffer zone at the opposite boundary. As a result,
particles leaving one side of the domain seamlessly reappear at its
opposite side.

4.6 Incoming Flow in Arbitrary Shaped
Domains

It often happens that the physical domain is non-rectangular or
contains interior regions where the flow is not defined (e.g. shores
and islands). Denote by B the boundaries interior to N that
delineates these regions. LEA handles this case with no modifica-
tion by simply setting the velocity to zero where it is not defined.
The stationary noise in these regions is hidden from the animation
frame by superimposing a semitransparent map that is opaque
where the flow is undefined. For example, the opaque regions of
this map might represent shorelines or islands (see right column
on color plate).

When the flow velocity normal to B is nonzero and points into
the physical domain, the advection of stationary noise values will
create noticeable artifacts in the form of streaks. This might hap-
pen if an underground flow, not visible in the display, emerges
into view at B . If necessary, we suppress these streaks with the
help of a pre-computed boolean mask (or alternatively a boolean
function) � �,i jM that determines whether or not the velocity
field is defined at (,)i j . � �,i jcN is then updated with random
noise where � �,i jM is false.

4.7 Noise Injection
In this Section, we propose a simple procedure to counteract a
duplication effect that occurs during the computation of cN in
Equation (7). Effectively, if particles in neighboring cells of cN
retrieve their property value from within the same cell of N , this
value will be duplicated in the corresponding cells of N . Single
property values in N may be duplicated onto neighboring cells in
cN where coordinates � �,x yc cC C have identical integer values.

To illustrate the source of noise duplication, we consider an ex-
ample. Figure 4 shows the evolution of property values and parti-
cle positions for four neighboring pixels during one integration
and one advection step. The vector field is uniform, is oriented at
45 degrees to the x axis, and points towards the upper right cor-
ner. At the start of the iteration, each particle has a random posi-
tion within its pixel (Figure 4a). To determine the new property
value of each pixel, the particle positions are integrated back-
wards in time (Figure 4b). The property value of the lower left
corner pixel is duplicated onto the four pixels (worst-case sce-

Buffer zone

Interior
region

b W

H

Buffer zone

Interior
region

b W

H

Figure 3. Noise arrays cN and aN are expanded with a
surrounding region ª º« »b = h cells wide.

nario) (Figure 4c). The fractional position of each particle is then
re-initialized for the next iteration.

Over time, the average size of contiguous constant color regions
in the noise increases. This effect is undesirable since lower noise
frequency reduces the spatial resolution of the features that can be
represented. This duplication effect is further reinforced in re-
gions where the flow has a strong positive divergence.

To break the formation of uniform blocks and to maintain a high
frequency random noise, we inject a user-specified percentage of
noise into cN . Random cells are chosen in cN and their value is
inverted (a zero value becomes one and vice versa). The number
of cells randomly inverted must be sufficiently high to eliminate
the appearance of pixel duplication, but low enough to maintain
the temporal correlation introduced by the advection step.

To quantify the effect of noise injection, we compute the energy
content of the advected noise in N at different scales as a func-
tion of time. Although the Fourier transform would appear to be
the natural tool for this analysis, the two-valued nature of the
noise image suggests instead the use of the Haar wavelet (linear
combination of Heaviside functions). We perform a two-
dimensional Haar wavelet transform and compute the level of
energy in different bands (the spatial scale of consecutive bands
vary by a factor of two). The two-dimensional energy spectrum is
reduced to a one-dimensional spectrum by assuming that the noise
texture is isotropic at any point in time. (The smooth anisotropic
flow result from blending multiple noise textures.) The energy in
each band is scaled by its value after the initial noise injection.
Ideally we would like to preserve the initial spectrum at all time.

Figure 5 illustrates the influence of the noise injection on the time
evolution of the energy spectrum. Without injection, the energy in
the larger scales (regions of pixel duplication) increases rapidly
without stabilizing. This comes at the expense of some energy
loss in the smaller scales (which decreases in the figure). As the
percentage of noise injection increases, the spread of the scaled
spectrum decreases continuously towards zero (the ideal state).
However, excessive injection deteriorates the quality of the tem-
poral correlation.

The necessary percentage of injected noise is clearly a function of
the particular flow and depends on both space and time. It should
be modeled as the contribution of two terms: a constant term that
accounts for the duplication effects at zero divergence, and a term
that is a function of the velocity divergence. In the interest of
simplicity and efficiency, we use a fixed percentage of two to
three percent, which provides adequate results over a wide range
of flows.

4.8 Coordinate Re-Initialization
The coordinate arrays are re-initialized to prepare a new collec-
tion of particles to be integrated backward in time for the next
iteration. However, coordinates are not re-initialized to their ini-
tial values. The advection equations presented in Section 3 as-
sume that the particle property is computed at the previous time
step via a linear interpolation. Unfortunately, the lack of spatial
correlation in the noise image would lead to a rapid loss of con-
trast, which justifies our use of a constant interpolation scheme.
However, the choice of constant interpolation implies that a prop-
erty value can only change if it originates from a different cell. If
the coordinate arrays were re-initialized to their original values at
each iteration, subcell displacements would be ignored and the
flow would be frozen where the velocity magnitude is too low.
This is illustrated in Figure 6, which shows the advection of a
steady circular vector field. Constant interpolation without frac-
tional coordinate tracking clearly shows that the flow is parti-
tioned into distinct regions within which the integer displacement
vector is constant (Figure 6a).

Figure 5. Energy content of the flow at different scales
based on a 2D Haar wavelet decomposition of the two-
valued noise function (assumed to be isotropic). The en-
ergy in each band is scaled with respect to its initial value.
Results are shown for injection rates of 0%, 2%, 5% and
10%.

(a) (b)(a) (b)

Figure 6. Circular flow without and with accumulation of
fractional displacement (h = 2) .

(a) (b) (c)(a) (b) (c)

Figure 4. Noise duplication. A single noise value is du-
plicated into four cells in a uniform 45 deg flow.

To prevent this from happening, we track the fractional part of the
displacement within each cell. Instead of re-initializing the coor-
dinates to their initial values, the fractional part of the displace-
ment is added to cell indices (,)i j :

� � � � � �

� � � � � �

, , ,

, , ,

x x x

y y y

i j i i j i j

i j j i j i j

 c c � � « »¬ ¼°
®

c c« » � �° ¬ ¼¯

C C C

C C C
 (8)

The effect of this correction is shown in Figure 6b.

The coordinate arrays have now returned to the state they were in
after their initialization phase (Equation (5)); they verify the rela-
tions � �,x i j i« » ¬ ¼C and � �,y i j j« » ¬ ¼C .

4.9 Noise Blending
Although successive advected noise arrays are correlated in time,
each individual frame remains devoid of spatial correlation. By
applying a temporal filter to successive frames, spatial correlation
is introduced. We store the result of the filtering process in an
array bN . We have found the exponential filter to be convenient
since its discrete version only requires the current advected noise
and the previous filtered frame. It is implemented as an alpha
blending operation

 (1)b b aD D � �N N N (9)

where D represents the opacity of the current advected noise
array. A typical range for D is � �0.05,0.2 . Figure 7 shows the
effect of D on images based on the same set of noise arrays.

The blending stage is crucial because it introduces spatial correla-
tion along pathline segments in every frame. To show clearly that
the spatial correlation occurs along pathlines passing through each
cell, we conceptualize the algorithm in 3D space; the x and y
axes represent the spatial coordinates, whereas the third axis is
time. To understand the effect of the blending operation, let’s
consider an array N with black cells and change a single cell to
white. During advection, a sequence of noise arrays (stacked
along the time axis) is generated in which the white cell is dis-
placed along the flow. By construction, the curve followed by the
white cell is a pathline. The temporal filter blends successive
noise arrays aN with the most recent data weighted more
strongly. The temporal blend of these noise arrays produces the
projection of the pathline onto the x y� plane, with an exponen-
tially decreasing intensity as one travels back in time along the
pathline. When the noise array with a single white cell is replaced
by a two-color noise distribution, the blending operation intro-
duces spatial correlation along a dense set of short pathlines.

Streamlines and pathlines passing through the same cell at the
same time are tangent to each other, so a streamline of short ex-
tent is well approximated by a short pathline. Therefore, the col-
lection of short pathlines serves to approximate the instantaneous
direction of the flow. With our LEA technique, a single frame
represents the instantaneous structure of the flow (streamlines),
whereas an animated sequence of frames reveals the motion of a
dense collection of particles released into the flow.

The filtering phase completes one pass of the advection algorithm.
The image bN can be displayed to the screen or stored as an ani-
mation frame. cN is used as the initial noise texture N for the

next iteration. It is worthwhile to mention that each iteration ends
with data having the exact same property as when it started. In
particular, the coordinate arrays satisfy

� �

� �

,

,

x

y

i j i

i j j

« » ¬ ¼

« » ¬ ¼

C

C

and N contains a two-color noise without degradation of con-
trast.

In the next section, we describe several optional post-processing
steps to enhance the display of the animation frames, both in
terms of quality and in terms of content.

5. Post-Processing
A series of optional postprocessing steps is applied to bN to en-
hance the image quality and to remove features of the flow that
are uninteresting to the user. We present two filters. A fast version
of LIC can be applied to remove high frequency content in the
image, while a velocity mask serves to draw attention to regions of
the flow with strong currents.

5.1 Directional Low-Pass Filtering (LIC)
Although the temporal filter (noise blending phase) converts high
frequency noise images into smooth spatially-correlated images,
aliasing artifacts remain visible in regions where the noise is ad-
vected over several cells in a single iteration. As a rule, aliasing
artifacts become noticeable where noise advect more than one or
two cells in a single time step (see Figure8 bottom). Experimenta-
tion with different low-pass filters led us to conclude that a Line
Integral Convolution filter applied to bN is the best filter to re-
move the effect of artifacts while preserving and enhancing the
directional correlation resulting from the blending phase. This
follows from the fact that temporal blending and LIC bring out
the structure of pathlines and streamlines respectively, and these

DD=0.10

DD=1.00

DD=0.50

DD=0.03

DD=0.10

DD=1.00

DD=0.50

DD=0.03

Figure 7. Frames obtained with different values of . .

curves are tangent to one another at each point. Although the
image quality is often enhanced with longer kernel lengths, it is
detrimental here since the resulting streamlines will have signifi-
cant deviations from the actual pathlines. The partial destruction
of the temporal correlation between frames would then lead to
flashing effects in the animation. A secondary effect of longer
kernels is decreased contrast.

While any LIC implementation can be used, our algorithm can
advect an entire texture at interactive rates. Therefore, we are
interested in the fastest possible LIC implementation. To the best
of our knowledge, FastLIC [13] and Hardware-Accelerated LIC
[4] are the fastest algorithms to date, and both are well suited to
the task. However, we propose a simple, but very efficient, soft-
ware version of Heidrich’s hardware implementation to postproc-
ess the data when the highest quality is desired.

Besides the input noise array bN , the algorithm requires two
additional coordinate arrays Cxx and Cyy, and an array LICN to
store the result of the line integral convolution. The length of the
convolution kernel is denoted by L . For reference, we include the
pseudo code for Array-LIC in Figure 9.

In general, L h| produces a smooth image with no aliasing.
However, large values of h speed up the flow, with a resulting
increase in aliasing effects. If the quality of the animation is im-
portant, L must be increased with a resulting slowdown in the
frame rate. The execution time of the LIC filter is commensurate
with the timings of FastLIC for 10L � . Beyond 10, a serial
FastLIC [13] should be used instead. An OpenMP implementa-
tion of our ALIC algorithm on shared memory architectures is
straightforward. Results are presented in Section 6. As shown in
Table 1, smoothing the velocity field with LIC reduces the frame
rate by a factor of three across architectures. We recommend ex-
ploring the data at higher resolution without the filter or at low
resolution with the filter.

5.2 Velocity Mask
To fade out high frequency noise in bN occurring in low velocity
regions, we construct an opacity map, referred to as a velocity
mask, that we store in an alpha layer. With a partially transparent
noise layer, a background image such as a geographical map (see
color plates) can greatly enhance the information content pro-
vided by the flow by providing additional context. For maximum
control, bN should become more transparent in regions of low
intensity. Regions of the flow with strong currents can be empha-
sized further by maximizing the opacity where the velocity magni-
tude is high. Once computed, the velocity mask is combined with

bN into an intensity-alpha texture that is blended with the back-
ground image (see color plate). We compute the opacity map

 � �� � � �� �1 1 1 1
m n

b � � � �A V N (10)

as a product of a function of local velocity magnitude and a func-
tion of the noise intensity. Higher values of the exponents m and
n increase the contrast between regions of low and high velocity
and low and high intensity respectively. When 1m n , equa-
tion (10) takes the linear form b A N V .

6. Results
The next section presents timings of our algorithm. We conducted
experiments to evaluate the efficiency of the algorithm at four
resolutions (2300 through 21000 pixels). We present in Table 1
timings in frames/second, using several of the available options.
Three different computers were used.

The organization of the algorithm as a series of array operations
makes it particularly straightforward to parallelize on shared
memory architectures. Furthermore, operations on the array ele-
ments only make accesses within h rows or columns. For small
h , the locality of these accesses is sufficient not to produce cache
misses on a CPU with a cache of moderate size (e.g., 512 kbytes).
Table 1 also includes timings from an OpenMP implementation
running on four processors of an Onyx2.

Figure 8. Frame without (bottom) and with (top) LIC fil-
ter. A velocity mask is applied to both images.

float* ALIC(const float* Vx, const float* Vy,
 int Wv, int Hv,
 const float* Nb, int W, int H
 int L, float* NLIC)
rWv = Wv/W ; rHv = Hv/H
rW = W /(W-1); rH = H /(H-1)
L2 = L div 2
r = 1/(2*L2+1)
Loop over pixels i,j { NLIC(i,j) = r*Nb(i,j) }
sgn = 1/Vmax
for n = 1 to 2 // Forward and backward advection
 Loop over pixels i,j
 Cxx(i,j)=i; Cyy(i,j)=j
 for k = 0 to L2
 Loop over pixels i,j //Coordinate integration
 Cxx(i,j)= (Cxx(i,j)
 + sgn*Vx(rWv*Cxx(i,j),rHv*Cyy(i,j))+W)%W
 Cyy(i,j)= (Cyy(i,j)
 + sgn*Vy(rWv*Cxx(i,j),rHv*Cyy(i,j))+H)%H

 Loop over pixels i,j // Noise advection
 // and Accumulation
 NLIC(i,j) += r*Nb(rW*Cxx(i,j),rH*Cyy(i,j))
 end for
 sgn = -1/Vmax
end for
return NLIC

Figure 9. Pseudo-code for ALIC (Array LIC).

Options

Resolutions

Advection Advection +
Velocity Mask

� �3m n

Advection +
Velocity Mask
+ ALIC filter

� �6L

3.4 14.0 2.2 8.8 0.8 3.0
300 × 300

16.3 39.0 10.4 27.0 3.6 11.6

1.2 4.7 0.8 3.1 0.3 1.0
500 × 500

6.3 18.0 3.7 10.5 1.3 4.5

0.3 1.2 0.2 0.7 0.07 0.2
1000 ×1000

1.4 4.1 0.9 2.7 0.3 1.1

Table 1: Timings in frames/second as a function of op-
tions and resolutions. Each configuration has been tested
on four different configurations: O21 (upper left), Oc-
tane2 (upper right), Onyx23 (lower left) and Onyx2 with
four processors (lower right).

7. Conclusion
This paper describes an algorithm to visualize time-dependent
flows based on an original per-pixel Lagrangian-Eulerian Advec-
tion approach. A noise image is advected from a time step to the
next. The color of every pixel in the current image is determined
in two steps. A dense collection of particles (one per pixel) is first
integrated backward in time for a fixed time interval (Lagrangian
phase) to determine their positions in the previous frame. The
color at these positions determine the color of each pixel in the
current frame (Eulerian phase). We described how to seamlessly
handle regions where the flow enters the physical domain. A tem-
poral filter is applied to successive images to introduce a good
level of spatio-temporal correlation. Thus, every still frame repre-
sents the instantaneous structure of the flow, whereas an animated
sequence of frames reveals the motion of a dense collection of
particles released into the flow. When necessary, spatial correla-
tion is enhanced through a fast LIC algorithm. A post-processing
filter has been described to control the contrast between regions
of high and low velocity magnitude. The advected noise is con-
trolled by the percentage of noise injection, while the final image
is influenced by the temporal blending coefficient and the LIC
parameters. Although fixed default parameters gives good results
for any vector field, these parameters can be chosen interactively,
to generate images suitable to the user. Transparency makes it
possible to view a background image through the flow; this leads
to our current work on multiple layer texture advection. We dem-
onstrated the efficiency of the algorithm on a variety of com-
puters, including a multiprocessor workstation. The interactivity
made possible by this work has made it possible to explore 2-D
unsteady flows in real time, and suggests that in the near future
interactive three-dimensional texture advections will become a
reality.

1 SGI O2, R5000, 200MHz, 64MB, 1MB L2 cache, 64KB L1 cache
2 SGI Octane, R12000, 300MHz, 2GB, 2MB L2 cache, 64KB L1 cache
3 SGI Onyx2, R12000, 300MHz, 2GB, 8MB L2 cache, 64KB L1 cache

8. Acknowledgments
We would like to thank David Banks for lively discussions in all
areas of visualization, including several valuable suggestions to
improve the quality of this paper. Some of the datasets used to
illustrate the techniques presented in this paper were provided
courtesy of Z. Ding (FSU), J. O’Brien (COAPS, FSU), J. Quiby
(MeteoSwiss, Switzerland), and R. Arina (Ecole Polytechnique of
Turin, Italy). We acknowledge the support of NSF under grant
NSF-9872140.

9. References
[1] B.G. Becker, D.A. Lane, and N.L. Max. Unsteady Flow Vol-

umes. Proceedings IEEE Visualization '95. In G.M. Nielson
and D. Silver, editors, IEEE Computer Society Press, Octo-
ber 1995.

[2] B. Cabral and L.C. Leedom. Imaging Vector Fields Using
Line Integral Convolution. Computer Graphics Proceedings.
In J.T. Kajiya, editor, Annual Conference Series, ACM, pp.
263-269, August 1993.

[3] W.C. de leeuw and R. van Liere. Spotting Structure in Com-
plex Time Dependent Flow. Technical Report, CWI - Cen-
trum voor Wiskunde en Informatica, September 1998.

[4] W. Heidrich, R. Westermann, H.-P. Seidel, and T. Ertl. Ap-
plications of Pixel Textures in Visualization and Realistic
Image Synthesis. ACM Symposium on Interactive 3D Graph-
ics. ACM, pp. 127-134, April 1999.

[5] B. Jobard, G. Erlebacher, and M.Y. Hussaini. Tiled Hard-
ware-Accelerated Texture Advection for Unsteady Flow
Visualization. Graphicon 2000. pp. 189-196, August 2000.

[6] B. Jobard, G. Erlebacher, and M.Y. Hussaini. Hardware-
Accelerated Texture Advection for Unsteady Flow Visualiza-
tion. Proceedings Visualization 2000. In T.E. Ertl, B.
Hamann, and A. Varshney, editors, IEEE Computer So-
ciety Press, pp. 155-162, October 2000.

[7] D.A. Lane. UFAT - A Particle Tracer for Time-Dependent
Flow Fields. Proceedings IEEE Visualization '94. In R.D.
Bergeron and A.E. Kaufman, editors, IEEE Computer Soci-
ety Press, pp. 257-264, 1994.

[8] D.A. Lane. Visualizing Time-Varying Phenomena In Nu-
merical Simulations Of Unsteady Flows, NASA Ames Re-
search Center, February 1996.

[9] N. Max and B. Becker. Flow visualization using moving
textures. Proceedings of ICASE/LaRC Symposium on Visual-
izing Time Varying Data. In D.C. Banks, T.W. Crockett, and
Stacy Kathy, editors, NASA Conference Publication, 3321,
pp. 77-87, 1996.

[10] N. Max and B. Becker. Flow visualization using moving
textures. In: Data Visualization Techniques, Chandrajit Ba-
jaj, editor, John Wiley and Sons, Ltd., pp. 99-105, 1999.

[11] M. Rumpf and J. Becker. Visualization of Time-Dependent
Velocity Fields by Texture Transport. Proceedings of the Eu-
rographics Workshop on Scientific Visualization '98.
Springer-Verlag, pp. 91-101, 1998.

[12] H.-W. Shen and D.L. Kao. A New Line Integral Convolution
Algorithm for Visualizing Time-Varying Flow Fields. IEEE
Transactions on Visualization and Computer Graphics, 4(2),
pp. 98-108, 1998.

[13] D. Stalling and H.-C. Hege. Fast and Resolution Independent
Line Integral Convolution. Proceedings of SIGGRAPH '95.
Computer Graphics Annual Conference Series, pp. 249-256,
1995.

