
Isosurfacing in Span Space with Utmost Efficiency (ISSUE)

Han-Wei Sheny Charles D. Hansenz Yarden Livnaty Christopher R. Johnsony

y Department of Computer Science z Advanced Computing Laboratory
University of Utah Los Alamos National Laboratory
Salt Lake City, UT Los Alamos, New Mexico

Abstract

We present efficient sequential and parallel algorithms
for isosurface extraction. Based on the Span Space data
representation, new data subdivision and searching meth-
ods are described. We also present a parallel implementa-
tion with an emphasis on load balancing. The performance
of our sequential algorithm to locate the cell elements in-
tersected by isosurfaces is faster than the Kd-tree search-
ing method originally used for the Span Space algorithm.
The parallel algorithmcan achieve high load balancing for
massively parallel machines with distributed memory ar-
chitectures.

1 Introduction

Scientific visualization has played an important role
in understanding three-dimensional scalar data. As cost-
effective high performance computers with large amount
of memory and disk space become more accessible, the
sizes of these scalar data also continue to increase. To vi-
sualize these large-scale data sets, generally two different
paradigms are used. One paradigm is to transfer the data
onto graphics workstations and perform the visualization
as a postprocessing step. Alternatively, visualization can
be performed on the same, typically parallel, machines that
run the simulation thereby providing the user faster feed-
back necessary for computational steering. In this paper,
we propose an efficient sequential isosurfacing algorithm
and a load balanced parallel isosurfacing algorithm to fulfill
the requirements of both visualization paradigms.

Isosurfacing is an effective technique to explore three-
dimensional scalar fields. A simple and effective method is
the Marching Cubes algorithm, proposed by Lorensen and
Cline [1]. The algorithm has a complexity of O(N ) since
it is necessary to visit each cell� in the three-dimensional

�In a uniform three-dimensionalfield, a cell is sometimes referred to as
a voxel. We use the term cell to indicate elements of a three-dimensional
grid that may be a uniform or regular structured grid or an unstructured

field. When the data set is large, visiting each cell is
too costly and recent research efforts have investigated
the acceleration of the isosurfacing process, namely Wil-
helms and Van Gelder’s octree spatial subdivision [2], Gal-
lengher’s span filter [3], Itoh and Koyamada’s extreme
graph method[4], Shen and Johnson’s sweeping simplices
algorithm [5],and Livnat et al.’s near optimal isosurface ex-
traction (NOISE) algorithm [6].

Among the above accelerating techniques, the NOISE
algorithm is near optimal. This algorithm has a worst case
complexity of O(

p
N + K) to locate the cells that are in-

tersected by the isosurfaces, whereN is the total number of
cells in the scalar field, and K is the number of isosurface
cells. The crux of this algorithm is a novel data representa-
tion, termed the Span Space. Using this representation, the
isosurface extraction process can be reduced into a range
searching problem. Livnat et al. proposed a classical Kd-
tree searching method [7] to locate, in that space, the cells
that contain an isosurface.

In this paper, we use the Span Space as the underlying
representation to design high performance isosurface ex-
traction algorithms for both single processor workstations
and massively parallel machines with distributed mem-
ory architectures. Rather than using the Kd-tree search-
ing method, we subdivide the Span Space into a two-
dimensional regular lattice and propose a new searching
method. Our new sequential algorithm leads to a average
case time complexity of O(log(N

L
) +

p
N
L

+ K) to lo-
cate the isosurface intersected cell elements, where L is an
user specified parameter, as explained in Section 3, with a
value typically between 200 to 500. In practice, this new
method is faster than the NOISE algorithm in locating the
isosurface cells. Our parallel isosurfacing algorithm adopts
a static load balancing scheme to distribute the cells among
Processing Elements (PEs). Each PE executes the sequen-
tial algorithm locally leading to an average difference be-

grid. The cells may be tetrahedra, hexahedra, prisms or other polyhedra.
The methods described in this paper are useful for any type of grid.

Production Editor's Note
There are a number of supplemental TIFF images which accompany this file, located in PAPERS/shen/.



X

Y

Min

Max

X = Y 

666666666
666666666
666666666
666666666
666666666
666666666
666666666
666666666
666666666
666666666
666666666

V

V

Figure 1: Span Space

tween the maximum and minimum workloads of lower than
2%.

We begin the paper by providing details of the Span
Space data representation. Next, we describe the new lat-
tice subdivision method with a fast searching algorithm.
We then discuss some implementation details. Building
upon this, we present the parallel algorithm with an empha-
sis on the load balancing. Finally, we conclude the paper
with several experimental results.

2 Span Space

For each cell element in the three-dimensional scalar
field, there exists an interval [a; b] representing the scalar
range of the data at the cell’s vertices, where a is the cell’s
minimum value and b is the cell’s maximum value. For a
given isovalue v, the cell Ci that has interval [ai; bi] such
that ai < v, and bi > v is intersected by the isosur-
face. To accelerate the isosurfacing process, researchers
have proposed different methods to decompose the data do-
main such that for each isovalue, there is only a small num-
ber of subdomains that need to be examined [3, 5].

Livnat et al. provide an interesting perspective for the
isosurfacing problem [6]. For a cell with minimum value
a and maximum value b, instead of treating the [a; b] as an
interval, they map the cell into an unique point position,
(a; b), in an R2 value space, termed the Span Space. Fig-
ure 1 illustrates the Span Space. The horizontal axis X de-
picts a cell’s minimum value, and the vertical axis Y de-
picts a cell’s maximum value. Note that cell elements can
be mapped only to the half space above the X = Y line
because a cell’s maximum value is always greater than or
equal to its minimum value. Using the Span Space data rep-
resentation, the isosurfacing problem is then reduced into a
classical range search problem. The problem is stated as
follow:

� For a given isovalue v, the cell Ci that has associated

X

Y

Min

Max

X = Y 

!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!

Lattice
Element(1,1)

Lattice
Element(8,8)

Lattice Element(4,6)

d0 d1 d2 d6 d7 d8= ∞

Figure 2: Lattice Subdivision

points (xi; yi) in the Span Space, such that xi < v and
yi > v is an isosurface cell.

In Figure 1, cells having points within the shaded area
are the isosurface cells.

Unlike the interval representation for a cell that poses
difficulties for subdividing the cells in the scalar field, the
point representation in the Span Space provide a much sim-
pler way to subdivide the data domain. This advantage lays
down the basis for us to develop an efficient searching al-
gorithm.

3 New Searching Algorithm

In this section, we describe a data subdivision scheme
and a new searching algorithm to locate the isosurface cells.
Based on the Span Space representation, the new subdivi-
sion scheme organizes the cells in such a way that the iso-
surface cells can be easily located.

3.1 Lattice Subdivision

Our algorithm decomposes the data domain by subdivid-
ing the Span Space intoa two dimensionalL�L lattice. As-
suming that the scalar field has a global minimum valuem,
and a global maximum valueM , we define a set of dividing
pointsfdig

i=L

i=0 such that d0 = m, dL =1, di < di+1, and
fdig

i=L�1
i=1 2 (m;M ]. A lattice element(i; j); i = 1::L

and j = 1::L is defined as a square region in the Span
Space containing point (x; y) such that x 2 [di�1; di) and
y 2 [dj�1; dj). Figure 2 shows a 8 � 8 lattice subdivi-
sion imposed upon the Span Space. Note that the X = Y

line crosses the diagonals of lattice element(i; i); i = 1::L.
Also, all the lattice elements with indices (i; j); i > j are
empty because the minimum values can not be greater than
the maximum values.



!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!

666
666
666
666
666
666

333
333
333

111111111
111111111
111111111

X

Y

Min

Max

X = Y 

!!!
!!!
!!!

&&&
&&&

111
111

666
666

333
333
333

Case 1

Case 2

Case 3

Case 4

Case 5

V

&&&&&&&&&
&&&&&&&&&
&&&&&&&&&
&&&&&&&&&
&&&&&&&&&
&&&&&&&&&
&&&&&&&&&

V

Lattice element(p,p)

Figure 3: Lattice Classification

3.2 Searching Algorithm

Using the lattice subdivision, we can quickly locate the
candidate lattice elements that contain the isosurface cells.
Given an isovalue v, v 2 [dp�1; dp), we classify the lattice
elements in the Span Space into five cases based on their
indices (i; j) as follows:

1. i > p or j < p: All the cells in this region have either a
higher minimum value or lower maximum value than
the isovalue. Hence these lattice elements trivially do
not contain any isosurface cells.

2. i < p and j > p: All the cells in these lattice elements
are isosurface cells.

3. i < p and j = p: All the cells in this region have a
lower minimum value than the isovalue. Hence only
those cells that have a higher maximum value than the
isovalue are isosurface cells.

4. i = p and j > p: All the cells in this region have a
higher maximum value than the isovalue. Hence only
those cells that have a lower minimum value than the
isovalue are isosurface cells.

5. i = p and j = p: This is the only lattice element
that requires a min-max search to locate the isosurface
cells. Any isosurfacing algorithm, such as a Kd-tree
searching method or sweeping simplices, will do.

Figure 3 shows the five cases in the Span Space.
From the above description, the lattice elements in case

1 can be immediately rejected. Locating isosurface cells
from the case 2 region requires no searching operation since
every cell in the region is an isosurface cell. The cells can
be directly collected from the Lattice Element data struc-
tures that contain cell indices.

To locate isosurface cells in the lattice elements of case
3, we design a Row data structure. Row [R] contains indices

and maximum values of cells in lattice elements (i; j), i <
R; j = R. The cell indices are sorted by their maximum
values. To collect the isosurface cells, we apply a binary
search to Row [p] and find the cells with maximum values
greater than the isovalue v.

To collect isosurface cells in the lattice elements of case
4, we design a Column data structure. Column [C] con-
tains indices and minimum values of cells in lattice ele-
ments (i; j), i = C; j > C. The cells in each column struc-
ture are sorted by their minimum values. Those cells in
Column [p]with minimum values lower than the isovalue v
are isosurface cells and can be located with a binary search.

The lattice element in case 5 is the only region that we
need to employ regular isosurface searching, i.e., finding
cells with minimum values lower, and maximum values
higher than the isovalue. To achieve this, we can use any
efficient isosurface extraction algorithm. For instance, we
can build a Kd-tree structure for lattice element (p; p) and
apply Kd-tree search to locate the isosurface cells or we
could employ the Sweeping Simplices algorithm [5].

The search phase of our isosurfacing algorithm includes
two binary searches in the regions of case 3 and case 4,
and one min-max search in the lattice element of case 5.
Since the entire Span Space contains L rows, L columns,
and L�(L+1)

2
lattice elements above theX = Y half space,

the average number of cells in each row and column is N
L

,
and the average number of cells in each lattice element is

2N
L(L+1)

. The binary search for each row and column re-

quiresO(log(N
L
)), and the Kd-tree mix-max search for the

lattice element in case 5 requiresO(
p
N
L

). Hence, the over-
all average case performance for our new algorithm is then
O(log(N

L
)+

p
N
L

+K), where K is the number of the iso-
surface cells.

3.3 Implementation Details

In this section, we provide important implementation
details of our searching algorithm. First, we describe how
to determine the dividing points fdig. Second, we describe
a sparse manipulation method to avoid visiting the empty
lattice elements when collecting the isosurface cells.

From the earlier description, we know that a lattice ele-
ment (i; j) is a region in the Span Space containing points
(x; y) such that x 2 [di�1; di) and y 2 [dj�1; dj). Assum-
ing that the value range of the field is [m;M ];m;M 2 R,
and that the Span Space is subdivided into an L�L lattice,
a straightforward way to determine fdig is to evenly cut

the interval [m;M ], that is, fdi = m + i� (M�m)

L
g
i=L�1
i=0

and dL = 1. However, this method does not produce a
uniform data point distribution at each interval [di; di+1]
which results in an uneven cell distribution among the



!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!

X

Y X = Y 

: Non−empty lattice element 

Figure 4: Sparse Manipulation

lattice elements. To avoid this, we find fdig
i=L�1
i=0 in

such a way that the number of data points at each interval
[di; di+1] is approximately the same. We achieve this by
sorting all data points into a list and dividing the list intoL
sublists having approximately the same lengths. The scalar
values which bound those sublists are the dividing points.

As mentioned earlier, only lattice elements in cases 3, 4,
and 5 require searching operations to locate the isosurface
cells. The finer we subdivide the Span Space, the smaller
the areas of the regions defined by those cases. This results
in a greater number of cells which are located in the case
2 region and therefore can immediately be collected. How-
ever, as we more finely subdivide the Span Space, there can
be a larger number of empty lattice elements. This has the
potential to degrade the algorithm’sperformance since time
would be spent checking those empty lattice elements when
we collect the isosurface cells. To overcome this limita-
tion, we use a sparse manipulation method on the lattice.
As we pre-process the data field and distribute the cells into
the lattice, the non-empty lattice elements are marked. The
lattice elements at each row are then connected together
with pointers. Figure 4 illustrates the sparse manipulation
method. We note that using sparse manipulation, the num-
ber of non-empty lattice elements is bounded by the number
of cells in the 3D scalar field no matter how fine we subdi-
vide the Span Space. In the results section, we show the re-
lationship between the resolution of the lattice subdivision
and the performance of the searching algorithm.

4 Parallel Algorithm

In this section, we present a parallel isosurfacing algo-
rithm. The underlying architecture model is massively par-
allel machines with distributed memory such as the Cray

!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!

X

Y X = Y 

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2 3

Figure 5: Lattice Distribution

T3D. The algorithm can be divided into three phases: cell
distribution, initialization, and isosurface extraction. In
the cell distribution phase, cells are partitioned into several
subsets and distributed to the processing elements (PEs). In
the initializationphase, each PE builds lattice, row, and col-
umn data structures based on the local data. In the isosur-
face extraction phase, each PE locally employs our search-
ing algorithm to extract the isosurfaces.

Our emphasis is on paradigms of cell distribution
achieving load balancing. For any given isovalue, we want
the PEs to spend a balanced amount of time in isosurfacing
and to produce balanced amount of triangles. In this way,
not only does our isosurfacing algorithm exhibit good scal-
ability, it can also be directly connected to a parallel render-
ing process, which requires an even distribution of primi-
tives for the initial geometry processing[8].

We achieve the load balancing by carefully designing a
cell distribution scheme. Ideally, if cells within any scalar
range [a; b] are evenly scattered, each PE would have ap-
proximately the same number of isosurface cells for any
isovalue. To achieve this, we use a cell distributionmethod
built on top of the lattice subdivisionof the Span Space. As-
suming that there are L � L lattice elements in the Span
Space, and that there areN PEs available, numbering from
PE[0] to PE[N � 1], we unfold the lattice elements in the
half space above the X = Y line column by column into a
1D list and distribute these L�(L+1)

2
elements into the PEs

using a round-robinmethod. Figure 5 shows a lattice distri-
bution of 8� 8 lattice with 4 available PEs. To express our
round-robin method in terms of indices of lattice elements
and PEs, our method distributes the cells in the lattice(i; j)
into PE[(j�1+ (2L�i)�(i�1)

2
)modN ]. As a result, each PE

receives a balanced work load because the lattice elements
in cases 2,3,4,5 are evenly distributed.



The resolution of the lattice subdivision is crucial to
the load-balance of the algorithm since a finer subdivision
exhibits better cell scattering. However, in the isosurfac-
ing algorithm, creating a fine subdivision implies that we
have to create more lattice data objects, which would incur
higher memory overhead. To overcome this, we decouple
the lattice subdivisionused for the cell distributionfrom the
one used for isosurfacing algorithm. Initially, a finer lattice
subdivision is used for the round-robindistributionscheme.
After each PE receives its local data, a coarser lattice sub-
division is used to create the lattice, row, and column data
structures. In this way, we can exploit a fine subdivision
which achieves good cell scattering, but not invoke exces-
sive memory overhead in performing isosurfacing. We re-
fer to the elements of this subdivision for the cell distribu-
tion as buckets to distinguish from lattice elements used for
the isosurfacing algorithm.

5 Results and Discussion

In this section, we present empirical results to evaluate
our algorithms. The sequential algorithm was tested on a
150 MHz MIPS R4400 processor. The parallel algorithm
was tested on a Cray T3D parallel machine. All the results
presented were obtained by averaging one thousand execu-
tions with randomly assigned isovalues.

5.1 Sequential Algorithm

We used three unstructured grid data sets to test our se-
quential algorithm. These data were generated from bio-
electric field problems solved using finite element meth-
ods. The data sizes range from 69 thousand to 1.3 mil-
lion elements. Table 1 gives a summary of the data sets.
Figures 11–13 depict a single iso-surfaced image for each
of the data sets. The performance of the searching phase
of the algorithm is affected by the resolution of the lattice
subdivision. The finer we subdivide the Span Space, the
smaller the area of the regions covered by case 3,4,5 while
the greater the area of the region covered by case 2. How-
ever, This is mitigated by the overhead of constructing the
necessary data structures. Figure 6 demonstrates the rela-
tionship between the time to search for isosurface cells and
the resolution of the lattice subdivision. We can see that the
search time dramatically decreases as we increase the num-
ber lattice elements up to 256 � 256. After that, the per-
formance degraded slightly due the overhead incurred by
using a very fine lattice structure. Figure 7 shows the to-
tal isosurfacing time, including the time for triangulation,
verses the resolution of the lattice subdivision. Because we
used the sparse manipulation method mentioned in the sec-

Data Set Vertices Cells
Heart 11,504 69,892
Torso 201,142 1,290,072
Brain 74,217 471,770

Table 1: Data Sets

Method Heart Torso Brain
Lattice 0.017 0.129 0.052
Kd-tree 0.4 2.2 1.5

Table 2: Comparison of the lattice method with the Kd-tree
method in locating the isosurface cells.(in msecs)

tion 3.3, the overhead incured by a very fine subdivision is
not overwhelming.

512x512 lattice elements were used in our experiments.
Table 2 shows the times for locating which cells contain an
isosurface for both the Lattice based algorithm and the Kd-
tree algorithm. Note that the time to locate the isosurface
cells is an order of magnitude faster. Table 3 compares the
total isosurfacing time: locating which cells contain an iso-
surface, traversing those cells to perform triangulation, and
the triangulation time. It can be seen that the Lattice based
search improves the overall performance by approximately
25%. The triangulation time begins to dominate which is
why the time to locate the isosurface cells is an order of
magnitude faster but overall the system exhibits only a 25%
increase in performance.

The initialization complex-
ity for our algorithm is O(2L � n

L
log(n

L
) + n), where L

is the number of bins used at each dimension of the span
space, and n is the number of cells. The is because that we
need to sort the cells at each row and column based on their
minimum or maximum values, and put the cell indices into
appropriate lattice elements. Table 4 gives the initialization
time for the test data sets.

The memory requirement for our algorithm is O(n).
This includes cell indices , minimum, and maximum val-

Method Heart Torso Brain
Lattice 4.65 33.47 41.33
Kd-tree 7.0 43.8 53.9

Table 3: Comparison of the lattice method with the Kd-tree
method in total isosurfacing time.(in msecs)



0.01

0.1

1

10

100

0 200 400 600 800 1000 1200

E
xe

cu
tio

n 
T

im
e(

m
se

cs
)

K

Heart
Torso
Brain

Figure 6: Searching Time v.s. K x K Lattice Subdivision

1

10

100

1000

0 200 400 600 800 1000 1200

E
xe

cu
tio

n 
T

im
e(

m
se

cs
)

K

Heart
Torso
Brain

Figure 7: Total Isosurfacing Time v.s. K x K Lattice Sub-
division

ues stored in the row and column date structures, cell in-
dices stored in lattice elements, and memory consumed by
the algorithm applied to cells in the lattice elements of case
5. We assume that the memory requirement for the algo-
rithm chosen to extract isosurfaces from cells in case 5 is
bound by O(n), which is true if we use either KD-tree or
Sweeping Simplices searching methods.

5.2 Parallel Algorithm

We have implemented our parallel algorithm using C++
on a Cray T3D supercomputer in the Advanced Computing
Laboratory at Los Alamos National Laboratory. The Cray
T3D is a massively parallel computer with a distributed
memory architecture. Each processing element has a 64 bit
DEC Alpha microprocessor and 8M words local memory.

Method Heart Torso Brain
Time 1.88 53.19 13.01

Table 4: Initialization Time.(in secs)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 200 400 600 800 1000 1200

Lo
ad

 Im
ba

la
nc

e

K

Number of Triangles
Isosurfacing Time

Figure 8: Load Imbalance for K x K Bucket Subdivision

Our implementation uses the message passing paradigm
by employing the ACLMPL message passing library [9]
which is a high throughput, low latency communications
library.y In this section, we show the load balancing char-
acteristics of our parallel algorithm and give the speedup
factors obtained from executions using 4 to 64 processing
elements. We used the brain data set which has 471,770 cell
elements.

To measure the load balance of our parallel algorithm,
we use two different metrics. One is a formula of load im-
balance used by Ma [10]:

� Load Imbalance = 1� loadAverage
loadMax

The other is a load difference formula:

� Load Difference = (100� loadMax�loadMin

loadT otal
)%

Two different measurements are used to define the work-
load for each PE. One is the isosurfacing times for each PE,
the other is the number of triangles produced by each PE.
We present both of the workload measurements to evaluate
our algorithm.

From our earlier discussion, we know that the load bal-
ance is affected by the resolution of bucket subdivision.
Figure 8 and Figure 9 show the load imbalance and load
difference, for both workload measurements, using 32 PEs.
We increased the resolution of the bucket subdivision from
16�16 to 1024�1024. The results show that we can obtain
a highly balanced load, namely under 0.2 of load imbalance
and 2% of load difference for a 1024� 1024 bucket subdi-
vision. Remember that the bucket subdivision is a subdivi-
sion of the Span Space used to distribute the cell elements,
which is different from the lattice subdivision used to per-
form the isosurfacing algorithm.

yWe used ACLMPL since the MPI implementation on the T3D is not
yet mature. The message passing library employed will effect the perfor-
mance but is independent of the isosurfacing algorithm.



0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

0 200 400 600 800 1000 1200

Lo
ad

 D
iff

er
en

ce

K

Number of Triangles
Isosurfacing Time

Figure 9: Load Difference for K x K Bucket Subdivision

0

10

20

30

40

50

60

70

10 20 30 40 50 60

S
pe

ed
up

Number of processors

"spdup.dat"
"Ideal"

Figure 10: Speedup Factors

Figure 10 gives the speedup factors for T3D partitions
with 4 to 64 PEs. The test was performed with a 256�256
lattice subdivision.

6 Conclusion and Summary

We have presented a high performance isosurfacing al-
gorithmusing a regularL�L lattice subdivisionof the Span
Space. The algorithm has a average case time complexity
of O(log(N

L
) +

p
N
L

+ K), where the N is the total num-
ber of cells in the scalar field, K is the number of isosur-
face cells, and L is a user specified parameter. In practice,
it is faster than the Kd-tree searching method. Empirically,
the algorithm has its best performance when the value of
L is about 200 to 500 for scalar data sets with sizes rang-
ing from hundreds of thousands to millionsof cell elements.
We have also presented a load balanced parallel isosurfac-
ing algorithm. In addition to the lattice subdivision, we use
a bucket subdivision of the Span Space and a round-robin
method to distribute the cell elements. Our experimental
results show that the higher the resolutionof the bucket sub-
division, the better the load balance. Our sequential and
parallel isosurfacing algorithm can satisfy the needs of both

post-processing and computational steering visualization.

Acknowledgments

The work was performed under the auspices of the
United State Department of Energy, Los Alamos National
Laboratory and was supported in part by the National Sci-
ence Foundation and the National Institutes of Health. The
research was performed in part using the resources located
in the Department of Computer Science at the University
of Utah and at the Advanced Computing Laboratory of Los
Alamos National Laboratory. Furthermore, the authors ap-
preciate access to facilities that are part of the NSF STC for
Computer Graphics and Scientific Visualization.

References

[1] W.E. Lorensen and H. E. Cline. Marching cubes:
A high resolution 3d surface construction algorithm.
Computer Graphics, 21(4):163–169, July 1987.

[2] J. Wilhelms and A. Van Gelder. Octrees for faster iso-
surface generation. ACM Transactions on Graphics,
11(3):201–227, July 1992.

[3] R. S. Gallagher. Span filter: An optimization scheme
for volume visualization of large finite element mod-
els. In Proceedings of Visualization ’91, pages 68–
75. IEEE Computer Society Press, Los Alamitos, CA,
1991.

[4] T. Itoh and K. Koyyamada. Isosurface generation by
using extreme graphs. In Proceedings of Visualization
’94, pages 77–83. IEEE Computer Society Press, Los
Alamitos, CA, 1994.

[5] H.W. Shen and C.R. Johnson. Sweeping simplices:
A fast isosurface extraction algorithm for unstructure
grids. In Proceedings of Visualization ’95. IEEE
Computer Society Press, Los Alamitos, CA, 1995.

[6] Y. Livnat, H.W. Shen, and C.R. Johnson. A near op-
timal isosurface extraction algorithm using the span
space. IEEE Transaction on Visualization and Com-
puter Graphics, 2(1), March 1996.

[7] F.P. Preparata and M.I. Shamos. Computational Ge-
ometry, an introduction. Springer-Verlag Publishing
Company, 1985.

[8] S. Molnar, M. Cox, D Ellsworth, and H. Fuchs. A
sorting classification of parallel rendering. IEEE
Computer Graphics and Applications, pages 23–32,
July 1994.



Figure 11: A yellow isosurface within a multi-colored
semi-transparent heart model

[9] J. Painter, P. McCormick, M. Krogh, C. Hansen, and
G. Colinde Verdière. The acl message passing library.
EPFL Supercomputing Review, 7, November 1995.

[10] K.-L. Ma. Parallel volume ray-casting for
unstructured-grid data on distributed-memory archi-
tectures. In Proceedings of 1995 Parallel Rendering
Symposium, pages 23–30, 1995.

Figure 12: A green isosurface within a multi-colored semi-
transparent head model

Figure 13: A yellow isosurface within a multi-colored
semi-transparent torso model


