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ABSTRACT
A fully automatic feature detection algorithm is presented

that locates, and distinguishes, lines of flow separation and
attachment on surfaces in 3-D numerical flow fields. The
algorithm is based on concepts from 2-D phase plane analysis of
linear vector fields. Unlike prior visualization techniques based on
particle tracing or flow topology, the phase plane algorithm
detects separation using local analytic tests. Results show that it
not only detects the standard closed separation lines but also the
illusive open separation lines which are not captured by flow
topology methods.

1 INTRODUCTION
Flow separation and attachment occur when a flow abruptly

moves away from or returns to a solid body such as the surface of
an aircraft. The lines along which this occurs are called separation
and attachment lines. Flow separation is most prevalent when
aircraft fly at slow speeds and high angles of attack. A separated
airflow causes a significant increase in drag and raises the stall
speed of an aircraft. This is particularly dangerous at takeoff and
landing because it can cause an aircraft to stall and rapidly lose
altitude. The ability to predict when and where flow separation
occurs is clearly very important to aircraft designers.

Several techniques have been used to identify separation and
attachment lines in numerical flow data sets although these
generally fall into one of two categories: user observation or
feature detection. Those based on user observation require
scientists to study the flow patterns on a surface and use their
experience or insight to identify the relevant features. This
approach is used in all experimental studies and in most numerical
studies of separation. In contrast, techniques based on feature
detection can automatically locate the position of separation or
attachment lines with little or no human intervention.

Feature detection techniques are becoming increasingly
important for analyzing large data sets (i.e., 1-1000 Gigabytes)
which are larger than the memory capacity of many graphics
workstations. A major advantage of feature detection algorithms
is that they can be executed on computers without graphics
capability, such as the supercomputers that generate the data.
These algorithms output 3-D graphics primitives whose combined
size is typically three orders of magnitude smaller than the
original data set.

This paper describes an automatic and deterministic feature
detection algorithm that locates both separation and attachment
lines on grid surfaces in numerical flow data sets. This algorithm
is based on phase plane analysis and performs a local analysis of
the vector field rather than a global analysis of the entire flow
field. This type of algorithm is useful for analyzing large
partitioned data sets, such as those computed on distributed
memory architectures, because the cells can be processed
independently. Also, it lends itself to parallel processing because
the algorithm is inherently parallel.

The contents of the paper are organized as follows. Prior
work on the detection and visualization of separation and
attachment lines is discussed in Section 2. Important findings
from experimental and theoretical studies of separated flows are
also discussed in that section. The mathematical foundations for
the current algorithm and aspects of phase plane analysis are
covered in Section 3. Details of the algorithm are presented in
Section 4, and applications are shown in Section 5. The results are
compared to those produced by particle tracing, line integral
convolution, and flow topology algorithms on the same data sets.
Issues are discussed in Section 6.

2 LITERATURE REVIEW

2.1 Numerical Approaches
A common approach for visualizing separation and

attachment lines is to place seed particles near a body and to
compute integral curves, such as stream or streak lines, which are
constrained to the body. This approach can be effective if large
numbers of particles are released because the curves merge
together along separation lines (see Figure 5(a)). Attachment lines
are not usually so obvious because particles diverge from these
lines. Because this approach relies on observation, the analyst
must interpret the flow patterns to determine which lines
correspond to separation and which to attachment. Both are
visually similar, although it can usually be determined by
examining the direction of the asymptotes in relation to the
direction of the onset flow. The asymptotes curve downstream
along separation lines and upstream along attachment lines.
However, it becomes difficult to make the same distinction when
the separation lines are perpendicular to the onset flow.

Skin friction lines are often studied instead of particle traces
because they are the numerical analog of surface oil flow
techniques used in wind tunnel experiments [1]. Skin friction lines
are computed from the body or wall shear stress, which is defined
as the normal derivative to the wall of the velocity vector [1]. The
shear stress vectors point in the direction of the near-wall velocity
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Figure 1. Five phase portraits that arise in linear vector fields.

vectors when projected normal to the wall. The skin friction lines
are integral curves of the shear stress vector field. As with particle
traces, the analyst must look for converging or diverging patterns
in order to locate the separation and attachment lines.

Texture synthesis techniques developed for vector field
visualization create continuous flow patterns rather than just
discrete lines [2], [3]. These techniques have been applied to CFD
data sets to create flow patterns that are strikingly similar to
experimental visualizations (see Figure 5(b)). Once again, these
techniques rely on user observation of flow patterns. While this is
relatively easy to do in steady-state simulations, it becomes
difficult in transient simulations when the surface flow patterns
change significantly over time. In [2], the traditional gray-scale
texture images were colored by a scalar quantity, the angle
between the velocity vector and the surface normal. This was
based on the observation that the on and off surface flow is high
along separation and attachment lines. Although this highlights
regions of general interest, it does not specifically locate
separation and attachment lines.

Only one feature detection technique has previously been
published that can automatically locate separation and attachment
lines [4]. It is based on the concepts of vector field topology. The
topology of a vector field consists of critical points, i.e., points
where the velocity is zero, and tangent curves (instantaneous
streamlines) which connect these points. Because the velocity at a
critical point is zero, the velocity field in the neighborhood of the
critical point is determined by the velocity gradient tensor,
grad(u ). Critical points are classified, to a first order
approximation, by the eigenvalues and eigenvectors of grad(u).
Common classifications include a saddle, node, spiral, and center
(see Figure 1).

In [4], the separation lines were generated by integrating
outwards from the saddle or node type critical points in the real
eigenvector directions. These tangent curves, or more precisely,
the separatrices, were classified as separation or attachment lines
based on the sign of the eigenvalues. That is, a positive or a
negative real part of an eigenvalue indicated whether the tangent
curve had an attracting or repelling nature. This approach assumes
that the separation is closed, that is, a separation line that begins at
a saddle or node will end at another saddle or node.

Another type of separation, called open separation, does not
require separation lines to either start or end at critical points.
Consequently, flow topology does not predict open separation.
The theory for open separation also suggests that a separation line
can terminate at a critical point without originating from one. An
example of this will be shown in Section 5.1. Open separation has

been observed by experimentalists in wind and water tunnel
experiments, but this phenomenon has not been previously studied
by the numerical flow visualization community.

2.2 Experimental and Topological
Approaches

There has been extensive research on three-dimensional flow
separation over the last 50 years. Important contributions have
come from Lighthill [5], Tobak and Peak [6], Wang [7], Dallman
[8], Zhang [9], Chong, Perry, and Cantwell [10] and [11], and
Chapman [12]. These contributions can be categorized as either
experimental or topological.  The experimental approach is based
on observations made in wind and water tunnel experiments,
whereas the topological approach is based on the mathematics of
Poincare [13].

One of the most important developments was the concept of
open separation [7]. The issue of open separation has been, and
still is, one of the most controversial aspects of flow separation.
Outstanding questions reported in [14] include: What is the nature
of the starting point of an open separation line? How does closed
separation evolve into open separation? Under what
circumstances will open separation occur or not occur?  This
paper does not attempt to answer such questions. However, it may
contribute to the answers because the visualization technique
presented here can detect open separation in numerical vector
fields. Results presented in Section 5.2 support assertions made by
Chapman [12] that open separation is prominent in delta-wing
configurations.

The definition of a separation line was another long standing
dispute in flow separation literature. Specifically, is a separation
line an envelope of the limiting streamlines or the skin friction
lines, or is it itself a limiting streamline? Zhang [9] settled this
dispute by showing that both definitions were partly correct. That
is, a separation line is an envelope if based on boundary layer
theory, but it is a limiting streamline if based on the Navier-Stokes
equations. The latter definition is used in this paper.

3 THEORY
It is assumed that the computational domain on the surface

can be subdivided into triangles and the Cartesian vector
components are given at the vertices. Based on these data, a
continuous linear vector field can be constructed that passes
through each triangle and satisfies the prescribed vectors at the
vertices:



(a) Saddle: µ < 0 < λ (b) Repelling node: 0 < µ < λ (c) Attracting node: µ < λ < 0

Figure 2. Three phase portraits have tangent curves that asymptotically converge on an axis in the phase plane.
Triangles that straddle these axes contribute line segments to either separation or attachment lines.
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Here, x and y are the Cartesian coordinates, and ( ˙, ˙ )x y  is the
tangential velocity or shear stress vector. The coefficients (a1, a2)

and those in the 2x2 (Jacobian) matrix on the right-hand side of
equation (1) are constants. These constants can be computed
analytically by substituting the coordinates and vectors from each
vertex into equation (1) and then solving the resulting set of
simultaneous equations:
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By differentiating equation (1) with respect to time and then
algebraically manipulating the resulting equations, it can be
separated into a pair of second order non-homogeneous ordinary
differential equations:

˙̇ ( ) ˙ ( ) ( )x b c x b c b c x a c a c− + + − = −1 2 1 2 2 1 2 1 1 2

˙̇ ( )˙ ( ) ( )y b c y b c b c y a b a b− + + − = −1 2 1 2 2 1 1 2 2 1 (3)

The solutions to these types of equations can be found in
most texts on differential equations (e.g., [15], [16]). The
eigenvalues of this system are the roots of the homogeneous part
of equation (3), i.e., λ λ2 0− + + − =( ) ( ) .b c b c b c1 2 1 2 2 1  If the

determinant of the Jacobian matrix is non-zero, the solution takes
the form:
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where λ and µ  are the eigenvalues of the Jacobian matrix and

ξ ξ1 2,( )T
 and η η1 2,( )T

 are the eigenvectors. The two column

eigenvectors form the eigenmatrix. It is important that the
eigenvectors are scaled so that the determinant of the eigenmatrix
equals 1. The reason for this will become apparent. The terms α
and β are arbitrary constants that define a particular curve in the
phase plane. The constants xcp  and ycp  are the coordinates of the

critical point:
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In equation (4), these constants translate the coordinate
system so that the origin coincides with the critical point. Note
that every triangle has a critical point somewhere in its linear
vector field, although, in general, the critical point will not lie
inside the triangle. The critical points that do lie inside triangles
correspond to those found by vector field topology methods [4].
Equation (4) can be simplified further by changing to a canonical
coordinate system, that is, a coordinate system where the
eigenvector directions are orthogonal:
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The lines of the vector field can now be represented by
curves in the (x, y) plane (often referred to as the Poincare phase
plane [13]). Note that italic characters denote coordinates or
vectors that have been mapped into the phase plane. By
eliminating the integration variable t from equation (6), the
trajectories of these curves can be expressed as an implicit scalar
function. If the eigenvalues are both real numbers, the expression
is either:



Ψ x y
x

y
,( ) =

µ

λ       or      Ψ x y
y

x
,( ) = −

λ

µ (7)

Both scalar functions are valid solutions to equation (1). The
contours of Ψ(x,y) are everywhere tangent to the vector field and

may be verified using the relationship ∇Ψ  • u = 0, where u is the
image of the vector field in the phase plane. By differentiating
equation (6) with respect to t, the reader can obtain the necessary
transformation that maps the vector field (equation (1)) into the
phase plane. It now becomes apparent why the determinant of the
eigenmatrix must equal one; it ensures that the vector field is not
scaled by the canonical transformation.

By choosing arbitrary points in the phase plane and rendering
tangent curves using equation (7), we obtain the so-called phase
portrait of the system. There are five different phase portraits for
the linear vector field described by equation (1), as shown in
Figure 1. Equation (7) gives rise to the phase portraits for the
saddle and the improper and proper nodes. The saddle arises when
the eigenvalues have opposite signs, whereas the nodes arise when
they have the same sign.

One definition of a separation line, as discussed in Section
2.2, is a limiting streamline on which adjacent streamlines
converge. The phase portrait for the saddle (Figure 2(a)) contains
two lines on which streamlines converge. These lines originate at
the critical point and are tangential to the eigenvector directions,
i.e., the x = 0 and y = 0 axes in the phase plane. These lines are
called separatrices in phase plane terminology. By substituting
either x = 0 or y = 0 into equation (7), we find that the stream
function is either zero or singular depending on which solution is
used. In either case, these lines correspond to streamlines and
fulfill the definition of a separation line.

The phase portrait for the improper node can assume one of
two orientations in the phase plane depending on whether it is an
attracting node (µ<λ<0) or a repelling node (0<µ<λ). Specifically,
streamlines asymptotically converge on the x = 0 axis for a
repelling node, while they converge on the y = 0 axis for an
attracting node (Figures 2(b) and 2(c)). A node also has a
degenerate form called a proper node (see Figure 1) which arises
when one of the eigenvalues is zero. The phase portrait for a
proper node does not have any limiting streamlines and does not
therefore contribute to separation or attachment lines.

The phase portraits for the spiral and center, also shown in
Figure 1, arise when the eigenvalues are complex conjugates, i.e.,
µ σ ν= + i , λ σ ν= − i . Equation (7) still holds for these cases,
although it can be re-derived in terms of real numbers by first
converting to polar coordinates and then by applying standard
trigonometric identities. The expression for Ψ now becomes:

Ψ r re,θ
θ

( ) =
σ
ν (8)

where r x y= +2 2  and θ = tan-1 y x . Complex eigenvalues are

indicative of rotating flows and typically occur near vortices. Note
that the center is just a degenerate form of the spiral where the
eigenvalues are pure imaginary numbers, i.e., σ=0. The phase
portraits for the spiral and the center do not exhibit any limiting
lines like those for the saddle and improper node. This implies

that there are no separation lines in vortical flow regions
according to the definition used here. Consequently, separation
lines will terminate as they enter vortices in the present algorithm.

Ψ(x,y) and Ψ (r ,θ) behave much like Lagrange’s stream
function for irrotational, divergence free, 2-D vector fields
inasmuch as the tangent lines are contours of a scalar function.
However, Ψ(x,y) and Ψ(r ,θ) are exact solutions to a rotational 2-D
linear vector field which, in general, will not be divergence free.
No prior references have been found for these scalar functions in
texts on differential equations. The author calls them non-
conservative stream functions because they violate the law of
mass conservation. It can be shown that the divergence of
equation (1) is non-zero by calculating the trace of the Jacobian:

∇ • = + ≠u b c1 2 0 (9)

where u = ( ˙ ˙x,y). A non-zero divergence means that mass is not
conserved on the surface of the triangle. The fact that this system
can ‘lose mass’ is physically important because this accounts for
fluid that leaves the surface as the flow converges on a separation
line. Conversely, the system will ‘gain mass’ as the flow returns
to the surface and diverges from an attachment line.

4 IMPLEMENTATION
The following algorithm describes how to detect a separation

or attachment line on a triangular element from the vectors
prescribed at the vertices. In general, these vectors will not lie in
the plane of the triangle and must be projected onto the surface by
calculating either the tangential velocity vectors or the shear stress
vectors. This projection is relatively simple for curvilinear grids if
they are transformed into an orthogonal coordinate system
(computational coordinates) since one coordinate direction is
always orthogonal to a no-slip surface. For unstructured meshes,
the velocity vectors can be projected based on a local surface
normal. This projection should be done before executing the
following steps.

1. Transform the triangle’s coordinates and vectors from a
three-dimensional basis into a two-dimensional basis. These
will be referred to as 2-D coordinates herein.

2. Calculate the coefficients of the 2-D linear interpolation
function using equation (2) and assemble the Jacobian matrix
shown in equation (1).

3. Calculate the discriminant of the Jacobian matrix using
∆ = −tr det2 4( ), where tr is the trace of the Jacobian (b1+c2)

and det is the determinant (b1c2−b2c1). Processing stops if the
discriminant is negative, that is, when the eigenvalues are
complex numbers.

4. Evaluate the eigenvalues of the Jacobian matrix. Processing
stops if one of the eigenvalues is zero (i.e., the phase portrait
is a proper node).

5. Calculate the eigenvectors of the Jacobian matrix and
assemble the eigenmatrix as shown in equation (4).

6. Calculate the coordinates of the critical point using equation
(5).

7. Project the triangle onto the phase plane by transforming
each vertex into canonical coordinates using equation (6).

8. Determine the phase portrait using the eigenvalue tests in



Figure 2. The phase portrait will be either a saddle or a
repelling/attracting improper node at this stage.

9. If the phase portrait is a saddle or a repelling node,
determine whether the line x = 0 intersects the triangle on the
phase plane. If it does, calculate the two intercepts and
convert them back into 2-D coordinates using the inverse
transformation of step 7. The line segment connecting these
points will form part of an attachment line.

10. If the phase portrait is a saddle or an attracting node,
determine whether the line y = 0 intersects the triangle on the
phase plane. If it does, calculate the two intercepts and
convert them back into 2-D coordinates using the inverse
transformation of step 7. The line segment connecting these
points will form part of a separation line.

11. Transform the 2-D coordinates back into 3-D Cartesian
coordinates and render the line segment with a color that
distinguishes it as a separation or attachment line.

These steps are independently applied to every triangle on
the surface of the body and may be executed in serial or in
parallel. A C++ implementation of this algorithm, running on a
Silicon Graphics Onyx II with one R10000 CPU, processed
approximately 105 triangles per second.

5 RESULTS
Many numerical and experimental studies of separated flows

have concentrated on bodies with simple geometries. Both data
sets considered here fall into this category. The first is a
hemisphere (or ogive) cylinder which is representative of the
forebody of an aircraft. The second is a 65˚ swept delta wing
which is representative of the wing shape used on many fighter
aircraft. In spite of their simple geometries, these data sets display
complicated separation patterns and contain both open and closed
separation and attachment lines.

5.1 Hemisphere Cylinder
The hemisphere cylinder in Figure 3(a) has been used in both

experimental and numerical studies of flow separation over an
inclined body [17]. The surface flow pattern shown in Figures
3(a) and 3(b) was computed using a line integral convolution
(LIC) program [2]. Separation and attachment lines are clearly
visible where the streaks converge. However, the LIC algorithm
does not distinguish them or find their location.

The flow topology of the hemisphere cylinder was previously
examined by Helman and Hesselink [4] using numerical
techniques based on critical point theory. The surface topology
shown in Figure 3(a) was produced using the topology module in
FAST [18] and is consistent with the results presented by Helman
and Hesselink. The tangential velocity field on the no-slip body
(i.e., the grid plane k=0) was generated by projecting the velocity
vectors in the grid plane next to the surface (k=1) onto the body.
The local phase plane algorithm was applied to the same
tangential velocity field and produced the results shown in Figure
3(b). The separation lines are white and the attachment lines are
black in both images.

There are two obvious differences between Figures 3(a) and
3(b). The first is that the separation and attachment lines produced
by the phase plane approach do not connect all the critical points.
This is because many of the lines connecting the critical points are

not separation or attachment lines according to the definition used
here. In particular, if the reader examines the flow around the
hemisphere at the front of the body in Figure 3(b), there are no
asymptotically converging flow patterns in this region. The
second obvious difference is that the topology algorithm in FAST
does not detect two attachment lines on the rear of the body. The
same lines were also missing in the results presented in [4]. The
surface flow pattern in Figure 3(b) clearly shows that the flow
converges along these lines. These are open attachment lines
according to Chapman [12] because they terminate at a critical
point but do not originate from one. Presumably, the topology
approach could detect these lines if the integration time step were
reversed and the streamlines traced backwards from the
terminating critical points.

5.2 Delta Wing
Many of today’s fighter aircraft are based on delta wing

geometries like the one shown in Figure 4 and 5. Aeronautical
engineers are particularly interested in the behavior of the flow
both on and above the wing while flying at low speeds and high
angles of attack [19]. Figure 5(a) shows the surface streamlines
computed from the tangential velocity field. Note that there are
many asymptotically converging streamline patterns running
parallel to the lead edges of the wing. Chaderjian and Schiff [19]
used traces like these to analyze this data set and reported the
following. “The technique clearly reveals the separation lines
where particles accumulate. Reattachment lines are not as readily
apparent, since on attachment lines the particles move away from
each other. However, computed primary, secondary and tertiary
separation lines are readily seen.”

The separation lines Chaderjian and Schiff mention are
linked to the vortical flow above the wing. This flow was revealed
by rendering vector arrows on a transverse plane, as shown in
Figure 4(b). The primary and secondary vortices are clearly
visible in this figure, but the tertiary vortex, which lies in between
them, is less obvious because it hugs the surface. Each vortex
draws fluid off the surface along separation lines and returns fluid
to the surface along attachment lines. Consequently, the latter are
often called re-attachment lines. Given that each vortex is both
drawing fluid and returning it to the surface, we expect to see an
equal number of separation and attachment lines.

Figure 5(b) shows the surface flow pattern produced by a
LIC algorithm. The continuous texture improves on the discrete
streamlines in Figure 5(a), although the flow patterns still require
careful observation to distinguish the separation lines from
attachment lines.

Figure 5(c) shows the critical points and surface flow
topology computed using the FAST [18] topology module.
Surprisingly, only two pairs of critical points were found on the
surface of the wing. A more comprehensive critical point analysis
of the entire 3-D flow field revealed that there were no off-surface
critical points whatsoever in this data set. Each pair of critical
points consists of one repelling spiral point and one saddle point.
Note that only one of the integral curves that originates from each
saddle point follows an attachment line. None of the other
primary, secondary, or tertiary separation or attachment lines near
the wing's leading edge either start or end at critical points. These
are open separation/attachment lines according to Wang’s
classification  [7],  [14].  Flow  topology  methods   cannot  detect





this type of open separation line because they are not bounded by
any critical points, either on or off the body.

Figure 5(d) shows the results of the phase plane analysis
technique. Separation lines are colored white and attachment lines
green. As expected, there are three separation lines and three
attachment lines on each side of the wing, that is, one pair for
each vortex. Furthermore, their location precisely coincides with
the asymptotes of the streamlines. Note the appearance of the
disjointed line segments towards the rear of the wing where the
separation lines are bent by a vortex. This is a consequence of the
low-order linear interpolation function on which the algorithm is
based. The location and direction of the separation line are
dictated by the gradients of the interpolation function, which are
constant over each triangle but discontinuous between triangles.
This discontinuity becomes apparent when separation lines curve.
Fortunately, most separation lines do not have significant
curvature, and the current approach produces acceptable results.

6 ISSUES
One problem with the phase plane approach already

discussed was the appearance of disjointed line segments. A
related problem occurs when flow separation/attachment is
relatively weak and becomes diffused over several cells. This
causes the phase plane algorithm to either detect multiple “ghost”
lines or leave gaps. The attachment line near the center of the
wing in Figure 5(d) displays these characteristics. In this event,
the assumption that the flow is locally linear is not entirely
adequate. Although these lines are visually distracting, they are
far less important from an engineering perspective than the strong
separation and attachment lines that are well defined.
Nevertheless, the author plans to correct this problem by applying
the same principles to higher-order interpolation functions.

7 CONCLUSIONS
An analytic technique for detecting separation and

attachment lines was presented which only requires a local
analysis of a surface flow vector field. The theory for the new
technique, based on concepts from linear phase plane analysis,
was shown to satisfy an accepted definition for a separation line
based on the Navier-Stokes equations. The phase plane algorithm
was applied to a hemispherical cylinder and a delta-wing data set
used in prior numerical studies of separated flows. It detected both
open and closed type separation and attachment lines in both data
sets. The ability to detect open separation lines is particularly
significant because this type of separation is not predicted by flow
topology theory, although it has been observed in wind tunnel
experiments.
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