1. Bézier Curves
Overview

• Coordinate Systems
• Bernstein Polynomials
• Bézier Curves – Properties
• Derivatives
• Piecewise Curves
• Gerald Farin: *NURB Curves and Surfaces*. A K Peters, 1995
• Christoph Hoffmann: *Geometric and Solid Modeling. An Introduction*. Morgan Kaufmann, 1989
• A. Rockwood, P. Chambers: *Interactive Curves and Surfaces*. Morgan Kaufmann, 1996
Local Coordinate Systems

- Vectors and Points bold: e.g. x, y

\[
x = \begin{bmatrix} x \\ y \\ z \end{bmatrix}; \quad u = \begin{bmatrix} u \\ v \end{bmatrix}
\]

- Curve $x(u)$ as a map of the 1D parameter space u into 2D or 3D

\[
x(u) = (x(u), y(u), z(u))^T
\]
Local Coordinate Systems

- Surface $x(u,v)$ as a map of a subregion of (u,v) into \mathbb{E}^2 or \mathbb{E}^3

 $$x(u,v) = (x(u,v), y(u,v), z(u,v))^T$$

- Subdivision of parameter space into disjoint segments (knots):

 $$u_0 < u_1 < \cdots < u_p$$

- Surfaces are subdivided by so-called knotlines:

 $$u_0 < u_1 < \cdots < u_p \text{ and } v_0 < v_1 < \cdots < v_q$$
Bézier Curves

• $x(t) = p(t)$ given by a Bernstein basis expansion:

$$x(t) = b_0 B_0^n(t) + \ldots + b_n B_n^n(t)$$

• Bernstein polynomial of degree n:

$$B_i^n(t) = \binom{n}{i} t^i (1-t)^{n-i}$$

$i < 0, i > n$: $B_i^n(t) \equiv 0$

• Binomial coefficients:

$$\binom{n}{i} = \begin{cases} \frac{n!}{i!(n-i)!} & 0 \leq i \leq n \\ 0 & \text{else} \end{cases}$$
JAVA-Applet

• Bernstein polynomial:
 – Global support
 – Positive definite
 – Partition of unity
 – Different degrees
Construction and Properties

• Cubic curve (n = 3):

\[x(t) = b_0 (1 - t)^3 + 3b_1 t (1 - t)^2 + 3b_2 t^2 (1 - t) + b_3 t^3 \]

– Coefficients \(b_0, ..., b_n \) are called Bézier-points or control points.

– Set of control points defines the so-called control polygon

• Properties of Bernstein polynomials:

– Partition of unity
– Positivity (positive definite)
– Recursion
– Symmetry
JAVA-Applet

• The parametric Bézier Curve:
 – Cubic curves
 – piecewise definitions
 – continuity
 – design property
Construction and Properties

Distinguish between degree (highest order of the polynomial) and order=degree + 1

• Properties of Bézier-Curves:
 – affine invariance: affine transform of all points on the curve is accomplished by the affine transform of its control points.
 – convex hull property: the curve lies in the convex hull of its control polygon.

\[\text{conv}(P) := \left\{ \sum_{i=1}^{n} \lambda_i p_i \mid \lambda_i \geq 0, \sum_{i=1}^{n} \lambda_i = 1 \right\} \]
Construction and Properties

• Properties of Bézier-Curves:
 – *design property*: Control polygon gives a rough sketch of the curve.
 – *endpoint interpolation*: Since
 \[B^n_0(0) = B^n_n(1) = 1 \]
 the curve interpolates the endpoints \(b_0 \) and \(b_n \).
 – *variation diminishing property*: The maximum number of intersections of a line with the curve is less or equal to the number of intersections with its control polygon.
Variation Diminishing Property

1. Bézier Curves

Copyright: M. Gross, ETH Zürich, 2010
Convex Hull Property
deCasteljau Algorithm

- Let b_0, b_1, b_2 be 3 control points:

 $b_0^1(t) = (1 - t)b_0 + tb_1$
 $b_1^1(t) = (1 - t)b_1 + tb_2$
 $b_0^2(t) = (1 - t)b_0^1(t) + tb_1^1(t)$

- We obtain: $b_0^2(0) = b_0$, $b_0^2(1) = b_2$

- Insert:

 $b_0^2(t) = (1 - t)^2 b_0 + 2t(1 - t)b_1 + t^2 b_2$
deCasteljau Algorithm

- Recursive computation of a point on the curve using a systolic array:
 - Given: \(n+1 \) control points \(b_0, b_1, \ldots, b_n \)
 - Recursion:
 \[
 b_i^r(t) = (1-t)b_i^{r-1}(t) + t b_{i+1}^{r-1}(t)
 \]
 \[
 b_i^0(t) = b_i
 \]
 - \(r = 1, \ldots, n \quad i = 0, \ldots, n-r \)

\[\Rightarrow \text{Point } b_0^n \text{ on the Bézier curve with } b(t) = b_0^n \]
Algorithm computes a triangular representation:

\[b_0 \quad b_1^1 \quad b_0^2 \quad b_1^3 \quad b_2^2 \quad b_3^3 \]

\(O(n^3) \) costs

⇒ successive linear interpolation, “corner cutting”
deCasteljau Algorithm

• A planar cubic Bézier curve at $t = \frac{1}{2}$:

The student might reflect the situation, where control points are given with $b_i = (b_{ix}, b_{iy}, b_{iz})$

\[
\begin{bmatrix}
0 \\
0 \\
0 \\
2 \\
8 \\
2 \\
4 \\
0
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
1 \\
4 \\
2 \\
6 \\
1
\end{bmatrix} + \frac{1}{2} \begin{bmatrix}
0 \\
1 \\
2 \\
3/2 \\
3/2 \\
3/2 \\
3/2
\end{bmatrix}
\]
deCasteljau Algorithm
JAVA-Applet

• deCasteljau algorithm:
 – Successive linear interpolation
 – Curve segments
 – Endpoint interpolation
 – Tangency
 – Different degrees
Derivatives of Bézier Curves

• Computation of derivatives:
• Recurrence relation of Bernstein polynomials:
 \[\frac{d}{dt} B_i^n(t) = n \left(B_{i-1}^{n-1}(t) - B_i^{n-1}(t) \right) \]

• For the curve:
 \[\frac{d}{dt} b^n(t) = n \sum_{j=0}^{n} \left(B_{j-1}^{n-1}(t) - B_j^{n-1}(t) \right) b_j \]

• Forward differencing operator \(\Delta \) :
 \[\Delta b_j = b_{j+1} - b_j \quad \Delta b_j \in \mathbb{R}^3 \]
 \[\frac{d}{dt} b^n(t) = n \sum_{j=0}^{n-1} \Delta b_j B_j^{n-1}(t) \]
Derivatives of Bézier Curves

The derivative of a Bézier curve is a Bézier curve of degree \(n-1 \)

- Generalization to higher order derivatives using a recursive forward difference operator \(\Delta^r \) of degree \(r \):
 \[
 \Delta^r b_j = \Delta^{r-1} b_{j+1} - \Delta^{r-1} b_j
 \]

- In a non-recursive form:
 \[
 \Delta^r b_i = \sum_{j=0}^{r} \binom{r}{j} (-1)^{r-j} b_{j+i}
 \]
 \[
 \frac{d^r}{dt^r} b^n(t) = \frac{n!}{(n-r)!} \sum_{j=0}^{n-r} \Delta^r b_j B_{j}^{n-r}(t)
 \]
Derivatives of Bézier Curves

• Derivatives at $t = 0$ and $t = 1$:
\[
\frac{d^r}{dt^r} b^n(0) = \frac{n!}{(n-r)!} \Delta^r b_0
\]
\[
\frac{d^r}{dt^r} b^n(1) = \frac{n!}{(n-r)!} \Delta^r b_{n-r}
\]

• Δb_0 and Δb_1 define the tangent in $t = 0$
• Computation using the deCasteljau algorithm
• Related issues: Subdivision and degree elevation of a curve
Bézier Curve and Derivative
OpenGL Curves

- Define a so-called Evaluator (**glMap**)
- Enable it (**glEnable**)
- **GL_MAP_VERTEX_3**: 3D control points and vertices
- **glEvalCoord1(u)** replaces **glVertex*()**
- Works for geometry, texture, color, normals
OpenGL Curves

- Using `glMap1f()` and `glEvalCoord1f()`

```c
GLfloat ctrlpoints[4][3] = {
    {-4.0, -4.0, 0.0}, {-2.0, 4.0, 0.0},
    { 2.0, -4.0, 0.0}, { 4.0, 4.0, 0.0}};

void myinit(void)
{
    glClearColor(0.0, 0.0, 0.0, 1.0);
    glMap1f(GL_MAP1_VERTEX_3, 0.0, 1.0, 3, 4,
            &ctrlpoints[0][0]); /* u0, u1, res, order */
    glEnable(GL_MAP1_VERTEX_3);
    glShadeModel(GL_FLAT);
}
```
OpenGL Curves

void display(void)
{
 int i;
 glClear(GL_COLOR_BUFFER_BIT);
 glColor3f(1.0, 1.0, 1.0);
 glBegin(GL_LINE_STRIP);
 for (i = 0; i <= 30; i++)
 glEvalCoord1f((GLfloat) i/30.0);
 glEnd();
 /* The following code displays the control points as dots. */
 glPointSize(5.0);
 glColor3f(1.0, 1.0, 0.0);
 glBegin(GL_POINTS);
 for (i = 0; i < 4; i++)
 glVertex3fv(&ctrlpoints[i][0]);
 glEnd();
 glFlush();
}
Piecewise Bézier Curves

• Polynomial degree aligned to number of control points
• Variant: Piecewise smooth curve definitions: *Splines* (*piecewise curves*)
• Problem: Continuity at the curve boundaries
• Global parameter u to describe curve
Piecewise Bézier Curves

• Segment boundaries (knots) $u_0 < \cdots < u_L$ define intervals $[u_i, u_{i+1}]$.

• Local Parameter t to describe the curve in each interval

$$t = \frac{u - u_i}{u_{i+1} - u_i} = \frac{u - u_i}{\Delta_i}$$

• Segmental definition: $s(u) = s_i(t)$.

• Computation of the curve derivatives

$$\frac{ds(u)}{du} = \frac{ds_i(t)}{dt} \frac{dt}{du} = \frac{1}{\Delta_i} \frac{ds_i(t)}{dt}$$
Piecewise Bézier Curves

- Curve in \([u_0, u_2]\), decomposed into 2 Bézier-Segments \(b_0, \ldots, b_n\) in \([u_0, u_1]\) and \(b_n, \ldots, b_{2n}\) in \([u_1, u_2]\)
- Enforce \(C^r\)-Continuity at segment boundaries by the following conditions:

\[
b_{n+i} = b^i_{n-i}(t) \quad i = 0, \ldots, r
\]

where \(t = (u - u_0) / (u_1 - u_0)\) stands for the local Coordinate of \(u_2\) relative to \([u_0, u_1]\)
- Control points by extrapolation of the first segment using the deCasteljau-Algorithm
Example: C^1-Continuity:

- Control points b_{n-1}, b_n and b_{n+1} influence first derivative in b_n
 \[\Rightarrow \text{co-linearity at ratio } \frac{u_1 - u_0}{u_2 - u_1} = \frac{\Delta_0}{\Delta_1} \]

- Since
 \[\Delta_1 \Delta b_{n-1} = \Delta_0 \Delta b_n \]

- C^1-Continuity contains the first 2 control points of the following segment
Derivatives of a Bézier curve:

- Co-linearity of control points
- Relationship between individual curve segments
Matrix Form

- \(x(t) \) as a curve of type:

\[
x(t) = \sum_{i=0}^{n} c_i C_i(t)
\]

- As an inner product:

\[
x(t) = \begin{bmatrix} c_0 & \ldots & c_n \end{bmatrix} \begin{bmatrix} C_0(t) \\ \vdots \\ C_n(t) \end{bmatrix}
\]
Matrix Form

• Basis transform into a monomial representation with $M = \{m_{ij}\}$:

$$
\begin{bmatrix}
C_0(t) \\
\vdots \\
C_n(t)
\end{bmatrix} =
\begin{bmatrix}
m_{00} & \cdots & m_{0n} \\
\vdots & \ddots & \vdots \\
m_{n0} & \cdots & m_{nn}
\end{bmatrix}
\begin{bmatrix}
t^0 \\
\vdots \\
t^n
\end{bmatrix}
$$

• For Bernstein polynomials we obtain

$$
m_{ij} = (-1)^{j-i} \binom{n}{j} \binom{j}{i}
$$
Matrix Form

- For $n = 3$:

\[M = \begin{bmatrix}
1 & -3 & 3 & -1 \\
0 & 3 & -6 & 3 \\
0 & 0 & 3 & -3 \\
0 & 0 & 0 & 1
\end{bmatrix} \]

- Matrix M is the key to the **forward-differencing** method.
Spline Interpolation

• Goal: Interpolate a set of points \(p_0, ..., p_n \) using basis functions

• Interpolation with Monomials:
 – Canonical form of polynomial interpolation
 \[
 x(t) = \sum_{j=0}^{n} a_j t^j
 \]
 with \(x(t_i) = p_i \) and \(t^j \): Monomial of degree \(j \).
Spline Interpolation

• Solution is given by a system of linear equations
 \[p_i = x(t_i) = \sum_{j=0}^{n} a_j (t_i)^j, \quad i \in [0, n] \]

• Matrix form: \((Vandermonde)\)

\[
\begin{bmatrix}
1 & t_0 & \cdots & t_0^n \\
\vdots & \vdots & \ddots & \vdots \\
1 & t_n & \cdots & t_n^n \\
\end{bmatrix}
\begin{bmatrix}
a_0 \\
a_1 \\
a_n \\
\end{bmatrix}
=
\begin{bmatrix}
p_0 \\
p_1 \\
p_n \\
\end{bmatrix}
\]

\(\text{Vandermonde matrices are notoriously ill-conditioned}\)
deCasteljau Algorithm

- The notion of blossoms:
- **Blossoming** as a generalization of the deCasteljau-algorithm
- Increasing popularity
- Interpolation for different parameter values \(t_1, t_2, t_3 \) traces out a region in \(\mathbb{R}^3 \):

\[
\begin{align*}
&b_0 \\
&b_1 \quad b_0^1[t_1] \\
&b_2 \quad b_1^1[t_1] \quad b_0^1[t_1,t_2] \\
&b_3 \quad b_2^1[t_1] \quad b_1^2[t_1,t_2] \quad b_0^3[t_1,t_2,t_3]
\end{align*}
\]
deCasteljau Algorithm

• The trivariate function $f(t_1, t_2, t_3)$ is called \textit{blossom} of the curve $b^3(t)$
 We obtain $b[0,0,0] = b_0$ and $b[1,1,1] = b_3$
• Evaluation of $[t_1, t_2, t_3] = [0,0,1]$

\[
\begin{array}{ccc}
 b_0 & b_1 & b_2 \\
 b_1 & b_0 & \cdot \\
 b_2 & b_1 & b_0 \\
 b_3 & b_2 & b_1 & b_1 = b[0,0,1] \\
\end{array}
\]

to get $b_2 := b[0,1,1]$
deCasteljau Algorithm

- To get the curve: Set $t_1 = t_2 = t_3 = t$:

\[
b_0 = b[0,0,0] \\
b_1 = b[0,0,1] \quad b[0,0,t] \\
b_2 = b[0,1,1] \quad b[0,t,1] \quad b[0,t,t] \\
b_3 = b[1,1,1] \quad b[t,1,1] \quad b[t,t,1] \quad b[t,t,t]
\]

t^r: t r-times as argument

- Bézier control points in blossom notation:

\[
b_i = b[0^{<n-i>},1^{<i>}]
\]