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Abstract 
In this paper, we propose a new technique to visualize dense rep-
resentations of time-dependent vector fields based on a Lagran-
gian-Eulerian Advection (LEA) scheme. The algorithm produces 
animations with high spatio-temporal correlation at interactive 
rates. With this technique, every still frame depicts the instanta-
neous structure of the flow, whereas an animated sequence of 
frames reveals the motion a dense collection of particles would 
take when released into the flow. The simplicity of both the 
resulting data structures and the implementation suggest that LEA 
could become a useful component of any scientific visualization 
toolkit concerned with the display of unsteady flows. 

1.  Introduction 
Traditionally, unsteady flow fields are visualized as a collection of 
pathlines or streaklines that originate from user-defined seed 
points [7,8]. More recently, several authors have developed tech-
niques based on dense representations of the flow to maximize 
information content [3,5,6,10-12]. The fundamental challenge 
faced by this class of algorithms is to produce smooth animations 
with good spatial and temporal correlation. 

In this paper, we propose a new visualization algorithm based on 
dense representations of time-dependent vector fields. The 
method combines the advantages of the Lagrangian and Eulerian 
formalisms. A dense collection of particles is integrated backward 
in time (Lagrangian step), while the color distribution of the im-
age pixels are updated in place (Eulerian step). The dynamic data 
structures normally required to track individual particles, pathli-
nes, or streaklines are no longer necessary since all information is 
now stored in a few two-dimensional arrays. The combination of 
Lagrangian and Eulerian updates is repeated at every iteration. A 
single time step is executed as a sequence of identical operations 
over all array elements. By its very nature, the algorithm takes 
advantage of spatial locality and instruction pipelining and can 
generate animations at interactive frame rates.  

The rest of the paper is organized as follows. Section 2 gives an 
overview of related work. The general approach is described in 
Section 3 while the algorithm is examined in Section 4. Post-
processing options are proposed in Section 5. Timing results are 
presented in Section 6. Conclusions are drawn in Section 7. 

2. Related Work 
Several techniques have been advanced to produce dense repre-
sentations of unsteady vector fields. Best known is perhaps 

UFLIC (Unsteady Flow LIC) developed by Shen [12], and based 
on the Line Integral Convolution (LIC) technique [2]. The algo-
rithm achieves good spatial and temporal correlation. However, 
the images are difficult to interpret: the paths are blurred in re-
gions of rapid change of direction, and are thickest where the flow 
is almost uniform. The low performance of the algorithm is ex-
plained by the large number of particles (three to five times the 
number of pixels in the image) to process for each animation 
frame. 

The spot noise technique, initially developed for the visualization 
of steady vector fields, has a natural extension to unsteady flows 
[3]. A sufficiently large collection of elliptic spots is chosen to 
entirely cover an image of the physical domain. The position of 
these spots is integrated along the flow, bent along the local path-
line or streamline, and finally blended into the animation frame. 
The rendering speed of the algorithm can be increased by decreas-
ing the number of spots in the image. The control of pixel cover-
age is done by assigning a fixed lifespan to each spot. 

Max and Becker [10] propose a texture-based algorithm to repre-
sent steady and unsteady flow fields. The basic idea is to advect a 
texture along the flow either by advecting the vertices of a trian-
gular mesh or by integrating the texture coordinates associated 
with each triangle backward in time. When texture coordinates or 
particles leave the physical domain, an external velocity field is 
linearly extrapolated from the boundary. This technique attains 
interactive frame rates by controlling the resolution of the under-
lying mesh.  

A technique to display streaklines was developed by Rumpf and 
Becker [11]. They precompute a two-dimensional noise texture 
whose coordinates represent time and a boundary Lagrangian 
coordinate. Particles at any point in space and time that originate 
from an inflow boundary are mapped back to a point in this tex-
ture.  

More recently, Jobard et al. [5,6] extend the work of Heidrich et 
al. [4] to animate unsteady two-dimensional vector fields. The 
algorithm relies heavily on extensions to OpenGL proposed by 
SGI, in particular, pixel textures, additive and subtractive blend-
ing, and color transformation matrices. They pay particular atten-
tion to the flow entering and leaving the physical domain, leading 
to smooth animations of arbitrary duration. Excessive discretiza-
tion errors associated with 12 bit textures are addressed by a tiling 
mechanism [5]. Unfortunately, the graphics hardware extension 
this algorithm relies on most, the pixel texture extension, was not 
adopted by other graphics card manufacturers. As a result, the 
algorithm only runs on the SGI Maximum Impact and the SGI 
Octane with the MXE graphics card. 



3. Lagrangian- Eulerian Approach 
We wish to track a collection of particles ip , along a prescribed 
time-dependent velocity field, that densely covers a rectangular 
region. If we assign a property � �iP p  to the thi  particle ip , the 
property remains constant as the particle follows its pathline. At 
any given instant t , each spatial location x  has an associated 
particle, labeled � �tp x . One expresses that the particle property 
is invariant along a pathline by 
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The property attached to each particle takes on the role of a pas-
sive scalar. Its value is therefore not affected by diffusion or 
source terms (associated with chemical or other processes). This 
equation has two interpretations. In the first, the trajectory of a 
single particle, denoted by � �t px  where p  tags the particle, 
satisfies  

 � �
( )

,
t

t td p
p

dt
 

x
v x  (2) 

In this Lagrangian approach, the trajectory of each particle is 
computed separately. The time evolution of a collection of parti-
cles is displayed by rendering each particle by a glyph (point, 
texture spot [3], arrows). Except for recent work of Jobard et al. 
[5,6], current time-dependent algorithms are all based on particle 
tracking, e.g. [1,3,8,9,12].  While Lagrangian tracking is well 
suited to the task of understanding how dense groups of particles 
evolve in time, it suffers from several shortcomings. In regions of 
flow convergence, particles may accumulate into small clusters 
that follow almost identical trajectories, leaving regions of flow 
divergence with a low density of particles. To maintain a dense 
coverage of the domain, the data structures must support dynamic 
insertion and deletion of particles [12], or track more particles 
than needed [3], which decreases the efficiency of any implemen-
tation.  

Alternatively, an Eulerian approach solves (1) directly. Particles 
lose their identity. However, the particle property, viewed as a 
field, is known for all time at any spatial coordinate. Unfortu-
nately, any explicit discretization of (1) is subject to a Courant 
condition1, so that in practice, the numerical integration step is 
limited to at most 1-2 cell widths. In turn, this imposes a maxi-
mum rate at which flow structures can evolve. 

In our approach, we choose a hybrid solution. Between two suc-
cessive time steps, coordinates of a dense collection of particles 
are updated with a Lagrangian scheme whereas the advection of 
the particle property is achieved with an Eulerian method. At the 
beginning of each iteration, a new dense collection of particles is 
chosen and assigned the property computed at the end of the pre-
vious iteration. We refer to the hybrid nature of this approach as a 
Lagrangian-Eulerian Advection (LEA) method. 

To illustrate the idea, consider the advection of the bitmap image 
shown in Figure 1a by a circular vector field centered at the lower 

                                                                 
1 If the discrete time step exceeds some maximum value, severe 

numerical instabilities result. 

left corner of the image. With a pure Lagrangian scheme, a dense 
collection of particles (one per pixel) is first assigned the color of 
the corresponding underlying pixel. Each particle advects along 
the vector field and deposits its color property in the correspond-
ing pixel in a new bitmap image. This technique does not ensure 
that every pixel of the new image is updated. Indeed, holes usu-
ally appear in the resulting image (Figure 1b). 

A better scheme considers each pixel of the new image as a parti-

cle whose position is integrated backward in time. The particle 
position in the initial bitmap determines its color. There are no 
longer any holes in the new image (Figure 1c). Repeating the 
process at each iteration, any property can be advected while 
maintaining a dense coverage of the domain. 

The core of the advection process is thus the composition of two 
basic operations: coordinate integration and property advection. 

Given the position � � � �0 , ,i j i j x  of each particle in the new 
image, backward integration of Equation (2) over a time interval 
h  determines its position  
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at a previous time step. h  is the integration step, � �,i jWx  repre-
sents intermediary positions along the pathline passing through 

� �,t i jx , and Wv  is the vector field at time W . 

An image of resolution W Hu , defined at a previous time t h� , 
is advected to time t  through the indirection operation 
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which allows the image at time t  to be computed from the image 
at any prior time t h� . This technique was used by Max[10]. 
However, instead of integrating back to the initial time to advect 
the same initial texture[10], we choose h  to be the interval be-
tween two successive displayed images and always advect the last 
computed image. This minimizes the need to access coordinate 
values outside the physical domain. Notice that at least a linear 
interpolation of t h�I  pixels at the positions h�x  is necessary to 
obtain an image of acceptable quality. 
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Figure 1. Rotation of bitmap image about the lower left 
corner. (a) Original image, (b) Image rotated with La-
grangian scheme, (c) Image rotated with Eulerian scheme. 



4. Algorithm 
With our Lagrangian-Eulerian approach, a full per-pixel advec-
tion requires manipulating exactly W Hu  particles. All informa-
tion concerning any particle is stored in two-dimensional arrays 
with resolution W Hu  at the corresponding location � �,i j . 
Thus, we store the initial coordinates � �,x y  of those particles in 
two arrays � �,x i jC  and � �,y i jC . Two arrays xcC  and ycC contain 
their x  and y  coordinates after integration. A first order integra-
tion method requires two arrays xV  and yV  that store the veloc-
ity field at the current time. Similarly to LIC, we choose to advect 
noise images. Four noise arrays N , cN , aN  and bN  contain 
respectively the noise to advect, two advected noise images, and 
the final blended image. 

Figure 2 shows a flowchart of the algorithm. After the initializa-
tion of the coordinate and noise arrays (Section 4.2), the coordi-
nates are integrated (Section 4.3) and the initial noise array N  is 
advected (Section 4.4). The first advected noise array, cN  is then 
prepared for the next iteration by subjecting it to a series of treat-
ments (left column in Figure 2). Care is first taken to ensure that 
no spurious artifacts appear at boundaries where flow is entering 
the domain (Section 4.5). This is followed by an optional masking 
process to allow for non-rectangular domains (Section 4.6). A low 
percentage of random noise is then injected into the flow to com-
pensate for the effects of pixel duplication and flow divergence 
(Section 4.7). Finally, the coordinate arrays are reinitialized to 
ready them for the next iteration (Section 4.8). The right column 
in the flowchart describes the sequence of steps that transform the 
second advected noise array aN  into the final image. aN  is first 
accumulated into bN  via a blending operation to create the nec-
essary spatio-temporal correlation (Section 4.9). Two optional 
post-processing phases are then applied to bN  before its final 
display: a line integral convolution filter removes aliasing effects 
(Section 5.1) and features of interest are emphasized via an opac-
ity mask (Section 5.2). 

4.1 Notation 
Array cell values are referenced by the notation � �,i jA  with i  
and j  integers in ^ ` ^ `0,.., 1 0,.., 1W H� u � . We adopt the con-
vention that an array � �,x yA  with real arguments is evaluated 
from information in the four neighboring cells using bilinear in-
terpolation. A constant interpolation is explicitly noted 
� �,x y« » « »¬ ¼ ¬ ¼A , where x« »¬ ¼  is the largest integer smaller than or 

equal to x . To simplify the notation, array operations such as 
 A B  apply to the entire domain of ( , )i j . 

The indirection operation � � � � � �� �, , , ,i j r i j s i j A B C D , where 
( , )i jC  and ( , )i jD  lie in the range � �0, 1W �  and � �0, 1H �  

respectively and r  and s  are scalars, is denoted by 
� �,r s A B C D . 

4.2 Coordinate and Noise Initialization 
We first initialize the coordinate arrays xC , yC  and the noise 
arrays N  and bN . Coordinates are defined as 
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where rand(1)  is a real number in � �0,1 . The random offset dis-
tributes coordinates on a jitter grid to avoid regular patterns that 
might otherwise appear during the first several steps of the advec-
tion. Note that the integer part of the coordinates identifies the 
cell. 

N  is initialized with a two-valued noise function (0 or 1) to en-
sure maximum contrast and its values are copied into bN . Coor-
dinates and noise values are stored in floating point format to 
ensure sufficient accuracy in the calculations. 

4.3 Coordinate Integration 
A first order discretization of Equation (3) is used to integrate the 
particle coordinates. After discretization with a constant time step 
h  over the entire domain, (3) becomes 
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where maxV  is the maximum velocity magnitude in the whole 
dataset, � �1 /

VW Vr W W �  and � �1 /
VH Vr H H �  for a vector 

field resolution of VW  by HW . The two scaling factors 
VWr  and 

VHr  ensure that the coordinates of the velocity arrays stay within 
proper bounds.  

The velocity arrays at the current time are linearly interpolated 
between the two closest available vector fields. Therefore, h  
represents the maximal possible displacement of any particle over 
all iterations. The actual displacement of a particle is proportional 
to the local velocity and is measured in units of cell widths.  

A useful property of a first order formulation is that the velocity is 
never required outside the physical domain. We have imple-
mented a second order discretization, but found no noticeable 
effect due to the small extent of the spatio-temporal correlations 
in the final display. 
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Figure 2. Flowchart of LEA algorithm. 



4.4 Noise Advection 
The advection of noise described by Equation (4) is applied twice 
to N  to produce two noise arrays cN  and aN , one for advection, 
one for display. cN  is an internal noise array whose purpose is to 
carry on the advection process and to re-initialize N  for the next 
iteration. To maintain a sufficiently high contrast in the advected 
noise, cN  is computed with a constant interpolation. Before cN  
can be used in the next iteration, it must undergo a series of cor-
rections to account for edge effects, the presence of arbitrary do-
mains, and the deleterious consequences of flow divergence.  

aN  serves to create the current animation frame and no longer 
participates in the noise advection. It is computed using linear 
interpolation of N  to reduce spatial aliasing effects. aN  is then 
blended into bN  (Section 4.9). 

A straightforward implementation of Equation (4) leads to condi-
tional expressions to handle the cases when 

 � � � �� �, , ,x yi j i jc c c x C C  

is exterior to the physical domain. A more efficient implemen-
tation eliminates the need to test for boundary conditions by sur-
rounding N  and cN  with a buffer zone of constant width. From 
equation (6), cx  refers to cells located at a maximum distance of 
b h ª º« »  cell width away from the array borders. An expanded 
noise array of size � � � �2 2W b H b� u �  is therefore sufficient to 
ensure that out of bound array accesses do not occur (see Figure 
3). The advected arrays cN  and aN  are computed according to  
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for all � � ^ ` ^ `, 0,.., 1 0,.., 1i j W H� � u � , where � �1 /Wr W W �  
and � �1 /Hr H H � . The two scaling factors Wr  and Hr  ensure a 
properly constructed linear interpolation.  

4.5 Edge Treatment 
A recurring issue with texture advection that must be addressed is 
the proper treatment of information flowing into the physical 
domain. Within the context of this paper, we must determine the 
user-specified value in Equation (4). To address this, we recall 
that the advected image contains a two-valued random noise with 
little or no spatial correlation. We take advantage of this property 

to replace the user-specified value by a random value (0 or 1). At 
each iteration, we simply store new random noise in the buffer 
zone, at negligible cost. 

At the next iteration, N  will contain these values and some of 
them will be advected to the interior of the physical domain by 
Equation (7). Since random noise has no spatial correlation, the 
advection of the surrounding buffer values into the interior region 
of cN  produces no visible artifacts. 

To treat periodic flows in one or more directions, the noise values 
are copied from an inner strip of width b  along the interior edge 
of cN onto the buffer zone at the opposite boundary. As a result, 
particles leaving one side of the domain seamlessly reappear at its 
opposite side. 

4.6 Incoming Flow in Arbitrary Shaped 
Domains 

It often happens that the physical domain is non-rectangular or 
contains interior regions where the flow is not defined (e.g. shores 
and islands). Denote by B  the boundaries interior to N  that 
delineates these regions. LEA handles this case with no modifica-
tion by simply setting the velocity to zero where it is not defined. 
The stationary noise in these regions is hidden from the animation 
frame by superimposing a semitransparent map that is opaque 
where the flow is undefined. For example, the opaque regions of 
this map might represent shorelines or islands (see right column 
on color plate). 

When the flow velocity normal to B  is nonzero and points into 
the physical domain, the advection of stationary noise values will 
create noticeable artifacts in the form of streaks. This might hap-
pen if an underground flow, not visible in the display, emerges 
into view at B . If necessary, we suppress these streaks with the 
help of a pre-computed boolean mask (or alternatively a boolean 
function) � �,i jM  that determines whether or not the velocity 
field is defined at ( , )i j . � �,i jcN  is then updated with random 
noise where � �,i jM  is false. 

4.7 Noise Injection 
In this Section, we propose a simple procedure to counteract a 
duplication effect that occurs during the computation of cN  in 
Equation (7). Effectively, if particles in neighboring cells of cN  
retrieve their property value from within the same cell of N , this 
value will be duplicated in the corresponding cells of N . Single 
property values in N  may be duplicated onto neighboring cells in 
cN  where coordinates � �,x yc cC C  have identical integer values.  

To illustrate the source of noise duplication, we consider an ex-
ample. Figure 4 shows the evolution of property values and parti-
cle positions for four neighboring pixels during one integration 
and one advection step. The vector field is uniform, is oriented at 
45 degrees to the x  axis, and points towards the upper right cor-
ner. At the start of the iteration, each particle has a random posi-
tion within its pixel (Figure 4a). To determine the new property 
value of each pixel, the particle positions are integrated back-
wards in time (Figure 4b). The property value of the lower left 
corner pixel is duplicated onto the four pixels (worst-case sce-
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Figure 3. Noise arrays cN  and aN  are expanded with a 
surrounding region ª º« »b = h  cells wide. 



nario) (Figure 4c). The fractional position of each particle is then 
re-initialized for the next iteration.  

Over time, the average size of contiguous constant color regions 
in the noise increases. This effect is undesirable since lower noise 
frequency reduces the spatial resolution of the features that can be 
represented. This duplication effect is further reinforced in re-
gions where the flow has a strong positive divergence. 

To break the formation of uniform blocks and to maintain a high 
frequency random noise, we inject a user-specified percentage of 
noise into cN . Random cells are chosen in cN  and their value is 
inverted (a zero value becomes one and vice versa). The number 
of cells randomly inverted must be sufficiently high to eliminate 
the appearance of pixel duplication, but low enough to maintain 
the temporal correlation introduced by the advection step. 

To quantify the effect of noise injection, we compute the energy 
content of the advected noise in N  at different scales as a func-
tion of time. Although the Fourier transform would appear to be 
the natural tool for this analysis, the two-valued nature of the 
noise image suggests instead the use of the Haar wavelet (linear 
combination of Heaviside functions). We perform a two-
dimensional Haar wavelet transform and compute the level of 
energy in different bands (the spatial scale of consecutive bands 
vary by a factor of two). The two-dimensional energy spectrum is 
reduced to a one-dimensional spectrum by assuming that the noise 
texture is isotropic at any point in time. (The smooth anisotropic 
flow result from blending multiple noise textures.) The energy in 
each band is scaled by its value after the initial noise injection. 
Ideally we would like to preserve the initial spectrum at all time. 

Figure 5 illustrates the influence of the noise injection on the time 
evolution of the energy spectrum. Without injection, the energy in 
the larger scales (regions of pixel duplication) increases rapidly 
without stabilizing. This comes at the expense of some energy 
loss in the smaller scales (which decreases in the figure). As the 
percentage of noise injection increases, the spread of the scaled 
spectrum decreases continuously towards zero (the ideal state). 
However, excessive injection deteriorates the quality of the tem-
poral correlation. 

The necessary percentage of injected noise is clearly a function of 
the particular flow and depends on both space and time. It should 
be modeled as the contribution of two terms: a constant term that 
accounts for the duplication effects at zero divergence, and a term 
that is a function of the velocity divergence. In the interest of 
simplicity and efficiency, we use a fixed percentage of two to 
three percent, which provides adequate results over a wide range 
of flows. 

4.8 Coordinate Re-Initialization 
The coordinate arrays are re-initialized to prepare a new collec-
tion of particles to be integrated backward in time for the next 
iteration. However, coordinates are not re-initialized to their ini-
tial values. The advection equations presented in Section 3 as-
sume that the particle property is computed at the previous time 
step via a linear interpolation. Unfortunately, the lack of spatial 
correlation in the noise image would lead to a rapid loss of con-
trast, which justifies our use of a constant interpolation scheme. 
However, the choice of constant interpolation implies that a prop-
erty value can only change if it originates from a different cell. If 
the coordinate arrays were re-initialized to their original values at 
each iteration, subcell displacements would be ignored and the 
flow would be frozen where the velocity magnitude is too low. 
This is illustrated in Figure 6, which shows the advection of a 
steady circular vector field. Constant interpolation without frac-
tional coordinate tracking clearly shows that the flow is parti-
tioned into distinct regions within which the integer displacement 
vector is constant (Figure 6a).  

 

Figure 5. Energy content of the flow at different scales 
based on a  2D Haar wavelet decomposition of the two-
valued noise function (assumed to be isotropic). The en-
ergy in each band is scaled with respect to its initial value. 
Results are shown for injection rates of 0%, 2%, 5% and 
10%.  

(a) (b)(a) (b)
 

Figure 6. Circular flow without and with accumulation of 
fractional displacement (h = 2) . 

(a) (b) (c)(a) (b) (c)
 

Figure 4. Noise duplication. A single noise value is du-
plicated into four cells in a uniform 45 deg flow. 



To prevent this from happening, we track the fractional part of the 
displacement within each cell. Instead of re-initializing the coor-
dinates to their initial values, the fractional part of the displace-
ment is added to cell indices ( , )i j : 
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The effect of this correction is shown in Figure 6b.  

The coordinate arrays have now returned to the state they were in 
after their initialization phase (Equation (5)); they verify the rela-
tions � �,x i j i« »  ¬ ¼C  and � �,y i j j« »  ¬ ¼C .  

4.9 Noise Blending 
Although successive advected noise arrays are correlated in time, 
each individual frame remains devoid of spatial correlation. By 
applying a temporal filter to successive frames, spatial correlation 
is introduced. We store the result of the filtering process in an 
array bN . We have found the exponential filter to be convenient 
since its discrete version only requires the current advected noise 
and the previous filtered frame. It is implemented as an alpha 
blending operation  

 (1 )b b aD D � �N N N  (9) 

where D  represents the opacity of the current advected noise 
array. A typical range for D  is � �0.05,0.2 . Figure 7 shows the 
effect of D  on images based on the same set of noise arrays.  

The blending stage is crucial because it introduces spatial correla-
tion along pathline segments in every frame. To show clearly that 
the spatial correlation occurs along pathlines passing through each 
cell, we conceptualize the algorithm in 3D space; the x  and y  
axes represent the spatial coordinates, whereas the third axis is 
time. To understand the effect of the blending operation, let’s 
consider an array N  with black cells and change a single cell to 
white. During advection, a sequence of noise arrays (stacked 
along the time axis) is generated in which the white cell is dis-
placed along the flow. By construction, the curve followed by the 
white cell is a pathline. The temporal filter blends successive 
noise arrays aN  with the most recent data weighted more 
strongly. The temporal blend of these noise arrays produces the 
projection of the pathline onto the x y�  plane, with an exponen-
tially decreasing intensity as one travels back in time along the 
pathline. When the noise array with a single white cell is replaced 
by a two-color noise distribution, the blending operation intro-
duces spatial correlation along a dense set of short pathlines. 

Streamlines and pathlines passing through the same cell at the 
same time are tangent to each other, so a streamline of short ex-
tent is well approximated by a short pathline. Therefore, the col-
lection of short pathlines serves to approximate the instantaneous 
direction of the flow. With our LEA technique, a single frame 
represents the instantaneous structure of the flow (streamlines), 
whereas an animated sequence of frames reveals the motion of a 
dense collection of particles released into the flow. 

The filtering phase completes one pass of the advection algorithm. 
The image bN  can be displayed to the screen or stored as an ani-
mation frame. cN  is used as the initial noise texture N  for the 

next iteration.  It is worthwhile to mention that each iteration ends 
with data having the exact same property as when it started. In 
particular, the coordinate arrays satisfy 
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and N  contains a two-color noise without degradation of con-
trast. 

In the next section, we describe several optional post-processing 
steps to enhance the display of the animation frames, both in 
terms of quality and in terms of content. 

5. Post-Processing 
A series of optional postprocessing steps is applied to bN  to en-
hance the image quality and to remove features of the flow that 
are uninteresting to the user. We present two filters. A fast version 
of LIC can be applied to remove high frequency content in the 
image, while a velocity mask serves to draw attention to regions of 
the flow with strong currents.  

5.1 Directional Low-Pass Filtering (LIC) 
Although the temporal filter (noise blending phase) converts high 
frequency noise images into smooth spatially-correlated images, 
aliasing artifacts remain visible in regions where the noise is ad-
vected over several cells in a single iteration.  As a rule, aliasing 
artifacts become  noticeable where noise advect more than one or 
two cells in a single time step (see Figure8 bottom). Experimenta-
tion with different low-pass filters led us to conclude that a Line 
Integral Convolution filter applied to bN  is the best filter to re-
move the effect of artifacts while preserving and enhancing the 
directional correlation resulting from the blending phase. This 
follows from the fact that temporal blending and LIC bring out 
the structure of pathlines and streamlines respectively, and these 
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Figure 7. Frames obtained with different values of . . 



curves are tangent to one another at each point. Although the 
image quality is often enhanced with longer kernel lengths, it is 
detrimental here since the resulting streamlines will have signifi-
cant deviations from the actual pathlines. The partial destruction 
of the temporal correlation between frames would then lead to 
flashing effects in the animation. A secondary effect of longer 
kernels is decreased contrast.  

While any LIC implementation can be used, our algorithm can 
advect an entire texture at interactive rates. Therefore, we are 
interested in the fastest possible LIC implementation. To the best 
of our knowledge, FastLIC [13] and Hardware-Accelerated LIC 
[4] are the fastest algorithms to date, and both are well suited to 
the task. However, we propose a simple, but very efficient, soft-
ware version of Heidrich’s hardware implementation to postproc-
ess the data when the highest quality is desired.  

Besides the input noise array bN , the algorithm requires two 
additional coordinate arrays Cxx and Cyy, and an array LICN  to 
store the result of the line integral convolution. The length of the 
convolution kernel is denoted by L . For reference, we include the 
pseudo code for Array-LIC in Figure 9. 

In general, L h|  produces a smooth image with no aliasing. 
However, large values of h  speed up the flow, with a resulting 
increase in aliasing effects. If the quality of the animation is im-
portant, L  must be increased with a resulting slowdown in the 
frame rate. The execution time of the LIC filter is commensurate 
with the timings of FastLIC for 10L � . Beyond 10, a serial 
FastLIC [13] should be used instead. An OpenMP implementa-
tion of our ALIC algorithm on shared memory architectures is 
straightforward. Results are presented in Section 6. As shown in 
Table 1, smoothing the velocity field with LIC reduces the frame 
rate by a factor of three across architectures. We recommend ex-
ploring the data at higher resolution without the filter or at low 
resolution with the filter. 

5.2 Velocity Mask 
To fade out high frequency noise in bN  occurring in low velocity 
regions, we construct an opacity map, referred to as a velocity 
mask, that we store in an alpha layer. With a partially transparent 
noise layer, a background image such as a geographical map (see 
color plates) can greatly enhance the information content pro-
vided by the flow by providing additional context. For maximum 
control, bN  should become more transparent in regions of low 
intensity. Regions of the flow with strong currents can be empha-
sized further by maximizing the opacity where the velocity magni-
tude is high. Once computed, the velocity mask is combined with 

bN  into an intensity-alpha texture that is blended with the back-
ground image (see color plate). We compute the opacity map  

 � �� � � �� �1 1 1 1
m n

b � � � �A V N  (10) 

as a product of a function of local velocity magnitude and a func-
tion of the noise intensity. Higher values of the exponents m  and 
n  increase the contrast between regions of low and high velocity 
and low and high intensity respectively. When 1m n  , equa-
tion (10) takes the linear form b A N V . 

6. Results 
The next section presents timings of our algorithm. We conducted 
experiments to evaluate the efficiency of the algorithm at four 
resolutions ( 2300  through 21000  pixels). We present in Table 1 
timings in frames/second, using several of the available options. 
Three different computers were used. 

The organization of the algorithm as a series of array operations 
makes it particularly straightforward to parallelize on shared 
memory architectures. Furthermore, operations on the array ele-
ments only make accesses within h  rows or columns. For small 
h , the locality of these accesses is sufficient not to produce cache 
misses on a CPU with a cache of moderate size (e.g., 512 kbytes). 
Table 1 also includes timings from an OpenMP implementation 
running on four processors of an Onyx2. 

 

Figure 8. Frame without (bottom) and with (top) LIC fil-
ter. A velocity mask is applied to both images. 

float* ALIC(const float* Vx, const float* Vy,  
         int Wv, int Hv, 
        const float* Nb, int W, int H  
       int L, float* NLIC) 
rWv = Wv/W    ; rHv = Hv/H 
rW  = W /(W-1); rH  = H /(H-1) 
L2 = L div 2 
r  = 1/(2*L2+1) 
Loop over pixels i,j { NLIC(i,j) = r*Nb(i,j) } 
sgn = 1/Vmax 
for n = 1 to 2  // Forward and backward advection 
  Loop over pixels i,j 
      Cxx(i,j)=i; Cyy(i,j)=j 
  for k = 0 to L2 
    Loop over pixels i,j //Coordinate integration 
      Cxx(i,j)= ( Cxx(i,j) 
         + sgn*Vx(rWv*Cxx(i,j),rHv*Cyy(i,j))+W)%W 
      Cyy(i,j)= ( Cyy(i,j) 
         + sgn*Vy(rWv*Cxx(i,j),rHv*Cyy(i,j))+H)%H 
 
    Loop over pixels i,j // Noise advection 
                         // and Accumulation 
       NLIC(i,j) += r*Nb(rW*Cxx(i,j),rH*Cyy(i,j)) 
  end for 
  sgn = -1/Vmax 
end for 
return NLIC 

Figure 9. Pseudo-code for ALIC (Array LIC). 



Options 

 

Resolutions 

Advection Advection + 
Velocity Mask 

� �3m n   

Advection + 
Velocity Mask 
+ ALIC filter 

� �6L   

3.4 14.0 2.2 8.8 0.8 3.0 
300 × 300  

16.3 39.0 10.4 27.0 3.6 11.6 

1.2 4.7 0.8 3.1 0.3 1.0 
500 × 500  

6.3 18.0 3.7 10.5 1.3 4.5 

0.3 1.2 0.2 0.7 0.07 0.2 
1000 ×1000  

1.4 4.1 0.9 2.7 0.3 1.1 

Table 1: Timings in frames/second as a function of op-
tions and resolutions. Each configuration has been tested 
on four different configurations: O21 (upper left), Oc-
tane2 (upper right), Onyx23 (lower left) and Onyx2 with 
four processors (lower right). 

7. Conclusion 
This paper describes an algorithm to visualize time-dependent 
flows based on an original per-pixel Lagrangian-Eulerian Advec-
tion approach. A noise image is advected from a time step to the 
next. The color of every pixel in the current image is determined 
in two steps. A dense collection of particles (one per pixel) is first 
integrated backward in time for a fixed time interval (Lagrangian 
phase) to determine their positions in the previous frame. The 
color at these positions determine the color of each pixel in the 
current frame (Eulerian phase). We described how to seamlessly 
handle regions where the flow enters the physical domain. A tem-
poral filter is applied to successive images to introduce a good 
level of spatio-temporal correlation. Thus, every still frame repre-
sents the instantaneous structure of the flow, whereas an animated 
sequence of frames reveals the motion of a dense collection of 
particles released into the flow. When necessary, spatial correla-
tion is enhanced through a fast LIC algorithm. A post-processing 
filter has been described to control the contrast between regions 
of high and low velocity magnitude. The advected noise is con-
trolled by the percentage of noise injection, while the final image 
is influenced by the temporal blending coefficient and the LIC 
parameters. Although fixed default parameters gives good results 
for any vector field, these parameters can be chosen interactively, 
to generate images suitable to the user. Transparency makes it 
possible to view a background image through the flow; this leads 
to our current work on multiple layer texture advection. We dem-
onstrated the efficiency of the algorithm on a variety of com-
puters, including a multiprocessor workstation. The interactivity 
made possible by this work has made it possible to explore 2-D 
unsteady flows in real time, and suggests that in the near future 
interactive three-dimensional texture advections will become a 
reality. 

                                                                 
1 SGI O2, R5000, 200MHz, 64MB, 1MB L2 cache, 64KB L1 cache 
2 SGI Octane, R12000, 300MHz, 2GB, 2MB L2 cache, 64KB L1 cache 
3 SGI Onyx2, R12000, 300MHz, 2GB, 8MB L2 cache, 64KB L1 cache 
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